InSAR Displacement Time Series Mining: A Machine Learning Approach

Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring to geohazard assessment. With systematic data acquisitions becoming the new norm for SAR missions, millions of time series are continuously g...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS pp. 3301 - 3304
Main Authors: Ansari, Homa, Rubwurm, Marc, Ali, Mohsin, Montazeri, Sina, Parizzi, Alessandro, Zhu, Xiao Xiang
Format: Conference Proceeding
Language:English
Published: IEEE 11-07-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring to geohazard assessment. With systematic data acquisitions becoming the new norm for SAR missions, millions of time series are continuously generated. Machine Learning provides a framework for the efficient mining of such big data. Here, we focus on unsupervised mining of the data via clustering the similar temporal patterns and data-driven displacement signal reconstruction from the InSAR time series. We propose a deep Long Short Term Memory (LSTM) autoencoder model which can exploit temporal relations in contrast to the commonly used shallow learning methods, such as Uniform Manifold Approximation and Projection (UMAP). We also modify the loss function to allow the quantification of uncertainties in the time series data. The two approaches are applied to the Lazufre Volcanic Complex located at the central volcanic zone of the Andes and thereby compared.
AbstractList Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring to geohazard assessment. With systematic data acquisitions becoming the new norm for SAR missions, millions of time series are continuously generated. Machine Learning provides a framework for the efficient mining of such big data. Here, we focus on unsupervised mining of the data via clustering the similar temporal patterns and data-driven displacement signal reconstruction from the InSAR time series. We propose a deep Long Short Term Memory (LSTM) autoencoder model which can exploit temporal relations in contrast to the commonly used shallow learning methods, such as Uniform Manifold Approximation and Projection (UMAP). We also modify the loss function to allow the quantification of uncertainties in the time series data. The two approaches are applied to the Lazufre Volcanic Complex located at the central volcanic zone of the Andes and thereby compared.
Author Rubwurm, Marc
Ali, Mohsin
Montazeri, Sina
Parizzi, Alessandro
Ansari, Homa
Zhu, Xiao Xiang
Author_xml – sequence: 1
  givenname: Homa
  surname: Ansari
  fullname: Ansari, Homa
  organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science
– sequence: 2
  givenname: Marc
  surname: Rubwurm
  fullname: Rubwurm, Marc
  organization: Technical University of Munich (TUM),Chair of Remote Sensing Technology
– sequence: 3
  givenname: Mohsin
  surname: Ali
  fullname: Ali, Mohsin
  organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science
– sequence: 4
  givenname: Sina
  surname: Montazeri
  fullname: Montazeri, Sina
  organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science
– sequence: 5
  givenname: Alessandro
  surname: Parizzi
  fullname: Parizzi, Alessandro
  organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of SAR Signal Processing
– sequence: 6
  givenname: Xiao Xiang
  surname: Zhu
  fullname: Zhu, Xiao Xiang
  organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science
BookMark eNotj8tOwzAUBQ0Cibb0C9j4BxKuH9eO2YUCJVIqpKasK9txwKhxo4QNf08RXc3RLI40c3KVjikQQhnkjIG5r9bltmmk1hxyDpzlBlFIhRdkaXTBlEIJQhl1SWacocg0gLgh82n6Oo2CA8zIY5Wackuf4jQcrA99SN90F_tAmzDGMNFNTDF9PNCSbqz_jCnQOtjxz9FyGMbjSd6S684eprA8c0HeX553q9esfltXq7LOPOcCM-eg0MALjh1XEgCw9QwQWqdBFRZbB8hari1aAZ03WrZSOeO49950CsWC3P3_xhDCfhhjb8ef_TlZ_AL4KEt1
CitedBy_id crossref_primary_10_3390_rs16010054
crossref_primary_10_3390_rs15153776
crossref_primary_10_3390_rs14153821
crossref_primary_10_1109_JSTARS_2022_3180994
crossref_primary_10_1109_TGRS_2024_3389772
crossref_primary_10_1016_j_jag_2023_103276
crossref_primary_10_3390_rs15112755
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS47720.2021.9553465
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9781665403696
1665403691
EISSN 2153-7003
EndPage 3304
ExternalDocumentID 9553465
Genre orig-research
GrantInformation_xml – fundername: German Research Center for Geosciences (GFZ)
  funderid: 10.13039/501100010956
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-c2235-bb08702825f2640005dc1050db7068a5db051d27a5a30fc974d46b9b2ccc9f653
IEDL.DBID RIE
IngestDate Wed Jun 26 19:29:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2235-bb08702825f2640005dc1050db7068a5db051d27a5a30fc974d46b9b2ccc9f653
OpenAccessLink https://elib.dlr.de/142311/1/TSInSARMining_Ansari_etal.pdf
PageCount 4
ParticipantIDs ieee_primary_9553465
PublicationCentury 2000
PublicationDate 2021-July-11
PublicationDateYYYYMMDD 2021-07-11
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July-11
  day: 11
PublicationDecade 2020
PublicationTitle 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
PublicationTitleAbbrev IGARSS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.8624102
Snippet Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring...
SourceID ieee
SourceType Publisher
StartPage 3301
SubjectTerms Autoencoders
Clustering
Data mining
Deep Learning
InSAR
Latent Representation Learning
Machine learning
Manifolds
Sequence Models
Signal reconstruction
Systematics
Time Series
Time series analysis
Uncertainty
Unsupervised Learning
Title InSAR Displacement Time Series Mining: A Machine Learning Approach
URI https://ieeexplore.ieee.org/document/9553465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sQfDkoxXf5ODRtMlustl4W-3zUJGugreyeax42YprD_57k3RbEbx4C4EkMCGZL5PvmwG4dohB2FiVWErNMBORwbIQHHPlwLG2UUSZ1ztPcvHwkg6GPk3OzVYLY60N5DPb883wl2-WeuVDZX3JecwS3oKWkOlaq7W5dWPnyciGqUNkfzrO5nnOHHYk7hEY0V4z9lcRleBDRvv_W_0Auj9iPPS4dTOHsGOrI9gdh4q8Xx24m1Z5NkeDtzrQq_wcyOs6kI972RrNQgWIW5ShWeBNWtSkVH1FWZNPvAvPo-HT_QQ3hRGwdt6cY6WIO2ZedVo6PONhl9EOJxGjBEnSghvljpqJRMGLmJTaPRkMS5RUkdZalgmPj6FdLSt7AsikzEoVezKpYowLt2OaaiO0UZYayk6h4y2xeF_nvlg0Rjj7u_sc9ryxfeyT0gtof36s7CW0arO6Crv1DazykvI
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sRfTkoxXf5uDRtNndZNN4W-0T2yLdCt7K5rHiZSvWHvz3Jum2InjxFgJJYEIyXybfNwNwYxEDN5HMsRCKYspDjUXGGWbSgmNlwjCgTu_cT_n4pdXuuDQ5txstjDHGk89MwzX9X76eq6ULlTUFYxGNWQW2GeUxX6m11vduZH0ZWXN1iGgOeskkTalFj8Q-A8OgUY7-VUbFe5Hu_v_WP4D6jxwPPW0czSFsmeIIdnq-Ju9XDe4HRZpMUPtt4QlWbg7klB3IRb7MAo18DYg7lKCRZ04aVCZVfUVJmVG8Ds_dzvShj8vSCFhZf86wlMQeNKc7zS2iccBLK4uUiJacxK2MaWkPmw55xrKI5Mo-GjSNpZChUkrkMYuOoVrMC3MCSLeoETJydFJJKeN2z1SgNFdamkAH9BRqzhKz91X2i1lphLO_u69htz8dDWfDwfjxHPac4V0kNAguoPr5sTSXUFno5ZXfuW-ezpZD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Geoscience+and+Remote+Sensing+Symposium+IGARSS&rft.atitle=InSAR+Displacement+Time+Series+Mining%3A+A+Machine+Learning+Approach&rft.au=Ansari%2C+Homa&rft.au=Rubwurm%2C+Marc&rft.au=Ali%2C+Mohsin&rft.au=Montazeri%2C+Sina&rft.date=2021-07-11&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=3301&rft.epage=3304&rft_id=info:doi/10.1109%2FIGARSS47720.2021.9553465&rft.externalDocID=9553465