InSAR Displacement Time Series Mining: A Machine Learning Approach
Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring to geohazard assessment. With systematic data acquisitions becoming the new norm for SAR missions, millions of time series are continuously g...
Saved in:
Published in: | 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS pp. 3301 - 3304 |
---|---|
Main Authors: | , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
11-07-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring to geohazard assessment. With systematic data acquisitions becoming the new norm for SAR missions, millions of time series are continuously generated. Machine Learning provides a framework for the efficient mining of such big data. Here, we focus on unsupervised mining of the data via clustering the similar temporal patterns and data-driven displacement signal reconstruction from the InSAR time series. We propose a deep Long Short Term Memory (LSTM) autoencoder model which can exploit temporal relations in contrast to the commonly used shallow learning methods, such as Uniform Manifold Approximation and Projection (UMAP). We also modify the loss function to allow the quantification of uncertainties in the time series data. The two approaches are applied to the Lazufre Volcanic Complex located at the central volcanic zone of the Andes and thereby compared. |
---|---|
AbstractList | Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring to geohazard assessment. With systematic data acquisitions becoming the new norm for SAR missions, millions of time series are continuously generated. Machine Learning provides a framework for the efficient mining of such big data. Here, we focus on unsupervised mining of the data via clustering the similar temporal patterns and data-driven displacement signal reconstruction from the InSAR time series. We propose a deep Long Short Term Memory (LSTM) autoencoder model which can exploit temporal relations in contrast to the commonly used shallow learning methods, such as Uniform Manifold Approximation and Projection (UMAP). We also modify the loss function to allow the quantification of uncertainties in the time series data. The two approaches are applied to the Lazufre Volcanic Complex located at the central volcanic zone of the Andes and thereby compared. |
Author | Rubwurm, Marc Ali, Mohsin Montazeri, Sina Parizzi, Alessandro Ansari, Homa Zhu, Xiao Xiang |
Author_xml | – sequence: 1 givenname: Homa surname: Ansari fullname: Ansari, Homa organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science – sequence: 2 givenname: Marc surname: Rubwurm fullname: Rubwurm, Marc organization: Technical University of Munich (TUM),Chair of Remote Sensing Technology – sequence: 3 givenname: Mohsin surname: Ali fullname: Ali, Mohsin organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science – sequence: 4 givenname: Sina surname: Montazeri fullname: Montazeri, Sina organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science – sequence: 5 givenname: Alessandro surname: Parizzi fullname: Parizzi, Alessandro organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of SAR Signal Processing – sequence: 6 givenname: Xiao Xiang surname: Zhu fullname: Zhu, Xiao Xiang organization: Remote Sensing Technology Institute, German Aerospace Center (DLR),Department of Earth Observation Data Science |
BookMark | eNotj8tOwzAUBQ0Cibb0C9j4BxKuH9eO2YUCJVIqpKasK9txwKhxo4QNf08RXc3RLI40c3KVjikQQhnkjIG5r9bltmmk1hxyDpzlBlFIhRdkaXTBlEIJQhl1SWacocg0gLgh82n6Oo2CA8zIY5Wackuf4jQcrA99SN90F_tAmzDGMNFNTDF9PNCSbqz_jCnQOtjxz9FyGMbjSd6S684eprA8c0HeX553q9esfltXq7LOPOcCM-eg0MALjh1XEgCw9QwQWqdBFRZbB8hari1aAZ03WrZSOeO49950CsWC3P3_xhDCfhhjb8ef_TlZ_AL4KEt1 |
CitedBy_id | crossref_primary_10_3390_rs16010054 crossref_primary_10_3390_rs15153776 crossref_primary_10_3390_rs14153821 crossref_primary_10_1109_JSTARS_2022_3180994 crossref_primary_10_1109_TGRS_2024_3389772 crossref_primary_10_1016_j_jag_2023_103276 crossref_primary_10_3390_rs15112755 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS47720.2021.9553465 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9781665403696 1665403691 |
EISSN | 2153-7003 |
EndPage | 3304 |
ExternalDocumentID | 9553465 |
Genre | orig-research |
GrantInformation_xml | – fundername: German Research Center for Geosciences (GFZ) funderid: 10.13039/501100010956 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-c2235-bb08702825f2640005dc1050db7068a5db051d27a5a30fc974d46b9b2ccc9f653 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:29:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2235-bb08702825f2640005dc1050db7068a5db051d27a5a30fc974d46b9b2ccc9f653 |
OpenAccessLink | https://elib.dlr.de/142311/1/TSInSARMining_Ansari_etal.pdf |
PageCount | 4 |
ParticipantIDs | ieee_primary_9553465 |
PublicationCentury | 2000 |
PublicationDate | 2021-July-11 |
PublicationDateYYYYMMDD | 2021-07-11 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-July-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.8624102 |
Snippet | Interferometric Synthetic Aperture Radar (InSAR)-derived surface displacement time series enable a wide range of applications from urban structural monitoring... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3301 |
SubjectTerms | Autoencoders Clustering Data mining Deep Learning InSAR Latent Representation Learning Machine learning Manifolds Sequence Models Signal reconstruction Systematics Time Series Time series analysis Uncertainty Unsupervised Learning |
Title | InSAR Displacement Time Series Mining: A Machine Learning Approach |
URI | https://ieeexplore.ieee.org/document/9553465 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sQfDkoxXf5ODRtMlustl4W-3zUJGugreyeax42YprD_57k3RbEbx4C4EkMCGZL5PvmwG4dohB2FiVWErNMBORwbIQHHPlwLG2UUSZ1ztPcvHwkg6GPk3OzVYLY60N5DPb883wl2-WeuVDZX3JecwS3oKWkOlaq7W5dWPnyciGqUNkfzrO5nnOHHYk7hEY0V4z9lcRleBDRvv_W_0Auj9iPPS4dTOHsGOrI9gdh4q8Xx24m1Z5NkeDtzrQq_wcyOs6kI972RrNQgWIW5ShWeBNWtSkVH1FWZNPvAvPo-HT_QQ3hRGwdt6cY6WIO2ZedVo6PONhl9EOJxGjBEnSghvljpqJRMGLmJTaPRkMS5RUkdZalgmPj6FdLSt7AsikzEoVezKpYowLt2OaaiO0UZYayk6h4y2xeF_nvlg0Rjj7u_sc9ryxfeyT0gtof36s7CW0arO6Crv1DazykvI |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sRfTkoxXf5uDRtNndZNN4W-0T2yLdCt7K5rHiZSvWHvz3Jum2InjxFgJJYEIyXybfNwNwYxEDN5HMsRCKYspDjUXGGWbSgmNlwjCgTu_cT_n4pdXuuDQ5txstjDHGk89MwzX9X76eq6ULlTUFYxGNWQW2GeUxX6m11vduZH0ZWXN1iGgOeskkTalFj8Q-A8OgUY7-VUbFe5Hu_v_WP4D6jxwPPW0czSFsmeIIdnq-Ju9XDe4HRZpMUPtt4QlWbg7klB3IRb7MAo18DYg7lKCRZ04aVCZVfUVJmVG8Ds_dzvShj8vSCFhZf86wlMQeNKc7zS2iccBLK4uUiJacxK2MaWkPmw55xrKI5Mo-GjSNpZChUkrkMYuOoVrMC3MCSLeoETJydFJJKeN2z1SgNFdamkAH9BRqzhKz91X2i1lphLO_u69htz8dDWfDwfjxHPac4V0kNAguoPr5sTSXUFno5ZXfuW-ezpZD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Geoscience+and+Remote+Sensing+Symposium+IGARSS&rft.atitle=InSAR+Displacement+Time+Series+Mining%3A+A+Machine+Learning+Approach&rft.au=Ansari%2C+Homa&rft.au=Rubwurm%2C+Marc&rft.au=Ali%2C+Mohsin&rft.au=Montazeri%2C+Sina&rft.date=2021-07-11&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=3301&rft.epage=3304&rft_id=info:doi/10.1109%2FIGARSS47720.2021.9553465&rft.externalDocID=9553465 |