A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the C...
Saved in:
Published in: | International journal of molecular sciences Vol. 25; no. 21; p. 11455 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-11-2024
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. |
---|---|
AbstractList | Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The
GRX480
mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in
GRX480
mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated
GRX480
mutants than in the wild type, indicating that
GRX480
regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H
2
O
2
scavenging genes in Cd-treated
GRX480
mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated
GRX480
mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis.Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H[sub.2]O[sub.2] scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. |
Audience | Academic |
Author | Lu, Ying-Tang Li, Ying-Rui Zhang, Ning-Xin Huang, Qiao-Ling Zhang, Ya-Xuan Yuan, Ting-Ting Cai, Wei |
AuthorAffiliation | 1 State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China 2 Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China – name: 2 Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China |
Author_xml | – sequence: 1 fullname: Li, Ying-Rui – sequence: 2 fullname: Cai, Wei – sequence: 3 fullname: Zhang, Ya-Xuan – sequence: 4 fullname: Zhang, Ning-Xin – sequence: 5 fullname: Huang, Qiao-Ling – sequence: 6 fullname: Lu, Ying-Tang – sequence: 7 fullname: Yuan, Ting-Ting |
BookMark | eNptUt9rFDEQDlLBtvroe8AXX7bm597ukxyLvQotQjnBt5DNTs4cm-RMdov335u1RXsiQ5jJzPd9kyFzgc5CDIDQW0quOG_JB7f3mUlGKRVSvkDnVDBWEVKvzp7Fr9BFzntCGGeyPUd-jbuu2h4PgDfjPOkEQ_zpQsab-2-iIfh6DmZysSRcwJ0evJs93sYRkg4GcH_Ed9qFqRwXdvh-YeOb6CHmSWf3m7VOundDPJTra_TS6jHDmyd_ib5ef9p2N9Xtl83nbn1bGcaYqAzUlGhKZTvwnvTANYdW2EHSnhmmAfqVaJumtXIlbS-ptrXkVFgghjRcAL9EHx91D3PvYTAQpqRHdUjO63RUUTt1Wgnuu9rFB1V6ilo0oii8f1JI8ccMeVLeZQPjqAPEOStOWbMSnLO2QN_9A93HOYUy34KqSXkalX9ROz2CcsHG0tgsomrdlLqQTb1oXf0HVWwA70z5butK_oRQPRJMijknsH-GpEQtW6FOtoL_Ap43q3w |
Cites_doi | 10.1016/j.plaphy.2016.10.004 10.1093/jxb/erl001 10.1105/tpc.18.00578 10.1038/nature06877 10.1104/pp.19.01504 10.1515/hsz-2014-0300 10.1016/j.tplants.2012.08.003 10.1093/jxb/erv063 10.1111/pce.12061 10.1093/mp/ssr113 10.1038/ncomms4064 10.1111/j.1365-313X.2007.03039.x 10.1093/jxb/err301 10.1105/tpc.106.041673 10.1007/s004250000458 10.1105/tpc.004853 10.1016/j.molp.2016.12.007 10.1016/j.redox.2021.101975 10.1089/ars.2012.5007 10.1016/j.scitotenv.2020.142188 10.1016/j.jhazmat.2019.121473 10.1104/pp.105.070391 10.1016/j.molp.2021.09.016 10.1186/s12870-016-0886-1 10.1007/s10534-014-9720-0 10.1016/j.tplants.2021.07.009 10.1016/j.ecoenv.2018.01.046 10.1146/annurev-arplant-043015-112301 10.1105/tpc.109.070185 10.1007/s00018-009-0054-y 10.1016/j.bbagen.2008.06.003 10.3389/fpls.2018.01634 10.1089/ars.2011.4327 10.1104/pp.110.159111 10.1111/j.1365-313X.2007.03044.x 10.1105/tpc.108.064477 10.1111/ppl.12567 10.1093/gbe/evp025 10.1111/j.1365-3040.2010.02171.x 10.1111/j.1469-8137.2008.02638.x 10.1111/nph.15496 10.1016/j.envexpbot.2019.04.009 10.1016/j.jhazmat.2023.132496 10.3389/fpls.2022.1012145 10.1146/annurev.arplant.59.032607.092811 10.1016/j.plaphy.2019.12.006 10.1111/pce.12157 10.1016/j.tplants.2008.10.007 10.1007/s00018-012-1089-z 10.1371/journal.pgen.1002923 10.1016/j.envint.2016.04.042 10.1074/jbc.M709567200 10.1146/annurev.arplant.59.032607.092759 10.1016/j.bbamcr.2014.09.018 10.1093/nar/gkac1213 10.1105/tpc.104.026971 10.1016/j.xplc.2024.100852 10.1111/pce.12144 10.1111/pce.13894 10.1104/pp.108.130294 10.1146/annurev-genet-102108-134201 10.1104/pp.103.037739 10.3389/fpls.2021.720867 10.1016/j.bbrc.2010.11.050 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms252111455 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Research Library Research Library (Corporate) Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | A815345869 10_3390_ijms252111455 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2022CFB168 |
GroupedDBID | --- 29J 2WC 3V. 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESTFP ESX F5P FRP FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 LK8 M1P M2O M7P MODMG M~E O5R O5S OK1 P2P PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M 7XB 8FK K9. MBDVC PQEST PQUKI PRINS Q9U 7X8 M48 5PM |
ID | FETCH-LOGICAL-c2224-ce610a1159d3b0be3a3e94fd51b2c2aeeb749889f575fb51af65314fe0c0834e3 |
IEDL.DBID | RPM |
ISSN | 1422-0067 1661-6596 |
IngestDate | Mon Nov 11 05:42:14 EST 2024 Sat Nov 16 17:15:57 EST 2024 Fri Nov 08 21:01:01 EST 2024 Thu Nov 14 02:04:02 EST 2024 Tue Nov 12 04:11:22 EST 2024 Wed Oct 30 12:32:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2224-ce610a1159d3b0be3a3e94fd51b2c2aeeb749889f575fb51af65314fe0c0834e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8577-3584 0009-0007-8250-2416 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546484/ |
PQID | 3126053115 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11546484 proquest_miscellaneous_3128743329 proquest_journals_3126053115 gale_infotracmisc_A815345869 gale_infotracacademiconefile_A815345869 crossref_primary_10_3390_ijms252111455 |
PublicationCentury | 2000 |
PublicationDate | 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Clemens (ref_15) 2001; 212 Murmu (ref_28) 2010; 154 Song (ref_17) 2004; 135 Zhu (ref_14) 2020; 384 Gutsche (ref_35) 2015; 396 Wang (ref_10) 2014; 27 ref_51 Laporte (ref_30) 2012; 63 Li (ref_27) 2009; 21 Meyer (ref_23) 2009; 43 Fu (ref_59) 2024; 5 Krasylenko (ref_57) 2021; 44 Ndamukong (ref_31) 2007; 50 Couturier (ref_49) 2015; 1853 Sreenivasulu (ref_40) 2014; 37 Rouhier (ref_46) 2008; 59 Hernandez (ref_21) 2015; 66 ref_24 ref_64 ref_63 Davletova (ref_55) 2005; 17 Kim (ref_12) 2007; 50 Alvarez (ref_39) 2022; 27 Sharma (ref_9) 2009; 14 Lysenko (ref_37) 2020; 147 Rouhier (ref_25) 2006; 57 Couturier (ref_36) 2010; 403 Hu (ref_53) 2010; 33 Zhao (ref_2) 2022; 15 Lillig (ref_48) 2013; 18 Song (ref_42) 2010; 22 Keunen (ref_52) 2013; 36 Siripornadulsil (ref_41) 2002; 14 Mano (ref_58) 2005; 139 Meyer (ref_50) 2012; 17 Li (ref_22) 2023; 460 Ksas (ref_34) 2018; 30 Sunkar (ref_56) 2006; 18 Zhu (ref_62) 2023; 51 Faversani (ref_1) 2018; 153 Hu (ref_3) 2016; 92-93 Peng (ref_13) 2017; 10 Wong (ref_19) 2009; 181 Ziemann (ref_26) 2009; 1 Lai (ref_33) 2014; 5 Clemens (ref_8) 2016; 67 Gao (ref_54) 2014; 37 Zaffagnini (ref_60) 2008; 283 Clemens (ref_11) 2013; 18 Baker (ref_38) 2008; 59 Zhu (ref_7) 2016; 109 Lillig (ref_45) 2008; 1780 Couturier (ref_47) 2009; 66 ref_44 Hanikenne (ref_20) 2008; 453 Li (ref_29) 2019; 221 ref_43 Hussain (ref_4) 2021; 754 Roach (ref_61) 2017; 161 Lin (ref_16) 2012; 69 Zhang (ref_6) 2020; 183 Zander (ref_32) 2012; 5 Zhang (ref_5) 2019; 163 Morel (ref_18) 2009; 149 |
References_xml | – volume: 109 start-page: 240 year: 2016 ident: ref_7 article-title: A role for CK2 beta subunit 4 in the regulation of plant growth, cadmium accumulation and H(2)O(2) content under cadmium stress in Arabidopsis thaliana publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.10.004 contributor: fullname: Zhu – volume: 57 start-page: 1685 year: 2006 ident: ref_25 article-title: Genome-wide analysis of plant glutaredoxin systems publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl001 contributor: fullname: Rouhier – volume: 30 start-page: 2495 year: 2018 ident: ref_34 article-title: Decoding beta-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress publication-title: Plant Cell doi: 10.1105/tpc.18.00578 contributor: fullname: Ksas – volume: 453 start-page: 391 year: 2008 ident: ref_20 article-title: Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4 publication-title: Nature doi: 10.1038/nature06877 contributor: fullname: Hanikenne – volume: 183 start-page: 345 year: 2020 ident: ref_6 article-title: WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production publication-title: Plant Physiol. doi: 10.1104/pp.19.01504 contributor: fullname: Zhang – volume: 396 start-page: 495 year: 2015 ident: ref_35 article-title: Plant-specific CC-type glutaredoxins: Functions in developmental processes and stress responses publication-title: Biol. Chem. doi: 10.1515/hsz-2014-0300 contributor: fullname: Gutsche – volume: 18 start-page: 92 year: 2013 ident: ref_11 article-title: Plant science: The key to preventing slow cadmium poisoning publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.08.003 contributor: fullname: Clemens – volume: 66 start-page: 2901 year: 2015 ident: ref_21 article-title: Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv063 contributor: fullname: Hernandez – volume: 36 start-page: 1242 year: 2013 ident: ref_52 article-title: Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept publication-title: Plant Cell Environ. doi: 10.1111/pce.12061 contributor: fullname: Keunen – volume: 5 start-page: 831 year: 2012 ident: ref_32 article-title: Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif publication-title: Mol. Plant doi: 10.1093/mp/ssr113 contributor: fullname: Zander – volume: 5 start-page: 3064 year: 2014 ident: ref_33 article-title: MED18 interaction with distinct transcription factors regulates multiple plant functions publication-title: Nat. Commun. doi: 10.1038/ncomms4064 contributor: fullname: Lai – volume: 50 start-page: 128 year: 2007 ident: ref_31 article-title: SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03039.x contributor: fullname: Ndamukong – volume: 63 start-page: 503 year: 2012 ident: ref_30 article-title: Glutaredoxin GRXS13 plays a key role in protection against photooxidative stress in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/err301 contributor: fullname: Laporte – volume: 18 start-page: 2051 year: 2006 ident: ref_56 article-title: Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance publication-title: Plant Cell doi: 10.1105/tpc.106.041673 contributor: fullname: Sunkar – volume: 212 start-page: 475 year: 2001 ident: ref_15 article-title: Molecular mechanisms of plant metal tolerance and homeostasis publication-title: Planta doi: 10.1007/s004250000458 contributor: fullname: Clemens – volume: 14 start-page: 2837 year: 2002 ident: ref_41 article-title: Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae publication-title: Plant Cell doi: 10.1105/tpc.004853 contributor: fullname: Siripornadulsil – volume: 10 start-page: 771 year: 2017 ident: ref_13 article-title: A Pivotal Role of Cell Wall in Cadmium Accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola publication-title: Mol. Plant doi: 10.1016/j.molp.2016.12.007 contributor: fullname: Peng – ident: ref_24 doi: 10.1016/j.redox.2021.101975 – volume: 18 start-page: 1654 year: 2013 ident: ref_48 article-title: Glutaredoxins in thiol/disulfide exchange publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2012.5007 contributor: fullname: Lillig – volume: 754 start-page: 142188 year: 2021 ident: ref_4 article-title: Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142188 contributor: fullname: Hussain – volume: 384 start-page: 121473 year: 2020 ident: ref_14 article-title: Knockdown of BTS may provide a new strategy to improve cadmium-phytoremediation efficiency by improving iron status in plants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121473 contributor: fullname: Zhu – volume: 139 start-page: 1773 year: 2005 ident: ref_58 article-title: Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls publication-title: Plant Physiol. doi: 10.1104/pp.105.070391 contributor: fullname: Mano – volume: 15 start-page: 27 year: 2022 ident: ref_2 article-title: Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food publication-title: Mol. Plant doi: 10.1016/j.molp.2021.09.016 contributor: fullname: Zhao – ident: ref_44 doi: 10.1186/s12870-016-0886-1 – volume: 27 start-page: 389 year: 2014 ident: ref_10 article-title: Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: Physiological, biochemical and ultrastructural analyses publication-title: Biometals doi: 10.1007/s10534-014-9720-0 contributor: fullname: Wang – volume: 27 start-page: 39 year: 2022 ident: ref_39 article-title: Proline metabolism as regulatory hub publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2021.07.009 contributor: fullname: Alvarez – volume: 153 start-page: 142 year: 2018 ident: ref_1 article-title: Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.01.046 contributor: fullname: Faversani – volume: 67 start-page: 489 year: 2016 ident: ref_8 article-title: Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-112301 contributor: fullname: Clemens – volume: 22 start-page: 2237 year: 2010 ident: ref_42 article-title: Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport publication-title: Plant Cell doi: 10.1105/tpc.109.070185 contributor: fullname: Song – volume: 66 start-page: 2539 year: 2009 ident: ref_47 article-title: Evolution and diversity of glutaredoxins in photosynthetic organisms publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-009-0054-y contributor: fullname: Couturier – volume: 1780 start-page: 1304 year: 2008 ident: ref_45 article-title: Glutaredoxin systems publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2008.06.003 contributor: fullname: Lillig – ident: ref_63 doi: 10.3389/fpls.2018.01634 – volume: 17 start-page: 1124 year: 2012 ident: ref_50 article-title: Thioredoxin and glutaredoxin systems in plants: Molecular mechanisms, crosstalks, and functional significance publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2011.4327 contributor: fullname: Meyer – volume: 154 start-page: 1492 year: 2010 ident: ref_28 article-title: Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development publication-title: Plant Physiol. doi: 10.1104/pp.110.159111 contributor: fullname: Murmu – volume: 50 start-page: 207 year: 2007 ident: ref_12 article-title: The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03044.x contributor: fullname: Kim – volume: 21 start-page: 429 year: 2009 ident: ref_27 article-title: Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.108.064477 contributor: fullname: Li – volume: 161 start-page: 75 year: 2017 ident: ref_61 article-title: Chlamydomonas reinhardtii responding to high light: A role for 2-propenal (acrolein) publication-title: Physiol. Plant doi: 10.1111/ppl.12567 contributor: fullname: Roach – volume: 1 start-page: 265 year: 2009 ident: ref_26 article-title: Origin and diversification of land plant CC-type glutaredoxins publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evp025 contributor: fullname: Ziemann – volume: 33 start-page: 1656 year: 2010 ident: ref_53 article-title: Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3’-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2010.02171.x contributor: fullname: Hu – volume: 181 start-page: 71 year: 2009 ident: ref_19 article-title: HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2008.02638.x contributor: fullname: Wong – volume: 221 start-page: 1906 year: 2019 ident: ref_29 article-title: TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana publication-title: N. Phytol. doi: 10.1111/nph.15496 contributor: fullname: Li – volume: 163 start-page: 69 year: 2019 ident: ref_5 article-title: 14-3-3s function in plant cadmium response by changes of glutathione and glutathione synthesis in Arabidopsis publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.04.009 contributor: fullname: Zhang – volume: 460 start-page: 132496 year: 2023 ident: ref_22 article-title: Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.132496 contributor: fullname: Li – ident: ref_64 doi: 10.3389/fpls.2022.1012145 – volume: 59 start-page: 143 year: 2008 ident: ref_46 article-title: The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092811 contributor: fullname: Rouhier – volume: 147 start-page: 191 year: 2020 ident: ref_37 article-title: Specificity of Cd, Cu, and Fe effects on barley growth, metal contents in leaves and chloroplasts, and activities of photosystem I and photosystem II publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.12.006 contributor: fullname: Lysenko – volume: 37 start-page: 300 year: 2014 ident: ref_40 article-title: Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? publication-title: Plant Cell Environ. doi: 10.1111/pce.12157 contributor: fullname: Sreenivasulu – volume: 14 start-page: 43 year: 2009 ident: ref_9 article-title: The relationship between metal toxicity and cellular redox imbalance publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.10.007 contributor: fullname: Sharma – volume: 69 start-page: 3187 year: 2012 ident: ref_16 article-title: The molecular mechanism of zinc and cadmium stress response in plants publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-012-1089-z contributor: fullname: Lin – ident: ref_51 doi: 10.1371/journal.pgen.1002923 – volume: 92-93 start-page: 515 year: 2016 ident: ref_3 article-title: The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review publication-title: Environ. Int. doi: 10.1016/j.envint.2016.04.042 contributor: fullname: Hu – volume: 283 start-page: 8868 year: 2008 ident: ref_60 article-title: Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii reveals the unique properties of a chloroplastic CGFS-type glutaredoxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M709567200 contributor: fullname: Zaffagnini – volume: 59 start-page: 89 year: 2008 ident: ref_38 article-title: Chlorophyll fluorescence: A probe of photosynthesis in vivo publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092759 contributor: fullname: Baker – volume: 1853 start-page: 1513 year: 2015 ident: ref_49 article-title: The roles of glutaredoxins ligating Fe-S clusters: Sensing, transfer or repair functions? publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2014.09.018 contributor: fullname: Couturier – volume: 51 start-page: 619 year: 2023 ident: ref_62 article-title: CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1213 contributor: fullname: Zhu – volume: 17 start-page: 268 year: 2005 ident: ref_55 article-title: Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.026971 contributor: fullname: Davletova – volume: 5 start-page: 100852 year: 2024 ident: ref_59 article-title: Hydrogen peroxide sulfenylates and inhibits the photorespiratory enzyme PGLP1 to modulate plant thermotolerance publication-title: Plant Commun. doi: 10.1016/j.xplc.2024.100852 contributor: fullname: Fu – volume: 37 start-page: 175 year: 2014 ident: ref_54 article-title: Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels publication-title: Plant Cell Environ. doi: 10.1111/pce.12144 contributor: fullname: Gao – volume: 44 start-page: 68 year: 2021 ident: ref_57 article-title: In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection publication-title: Plant Cell Environ. doi: 10.1111/pce.13894 contributor: fullname: Krasylenko – volume: 149 start-page: 894 year: 2009 ident: ref_18 article-title: AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.130294 contributor: fullname: Morel – volume: 43 start-page: 335 year: 2009 ident: ref_23 article-title: Thioredoxins and glutaredoxins: Unifying elements in redox biology publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-102108-134201 contributor: fullname: Meyer – volume: 135 start-page: 1027 year: 2004 ident: ref_17 article-title: A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.103.037739 contributor: fullname: Song – ident: ref_43 doi: 10.3389/fpls.2021.720867 – volume: 403 start-page: 435 year: 2010 ident: ref_36 article-title: Engineered mutated glutaredoxins mimicking peculiar plant class III glutaredoxins bind iron-sulfur centers and possess reductase activity publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.11.050 contributor: fullname: Couturier |
SSID | ssj0023259 |
Score | 2.4645731 |
Snippet | Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating... |
SourceID | pubmedcentral proquest gale crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 11455 |
SubjectTerms | Antioxidants Arabidopsis thaliana Cadmium Chlorophyll Enzymes Genetic transcription Homeostasis Oxidative stress Plant growth Proline Proteins Thiols Toxicity |
Title | A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis |
URI | https://www.proquest.com/docview/3126053115 https://www.proquest.com/docview/3128743329 https://pubmed.ncbi.nlm.nih.gov/PMC11546484 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbdQKGX0ifdvFChtCdnbUtrS8fFzSYhpJQ0hdyMJI-oQ2wvcRaaf58ZP0KdY49GGlmMRppvYOYbxr4YEOAFQJD6IsEAxbnAoGUF3vjYLr01UUz1zqe_0h_X6vsx0eQkYy1Ml7TvbHlU31ZHdfmny63cVG4x5oktfl5kRCGTSCUXMzZDcDjG6EOYJRDR92yaAgP6RXlTtTE6qYgouSfe5_kb_Dwv8h9Hs37DXg8Ika_6nbxlL6B-x172PSMf3rNqxbMsoPCRn6DVUP5487esW35yeS1VyNfoqDpb4mXNM1NU5bbiV80tUAcN4PaBX5iyvu8bQ_BLkubUK71BmNiWndTqztiyaDb4-YH9Xh9fZafB0DMhcOjpZeAA8ZBBBelC2NCCMAK09MUysrGLDYBNpVZKe4Rp3i4j4xO8hdJD6BCMSRAf2U7d1PCJcWELGYGmSlctjU6NljGYWNlQSleEds6-jrrMNz01Ro4hBSk9nyh9zr6RpnO6MqhXZ4bMf_wNkU_lK4XPrlyqRM_Z_mQmmrqbDo9nlQ9Xrc1FRCEZkQbN2eenYZKk9LEamm03R6XE1IZLqMkZP-2caLanI2h9Hd32aG27_y-6x17FCIb6GsZ9tnN_t4UDNmuL7SHC-LPzw86CHwG0Rvl1 |
link.rule.ids | 230,315,729,782,786,887,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9sRfTF-omnbV1B9Cm9JLuXbB6PtNcTe0XqCX0Lu5tZjDTJ0fTA_vfO5KOYPvYxTCZZmJmd38DMbxj7rEGAEwBe7PIICxRrPY2e5TntQjNzRgchzTsvf8bnl-r4hGhyomEWpm3at6Y4qq7Ko6r43fZWbko7HfrEpj9WKVHIRFLJ6Q57jAHri6FK7wstgZi-49MUWNJPiz9lE2KaCoiUe5R_7t_C9zsj_0s1i72HHvIFe96DSz7v5C_ZI6hesSfdusnb16yc8zT1qPLkp-hw1Hpe_y2qhp9eXErl8wXmuNYNeVHxVOdlsS35ur4CWr4B3NzylS6qm26nBL8gbU5r1mtEmE3Ras2vtSnyeoOPb9ivxck6XXr9ugXPIkiQngWEUhqPneTC-AaEFpBIl88CE9pQA5hYJkolDhGeM7NAuwgDWDrwLeI4CeIt263qCt4xLkwuA0hoSDaROol1IkPQoTK-lDb3zYR9GYyQbTpWjQyrEbJWNrLWhH0lE2UUbWgQq_uhAfwN8VZlc4U3tpypKJmw_dGbGCV2LB6MnPVR2mQioGqO-IYm7NOdmDSp86yCetu-o2IiecNPqJFz3J2cGLrHEvSJlql78IH3D1f9yJ4u16uz7Ozb-fcP7FmImKobhdxnuzfXWzhgO02-PWwD4B9YgA5I |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgLb8RCW4yE4JTmYWfjcFul3RZBq6oUqbfIdsYiqElWTVei_56ZPKqmR3qM7HEszYznG2nmG8Y-aRDgBICXuGKOCYq1nkbL8px2kYmd0WFE_c6HP5Pjc7W3TzQ5X8demK5o35pyt76oduvyd1dbuaqsP9aJ-SdHGVHIzKWS_qpw_gZ7iE4bxGOmPiRbAnF9z6kpMK33yz9VG2GoComYexKD7r7Ed6sjb4Wb5bP7XPQ5ezqATL7o97xgD6B-yR71YyevX7FqwbPMowyUH6DhUQl687esW35wei5VwJcY6zpz5GXNM11U5briZ80F0BAO4OaaH-myvupnS_BTkuY0br1BpNmWndTiUpuyaFb4-Zr9Wu6fZYfeMHbBswgWpGcBIZXGq6eFMIEBoQWk0hVxaCIbaQCTyFSp1CHScyYOtZujI0sHgUU8J0G8YZt1U8NbxoUpZAgpNcumUqeJTmUEOlImkNIWgZmxz6Mi8lXPrpFjVkIayycam7EvpKacvA6VYvXQPIC_If6qfKHw5ZaxmqcztjXZid5ip8ujovPBW9tchJTVEe_QjH28WSZJqkCroVl3e1RCZG94hJoYyM3Nial7uoJ20TF2j3bw7v9FP7DHJ3vL_Me34-_v2ZMIoVXfEbnFNq8u17DNNtpivdP5wD_SwhDI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CC-Type+Glutaredoxins+GRX480+Functions+in+Cadmium+Tolerance+by+Maintaining+Redox+Homeostasis+in+Arabidopsis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Li%2C+Ying-Rui&rft.au=Cai%2C+Wei&rft.au=Zhang%2C+Ya-Xuan&rft.au=Zhang%2C+Ning-Xin&rft.date=2024-11-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=25&rft.issue=21&rft_id=info:doi/10.3390%2Fijms252111455&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |