Octopus-Inspired Adhesives with Switchable Attachment to Challenging Underwater Surfaces

Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in dive...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science p. e2407588
Main Authors: Lee, Chanhong, Via, Austin C, Heredia, Aldo, Adjei, Daniel A, Bartlett, Michael D
Format: Journal Article
Language:English
Published: Germany 09-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in diverse fluid environments, remains a major challenge. Here, an octopus-inspired adhesive with strong attachment and rapid release in challenging underwater environments is presented. Inspired by the octopus's infundibulum structure, a compliant, curved stalk, and an active deformable membrane for multi-surface adhesion are utilized. The stalk's curved shape enhances conformal contact on large-scale curvatures and increases contact stress for adaptability to small-scale roughness. These synergistic mechanisms improve contact across multiple length scales, resulting in switching ratios of over 1000 within ≈30 ms with consistent attachment strength of over 60 kPa on diverse surfaces and conditions. These adhesives are demonstrated through the robust attachment and precise manipulation of rough underwater objects.
AbstractList Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in diverse fluid environments, remains a major challenge. Here, an octopus-inspired adhesive with strong attachment and rapid release in challenging underwater environments is presented. Inspired by the octopus's infundibulum structure, a compliant, curved stalk, and an active deformable membrane for multi-surface adhesion are utilized. The stalk's curved shape enhances conformal contact on large-scale curvatures and increases contact stress for adaptability to small-scale roughness. These synergistic mechanisms improve contact across multiple length scales, resulting in switching ratios of over 1000 within ≈30 ms with consistent attachment strength of over 60 kPa on diverse surfaces and conditions. These adhesives are demonstrated through the robust attachment and precise manipulation of rough underwater objects.Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in diverse fluid environments, remains a major challenge. Here, an octopus-inspired adhesive with strong attachment and rapid release in challenging underwater environments is presented. Inspired by the octopus's infundibulum structure, a compliant, curved stalk, and an active deformable membrane for multi-surface adhesion are utilized. The stalk's curved shape enhances conformal contact on large-scale curvatures and increases contact stress for adaptability to small-scale roughness. These synergistic mechanisms improve contact across multiple length scales, resulting in switching ratios of over 1000 within ≈30 ms with consistent attachment strength of over 60 kPa on diverse surfaces and conditions. These adhesives are demonstrated through the robust attachment and precise manipulation of rough underwater objects.
Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in diverse fluid environments, remains a major challenge. Here, an octopus‐inspired adhesive with strong attachment and rapid release in challenging underwater environments is presented. Inspired by the octopus's infundibulum structure, a compliant, curved stalk, and an active deformable membrane for multi‐surface adhesion are utilized. The stalk's curved shape enhances conformal contact on large‐scale curvatures and increases contact stress for adaptability to small‐scale roughness. These synergistic mechanisms improve contact across multiple length scales, resulting in switching ratios of over 1000 within ≈30 ms with consistent attachment strength of over 60 kPa on diverse surfaces and conditions. These adhesives are demonstrated through the robust attachment and precise manipulation of rough underwater objects.
Author Bartlett, Michael D
Via, Austin C
Lee, Chanhong
Heredia, Aldo
Adjei, Daniel A
Author_xml – sequence: 1
  givenname: Chanhong
  surname: Lee
  fullname: Lee, Chanhong
  organization: Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
– sequence: 2
  givenname: Austin C
  surname: Via
  fullname: Via, Austin C
  organization: Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
– sequence: 3
  givenname: Aldo
  surname: Heredia
  fullname: Heredia, Aldo
  organization: Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
– sequence: 4
  givenname: Daniel A
  surname: Adjei
  fullname: Adjei, Daniel A
  organization: Electrical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
– sequence: 5
  givenname: Michael D
  orcidid: 0000-0002-7391-5135
  surname: Bartlett
  fullname: Bartlett, Michael D
  organization: Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39380495$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1rwzAQhkVJadI0a8fisYtTfdmWxxD6EShkSAPdjCydYxdbdiU5of--DklDl7sbnvfleG7RyLQGELoneE4wpk9S792cYspxEglxhSaUpCJkgvPRv3uMZs59YYxJxBJOxA0as5QJzNNogj7Xyrdd78KVcV1lQQcLXYKr9uCCQ-XLYDNMVcq8hmDhvVRlA8YHvg2WpaxrMLvK7IKt0WAP0oMNNr0tpAJ3h64LWTuYnfcUbV-eP5Zv4fv6dbVcvIeKUuxDLrRgkA5vFjJPNVexTAhhSgHEnKU5j2KZJjiXAnIqcs05pQqEZjpOuKCETdHjqbez7XcPzmdN5RTUtTTQ9i5jhPAIUyqiAZ2fUGVb5ywUWWerRtqfjODsKDQ7Cs0uQofAw7m7zxvQF_xPH_sFaihz0A
Cites_doi 10.1002/adfm.202009217
10.1126/sciadv.aay5394
10.1002/advs.202004051
10.1039/C9MH01148J
10.1088/1748-3190/ad2c21
10.1002/adma.201306259
10.1039/C5CC00101C
10.1016/j.jmps.2020.103863
10.1038/s41586-019-1710-5
10.1002/adma.201104191
10.1038/s41467-019-13171-9
10.1038/s41563-023-01577-2
10.1016/j.pmatsci.2023.101086
10.1021/acsami.7b13984
10.1021/acsami.0c08686
10.1002/adma.202211237
10.1109/SMC53654.2022.9945094
10.1039/C3TB20696C
10.1016/j.cej.2022.141268
10.1002/admi.202001269
10.1002/adma.202008337
10.1039/D0SM02129F
10.1002/advs.202104382
10.1098/rsif.2017.0377
10.3762/bjnano.5.252
10.1002/advs.202400806
10.1021/acsami.0c05367
10.1002/admi.201900875
10.1002/aisy.201900041
10.1021/acsami.8b20937
10.1002/pol.20190032
10.1002/adfm.201907064
10.1038/nature05968
10.1002/admt.201900193
10.1038/s41467-017-02387-2
10.1109/LRA.2023.3263377
10.1089/soro.2017.0133
10.1126/sciadv.aay5120
10.1126/sciadv.abm9341
10.1038/nmat4539
10.1002/adma.201504152
10.1002/adfm.202101787
10.4003/0740-2783-24.1.13
10.1098/rsif.2022.0050
10.1088/1748-3190/ab47d1
10.1016/j.jcis.2008.05.032
10.1002/advs.202202978
10.1002/adma.202001628
10.1039/C8SM01601A
10.1038/nature22382
10.1126/sciadv.abq1905
10.1021/acsami.2c13371
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1002/advs.202407588
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
ExternalDocumentID 10_1002_advs_202407588
39380495
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 2119105
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
NPM
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c220t-48d83e9844fab9d4c6a7113ccee6439b456a970ba8eb28bd4422ce8d3d6748213
ISSN 2198-3844
IngestDate Sat Oct 26 01:57:44 EDT 2024
Fri Nov 22 01:36:44 EST 2024
Sat Nov 02 12:18:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords underwater adhesion
biomimetics
bio‐inspired
switchable adhesion
octopus‐inspired
Language English
License 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c220t-48d83e9844fab9d4c6a7113ccee6439b456a970ba8eb28bd4422ce8d3d6748213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7391-5135
OpenAccessLink https://doi.org/10.1002/advs.202407588
PMID 39380495
PQID 3114502285
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3114502285
crossref_primary_10_1002_advs_202407588
pubmed_primary_39380495
PublicationCentury 2000
PublicationDate 2024-Oct-09
2024-10-09
20241009
PublicationDateYYYYMMDD 2024-10-09
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-09
  day: 09
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Lee C. (e_1_2_9_51_1) 2023; 4
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Lee J. (e_1_2_9_15_1) 2024
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_42_1
  doi: 10.1002/adfm.202009217
– ident: e_1_2_9_22_1
  doi: 10.1126/sciadv.aay5394
– ident: e_1_2_9_7_1
  doi: 10.1002/advs.202004051
– ident: e_1_2_9_28_1
  doi: 10.1039/C9MH01148J
– year: 2024
  ident: e_1_2_9_15_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Lee J.
– ident: e_1_2_9_39_1
  doi: 10.1088/1748-3190/ad2c21
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.201306259
– ident: e_1_2_9_30_1
  doi: 10.1039/C5CC00101C
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jmps.2020.103863
– ident: e_1_2_9_26_1
  doi: 10.1038/s41586-019-1710-5
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201104191
– ident: e_1_2_9_25_1
  doi: 10.1038/s41467-019-13171-9
– ident: e_1_2_9_5_1
  doi: 10.1038/s41563-023-01577-2
– ident: e_1_2_9_21_1
  doi: 10.1016/j.pmatsci.2023.101086
– ident: e_1_2_9_13_1
  doi: 10.1021/acsami.7b13984
– ident: e_1_2_9_16_1
  doi: 10.1021/acsami.0c08686
– ident: e_1_2_9_52_1
  doi: 10.1002/adma.202211237
– ident: e_1_2_9_50_1
  doi: 10.1109/SMC53654.2022.9945094
– ident: e_1_2_9_2_1
  doi: 10.1039/C3TB20696C
– ident: e_1_2_9_38_1
  doi: 10.1016/j.cej.2022.141268
– volume: 4
  start-page: 10
  year: 2023
  ident: e_1_2_9_51_1
  publication-title: Cell Rep. Phys. Sci.
  contributor:
    fullname: Lee C.
– ident: e_1_2_9_34_1
  doi: 10.1002/admi.202001269
– ident: e_1_2_9_23_1
  doi: 10.1002/adma.202008337
– ident: e_1_2_9_33_1
  doi: 10.1039/D0SM02129F
– ident: e_1_2_9_43_1
  doi: 10.1002/advs.202104382
– ident: e_1_2_9_46_1
  doi: 10.1098/rsif.2017.0377
– ident: e_1_2_9_11_1
  doi: 10.3762/bjnano.5.252
– ident: e_1_2_9_49_1
  doi: 10.1002/advs.202400806
– ident: e_1_2_9_32_1
  doi: 10.1021/acsami.0c05367
– ident: e_1_2_9_20_1
  doi: 10.1002/admi.201900875
– ident: e_1_2_9_41_1
  doi: 10.1002/aisy.201900041
– ident: e_1_2_9_8_1
  doi: 10.1021/acsami.8b20937
– ident: e_1_2_9_54_1
  doi: 10.1002/pol.20190032
– ident: e_1_2_9_27_1
  doi: 10.1002/adfm.201907064
– ident: e_1_2_9_17_1
  doi: 10.1038/nature05968
– ident: e_1_2_9_31_1
  doi: 10.1002/admt.201900193
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-017-02387-2
– ident: e_1_2_9_44_1
  doi: 10.1109/LRA.2023.3263377
– ident: e_1_2_9_6_1
  doi: 10.1089/soro.2017.0133
– ident: e_1_2_9_18_1
  doi: 10.1126/sciadv.aay5120
– ident: e_1_2_9_45_1
  doi: 10.1126/sciadv.abm9341
– ident: e_1_2_9_10_1
  doi: 10.1038/nmat4539
– ident: e_1_2_9_3_1
  doi: 10.1002/adma.201504152
– ident: e_1_2_9_19_1
  doi: 10.1002/adfm.202101787
– ident: e_1_2_9_53_1
  doi: 10.4003/0740-2783-24.1.13
– ident: e_1_2_9_36_1
  doi: 10.1098/rsif.2022.0050
– ident: e_1_2_9_48_1
  doi: 10.1088/1748-3190/ab47d1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jcis.2008.05.032
– ident: e_1_2_9_35_1
  doi: 10.1002/advs.202202978
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.202001628
– ident: e_1_2_9_47_1
  doi: 10.1039/C8SM01601A
– ident: e_1_2_9_37_1
  doi: 10.1038/nature22382
– ident: e_1_2_9_40_1
  doi: 10.1126/sciadv.abq1905
– ident: e_1_2_9_4_1
  doi: 10.1021/acsami.2c13371
SSID ssj0001537418
Score 2.3508778
Snippet Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair....
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage e2407588
Title Octopus-Inspired Adhesives with Switchable Attachment to Challenging Underwater Surfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/39380495
https://www.proquest.com/docview/3114502285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbS9rLLsLZ7ZI9CAwp0PXiLJTmWj0GbogOK9pAUyM2QLRnBDnYR29vfHynJsdN1QHfYRTCEWHbEDxRJkx8JORWZLETIQgBvwgPB4iJQCq7g8ILzQHIlNdY7Xy_i25W8nIv5aNTlP_Vz_1XSMAeyxsrZf5D2dlGYgGuQOYwgdRifJfe7vKke2jr4XuI3dDAnZ3ptaksua2OuCxjztS2YmjWNytc2GwAs0AvfVgVjB7Yb0i-FBIqLdlNg2tbQip11iQP-_HyU1YMVC-vKH4nYzMsl5GJYBWsM-_DrBstWXJmNrvrMgR9mUP3ug60-MMGETXFLev0FulAGXDp6x6_miTmnMw06lZFr7veHQncEsUr_RGr1wQ93mbNv79Kr-5ubdDlfLffIAQPc8UHkxlWMcyTqwV6D3Tt0HJ4T9m33Abs2yl8cD2uALF-Rl95zoDMn8kMyMuUROfS6uaZfPIH4-TFZPcYA3WKAIgZojwHaY4A2FR1ggPYYoB0GXpP7q_ny4jrwHTSCnLFJEwipJTcJ_NdCZYkW-VTFYchzsIzQEs3AelZJPMmUNBmTmRaCsdxIzTX2oGEhf0P2y6o07wiFFTgo-0ibaSGYgIUiHSdTpTSsHBo9JmfdnqUPjigldZTYLMXdTbe7Oyafuy1NQZfhBypVmqqtUw7OeYSETNGYvHV7vV2LJ1yCNxu9f8bdH8iLHpAfyX6zac0nslfr9sTGXE4sNH4DJ4RwZw
link.rule.ids 315,782,786,866,27933,27934
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Octopus-Inspired+Adhesives+with+Switchable+Attachment+to+Challenging+Underwater+Surfaces&rft.jtitle=Advanced+science&rft.au=Lee%2C+Chanhong&rft.au=Via%2C+Austin+C&rft.au=Heredia%2C+Aldo&rft.au=Adjei%2C+Daniel+A&rft.date=2024-10-09&rft.issn=2198-3844&rft.eissn=2198-3844&rft.spage=e2407588&rft_id=info:doi/10.1002%2Fadvs.202407588&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon