Spectrum of the Laplacian with mixed boundary conditions in a chamfered quarter of layer
We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study of the spectrum of the Dirichlet Laplacian in thick polyhedral domains having some symmetries such as the so-called Fichera layer. The geometr...
Saved in:
Published in: | Journal of spectral theory Vol. 14; no. 1; pp. 37 - 57 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-01-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study of the spectrum of the Dirichlet Laplacian in thick polyhedral domains having some symmetries such as the so-called Fichera layer. The geometry we consider depends on two parameters gathered in some vector \kappa=(\kappa_{1},\kappa_{2}) which characterises the domain at the edges. By exchanging the axes and/or modifying their orientations if necessary, it is sufficient to restrict the analysis to the cases \kappa_{1}\ge0 and \kappa_{2}\in[-\kappa_{1},\kappa_{1}] . We identify the essential spectrum and establish different results concerning the discrete spectrum with respect to \kappa . In particular, we show that for a given \kappa_{1}>0 , there is some h(\kappa_{1})>0 such that discrete spectrum exists for \kappa_{2}\in[-\kappa_{1},0)\cup(h(\kappa_{1}),\kappa_{1}] whereas it is empty for \kappa_{2}\in[0,h(\kappa_{1})] . The proofs rely on classical arguments of spectral theory such as the max-min principle. The main originality lies rather in the delicate use of the features of the geometry. |
---|---|
AbstractList | We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study of the spectrum of the Dirichlet Laplacian in thick polyhedral domains having some symmetries such as the so-called Fichera layer. The geometry we consider depends on two parameters gathered in some vector \kappa=(\kappa_{1},\kappa_{2}) which characterises the domain at the edges. By exchanging the axes and/or modifying their orientations if necessary, it is sufficient to restrict the analysis to the cases \kappa_{1}\ge0 and \kappa_{2}\in[-\kappa_{1},\kappa_{1}] . We identify the essential spectrum and establish different results concerning the discrete spectrum with respect to \kappa . In particular, we show that for a given \kappa_{1}>0 , there is some h(\kappa_{1})>0 such that discrete spectrum exists for \kappa_{2}\in[-\kappa_{1},0)\cup(h(\kappa_{1}),\kappa_{1}] whereas it is empty for \kappa_{2}\in[0,h(\kappa_{1})] . The proofs rely on classical arguments of spectral theory such as the max-min principle. The main originality lies rather in the delicate use of the features of the geometry. |
Author | Nazarov, Sergei A. Taskinen, Jari Chesnel, Lucas |
Author_xml | – sequence: 1 givenname: Lucas orcidid: 0000-0003-4407-9307 surname: Chesnel fullname: Chesnel, Lucas – sequence: 2 givenname: Sergei A. surname: Nazarov fullname: Nazarov, Sergei A. – sequence: 3 givenname: Jari surname: Taskinen fullname: Taskinen, Jari |
BookMark | eNo1kE1LxDAQhoOs4Lou_oXcPNXNR03MURZ1hYIHFfZW0mRCs7RpTVJ0_71d1NMM8748DM8lWoQhAELXlNyWVNLNIeVNqfgZWlIhyoKUhC_-d672F2id0oEQMl_knC3R_m0Ek-PU48Hh3AKu9Nhp43XAXz63uPffYHEzTMHqeMRmCNZnP4SEfcAam1b3DuJc-Zx0zBBPmE4fIV6hc6e7BOu_uUIfT4_v211RvT6_bB-qwjBGckFBaV1aToRjSimw6l4A48IZQpmEpnEgGkmFFs4axaVTktE7yx2VjgJlfIVufrkmDilFcPUYfT__WlNSn5zUs5N6dsJ_AGLqVyQ |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.4171/jst/493 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1664-0403 |
EndPage | 57 |
ExternalDocumentID | 10_4171_jst_493 |
GroupedDBID | AAFWJ AAYXX AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION FEDTE GROUPED_DOAJ HVGLF IAO IGS ITC J9A OK1 REW |
ID | FETCH-LOGICAL-c220t-1e9aa4d306f2999ed986e236fc0127ebbfe6b716a6fdc937f97215d3f17f1e123 |
ISSN | 1664-039X |
IngestDate | Fri Nov 22 02:05:29 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c220t-1e9aa4d306f2999ed986e236fc0127ebbfe6b716a6fdc937f97215d3f17f1e123 |
ORCID | 0000-0003-4407-9307 |
OpenAccessLink | https://doi.org/10.4171/jst/493 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_4171_jst_493 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of spectral theory |
PublicationYear | 2024 |
SSID | ssj0001667403 |
Score | 2.3014357 |
Snippet | We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 37 |
Title | Spectrum of the Laplacian with mixed boundary conditions in a chamfered quarter of layer |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKWVh4I97ywIZCm8R1mhFBK4aKBZC6VXZsSxU0RX0g4NdzZztpWgZgYIkqK2epvq_nu-t9d4RcqGZLqVDroJ0lMmAmTQMRGxmIyEgTZlqJlh1i-5Dc99u3Hdap1YrUwGLtXzUNa6BrZM7-QdvlprAAn0Hn8AStw_NXeseB8rPJfFT8-d8TWHaFP2Obch0N39HntMOUJh9YdK6GZTm5QB7wCBmACtmWWO2J27yID1_D-92LtUxNJPnPCpK_rxbQ09wVAPRwrFqZcxafYjJ-szlX5H0OL6-vFsmD6TP4vI4sAiF8NSERsUpCwtlQzmEtthNy4YqprLFmvGR42TeAOSvq2sD4-9j1r1619CxMrKVHYkyXuSGLy920V265svYQoh4UHoDoAATXyHoENqoajdv0HOcJs3O1y6_jKNco2wDZBkvjii9TcUoet8mm1wO9djDYITWd75ItH1lQb7ene6RfoIKODQVN0RIVFFFBLSpogQq6QAUd5lTQEhXUowK3sajYJ0_dzuPNXeBnagRZFDVnQahTIZiCQNGAI5Jqlba5jmJuMqxB0FIazSXE0IIblYHrarC7U0vFJkxMqMHNOSD1fJzrQ0IzHiltsjBOmGQQNUsTiVTG2D0KovI2O4JX_OkMXl3rlMHK4R___MoJ2ViA7JTU4az0GVmbqvm51dgX3kdk3A |
link.rule.ids | 315,782,786,866,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum+of+the+Laplacian+with+mixed+boundary+conditions+in+a+chamfered+quarter+of+layer&rft.jtitle=Journal+of+spectral+theory&rft.au=Chesnel%2C+Lucas&rft.au=Nazarov%2C+Sergei+A.&rft.au=Taskinen%2C+Jari&rft.date=2024-01-01&rft.issn=1664-039X&rft.eissn=1664-0403&rft.volume=14&rft.issue=1&rft.spage=37&rft.epage=57&rft_id=info:doi/10.4171%2Fjst%2F493&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_jst_493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon |