Spectrum of the Laplacian with mixed boundary conditions in a chamfered quarter of layer

We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study of the spectrum of the Dirichlet Laplacian in thick polyhedral domains having some symmetries such as the so-called Fichera layer. The geometr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of spectral theory Vol. 14; no. 1; pp. 37 - 57
Main Authors: Chesnel, Lucas, Nazarov, Sergei A., Taskinen, Jari
Format: Journal Article
Language:English
Published: 01-01-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study of the spectrum of the Dirichlet Laplacian in thick polyhedral domains having some symmetries such as the so-called Fichera layer. The geometry we consider depends on two parameters gathered in some vector \kappa=(\kappa_{1},\kappa_{2}) which characterises the domain at the edges. By exchanging the axes and/or modifying their orientations if necessary, it is sufficient to restrict the analysis to the cases \kappa_{1}\ge0 and \kappa_{2}\in[-\kappa_{1},\kappa_{1}] . We identify the essential spectrum and establish different results concerning the discrete spectrum with respect to \kappa . In particular, we show that for a given \kappa_{1}>0 , there is some h(\kappa_{1})>0 such that discrete spectrum exists for \kappa_{2}\in[-\kappa_{1},0)\cup(h(\kappa_{1}),\kappa_{1}] whereas it is empty for \kappa_{2}\in[0,h(\kappa_{1})] . The proofs rely on classical arguments of spectral theory such as the max-min principle. The main originality lies rather in the delicate use of the features of the geometry.
AbstractList We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study of the spectrum of the Dirichlet Laplacian in thick polyhedral domains having some symmetries such as the so-called Fichera layer. The geometry we consider depends on two parameters gathered in some vector \kappa=(\kappa_{1},\kappa_{2}) which characterises the domain at the edges. By exchanging the axes and/or modifying their orientations if necessary, it is sufficient to restrict the analysis to the cases \kappa_{1}\ge0 and \kappa_{2}\in[-\kappa_{1},\kappa_{1}] . We identify the essential spectrum and establish different results concerning the discrete spectrum with respect to \kappa . In particular, we show that for a given \kappa_{1}>0 , there is some h(\kappa_{1})>0 such that discrete spectrum exists for \kappa_{2}\in[-\kappa_{1},0)\cup(h(\kappa_{1}),\kappa_{1}] whereas it is empty for \kappa_{2}\in[0,h(\kappa_{1})] . The proofs rely on classical arguments of spectral theory such as the max-min principle. The main originality lies rather in the delicate use of the features of the geometry.
Author Nazarov, Sergei A.
Taskinen, Jari
Chesnel, Lucas
Author_xml – sequence: 1
  givenname: Lucas
  orcidid: 0000-0003-4407-9307
  surname: Chesnel
  fullname: Chesnel, Lucas
– sequence: 2
  givenname: Sergei A.
  surname: Nazarov
  fullname: Nazarov, Sergei A.
– sequence: 3
  givenname: Jari
  surname: Taskinen
  fullname: Taskinen, Jari
BookMark eNo1kE1LxDAQhoOs4Lou_oXcPNXNR03MURZ1hYIHFfZW0mRCs7RpTVJ0_71d1NMM8748DM8lWoQhAELXlNyWVNLNIeVNqfgZWlIhyoKUhC_-d672F2id0oEQMl_knC3R_m0Ek-PU48Hh3AKu9Nhp43XAXz63uPffYHEzTMHqeMRmCNZnP4SEfcAam1b3DuJc-Zx0zBBPmE4fIV6hc6e7BOu_uUIfT4_v211RvT6_bB-qwjBGckFBaV1aToRjSimw6l4A48IZQpmEpnEgGkmFFs4axaVTktE7yx2VjgJlfIVufrkmDilFcPUYfT__WlNSn5zUs5N6dsJ_AGLqVyQ
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.4171/jst/493
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1664-0403
EndPage 57
ExternalDocumentID 10_4171_jst_493
GroupedDBID AAFWJ
AAYXX
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
FEDTE
GROUPED_DOAJ
HVGLF
IAO
IGS
ITC
J9A
OK1
REW
ID FETCH-LOGICAL-c220t-1e9aa4d306f2999ed986e236fc0127ebbfe6b716a6fdc937f97215d3f17f1e123
ISSN 1664-039X
IngestDate Fri Nov 22 02:05:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c220t-1e9aa4d306f2999ed986e236fc0127ebbfe6b716a6fdc937f97215d3f17f1e123
ORCID 0000-0003-4407-9307
OpenAccessLink https://doi.org/10.4171/jst/493
PageCount 21
ParticipantIDs crossref_primary_10_4171_jst_493
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of spectral theory
PublicationYear 2024
SSID ssj0001667403
Score 2.3014357
Snippet We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. This problem arises in the study...
SourceID crossref
SourceType Aggregation Database
StartPage 37
Title Spectrum of the Laplacian with mixed boundary conditions in a chamfered quarter of layer
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKWVh4I97ywIZCm8R1mhFBK4aKBZC6VXZsSxU0RX0g4NdzZztpWgZgYIkqK2epvq_nu-t9d4RcqGZLqVDroJ0lMmAmTQMRGxmIyEgTZlqJlh1i-5Dc99u3Hdap1YrUwGLtXzUNa6BrZM7-QdvlprAAn0Hn8AStw_NXeseB8rPJfFT8-d8TWHaFP2Obch0N39HntMOUJh9YdK6GZTm5QB7wCBmACtmWWO2J27yID1_D-92LtUxNJPnPCpK_rxbQ09wVAPRwrFqZcxafYjJ-szlX5H0OL6-vFsmD6TP4vI4sAiF8NSERsUpCwtlQzmEtthNy4YqprLFmvGR42TeAOSvq2sD4-9j1r1619CxMrKVHYkyXuSGLy920V265svYQoh4UHoDoAATXyHoENqoajdv0HOcJs3O1y6_jKNco2wDZBkvjii9TcUoet8mm1wO9djDYITWd75ItH1lQb7ene6RfoIKODQVN0RIVFFFBLSpogQq6QAUd5lTQEhXUowK3sajYJ0_dzuPNXeBnagRZFDVnQahTIZiCQNGAI5Jqlba5jmJuMqxB0FIazSXE0IIblYHrarC7U0vFJkxMqMHNOSD1fJzrQ0IzHiltsjBOmGQQNUsTiVTG2D0KovI2O4JX_OkMXl3rlMHK4R___MoJ2ViA7JTU4az0GVmbqvm51dgX3kdk3A
link.rule.ids 315,782,786,866,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum+of+the+Laplacian+with+mixed+boundary+conditions+in+a+chamfered+quarter+of+layer&rft.jtitle=Journal+of+spectral+theory&rft.au=Chesnel%2C+Lucas&rft.au=Nazarov%2C+Sergei+A.&rft.au=Taskinen%2C+Jari&rft.date=2024-01-01&rft.issn=1664-039X&rft.eissn=1664-0403&rft.volume=14&rft.issue=1&rft.spage=37&rft.epage=57&rft_id=info:doi/10.4171%2Fjst%2F493&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_jst_493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon