Metastable mixing of Markov chains: Efficiently sampling low temperature exponential random graphs
In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We in...
Saved in:
Published in: | The Annals of applied probability Vol. 34; no. 1A; p. 517 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Hayward
Institute of Mathematical Statistics
01-02-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We instead consider metastable mixing, a notion of approximate mixing relative to the stationary distribution, for which it turns out to suffice to mix only within a collection of metastable states. We show that the Glauber dynamics for the ERGM at any temperature-except at a lower-dimensional critical set of parameters-when initialized at G ( n , p ) for the right choice of p has a metastable mixing time of O ( n 2 log n ) to within total variation distance exp ( − Ω ( n ) ) . |
---|---|
AbstractList | In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We instead consider metastable mixing, a notion of approximate mixing relative to the stationary distribution, for which it turns out to suffice to mix only within a collection of metastable states. We show that the Glauber dynamics for the ERGM at any temperature-except at a lower-dimensional critical set of parameters-when initialized at G ( n , p ) for the right choice of p has a metastable mixing time of O ( n 2 log n ) to within total variation distance exp ( − Ω ( n ) ) . |
Author | Bresler, Guy Nagaraj, Dheeraj Nichani, Eshaan |
Author_xml | – sequence: 1 givenname: Guy surname: Bresler fullname: Bresler, Guy organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 2 givenname: Dheeraj surname: Nagaraj fullname: Nagaraj, Dheeraj organization: Google Research – sequence: 3 givenname: Eshaan surname: Nichani fullname: Nichani, Eshaan organization: Department of Electrical and Computer Engineering, Princeton University |
BookMark | eNotkM1OAjEYRRuDiYBufIIm7kxG-7VT2nFHCP4kEF3oetLptDA4045tUXh7IbC6m5N7b84IDZx3BqFbIA9AIX-kLJtOP6AQcIGGFCYyk4KJARoC4STjMMmv0CjGDSGkyAsxRNXSJBWTqlqDu2bXuBX2Fi9V-Pa_WK9V4-ITnlvb6Ma41O5xVF3fHrHW_-Fkut4ElbbBYLPrD19calSLg3K17_AqqH4dr9GlVW00N-cco6_n-efsNVu8v7zNpotMU5Ap07JWVE-gIoWEqtC5YLWtOOGKMSm10rqihFBrCSVCiYkGWUOdc6ULSTkp2BjdnXr74H-2JqZy47fBHSZLRjgHBlzAgbo_UTr4GIOxZR-aToV9CaQ8OiwpK88O2T-_FWaM |
Cites_doi | 10.1214/009053606000000515 10.1080/01621459.1981.10477598 10.3150/21-bej1448 10.1103/PhysRevE.72.026136 10.1214/10-AOAS346 10.1214/10-AOAS365 10.1137/120864003 10.1016/0890-5401(89)90067-9 10.1080/01621459.1986.10478342 10.1137/0222066 10.1137/1.9781611974782.118 10.1214/10-AAP740 10.1090/mbk/107 10.1214/ss/1028905934 10.1214/13-AOS1155 10.1007/s00440-008-0189-z 10.1007/s00440-006-0029-y 10.1007/s00440-020-01015-3 10.1214/18-AAP1402 10.1103/PhysRevE.70.066146 10.1214/12-AAP907 10.1214/16-BJPS319 10.1103/PhysRevE.69.026106 10.1137/21M1425062 10.1103/PhysRevLett.58.86 10.1017/CBO9780511815478 10.1145/3519935.3519964 10.1111/j.2517-6161.1992.tb01443.x 10.1145/1132516.1132556 10.1214/19-AAP1478 |
ContentType | Journal Article |
Copyright | Copyright Institute of Mathematical Statistics Feb 2024 |
Copyright_xml | – notice: Copyright Institute of Mathematical Statistics Feb 2024 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1214/23-AAP1971 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2168-8737 |
ExternalDocumentID | 10_1214_23_AAP1971 |
GroupedDBID | -~X 123 23M 2FS 5RE 6J9 85S AAYXX ABFAN ABPFR ABYWD ACGFO ACIPV ACIWK ACMTB ACNCT ACTMH AECCQ AEILP AENEX AETVE AEUPB AFVYC AFXHP ALMA_UNASSIGNED_HOLDINGS CITATION CJ0 CS3 D0L E3Z EBS EJD F5P GR0 JAS MS~ OK1 P2P PQQKQ PUASD RBU RPE SJN TN5 TR2 UPT WH7 XSW JQ2 |
ID | FETCH-LOGICAL-c218t-c8da2c61b0981b9c473dfb505a3388caccb2002ff0207a76c18d1d45ac9825093 |
ISSN | 1050-5164 |
IngestDate | Thu Oct 10 19:56:55 EDT 2024 Thu Sep 26 17:05:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1A |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c218t-c8da2c61b0981b9c473dfb505a3388caccb2002ff0207a76c18d1d45ac9825093 |
PQID | 3055131571 |
PQPubID | 105647 |
ParticipantIDs | proquest_journals_3055131571 crossref_primary_10_1214_23_AAP1971 |
PublicationCentury | 2000 |
PublicationDate | 2024-2-1 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-2-1 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hayward |
PublicationPlace_xml | – name: Hayward |
PublicationTitle | The Annals of applied probability |
PublicationYear | 2024 |
Publisher | Institute of Mathematical Statistics |
Publisher_xml | – name: Institute of Mathematical Statistics |
References | 22 23 24 25 26 27 28 29 30 31 10 32 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 18 doi: 10.1214/009053606000000515 – ident: 16 doi: 10.1080/01621459.1981.10477598 – ident: 23 doi: 10.3150/21-bej1448 – ident: 25 doi: 10.1103/PhysRevE.72.026136 – ident: 8 doi: 10.1214/10-AOAS346 – ident: 9 doi: 10.1214/10-AOAS365 – ident: 30 doi: 10.1137/120864003 – ident: 28 doi: 10.1016/0890-5401(89)90067-9 – ident: 10 doi: 10.1080/01621459.1986.10478342 – ident: 17 doi: 10.1137/0222066 – ident: 15 doi: 10.1137/1.9781611974782.118 – ident: 1 doi: 10.1214/10-AAP740 – ident: 20 doi: 10.1090/mbk/107 – ident: 12 doi: 10.1214/ss/1028905934 – ident: 6 doi: 10.1214/13-AOS1155 – ident: 19 doi: 10.1007/s00440-008-0189-z – ident: 5 doi: 10.1007/s00440-006-0029-y – ident: 22 doi: 10.1007/s00440-020-01015-3 – ident: 3 – ident: 7 doi: 10.1214/18-AAP1402 – ident: 24 doi: 10.1103/PhysRevE.70.066146 – ident: 11 – ident: 26 doi: 10.1214/12-AAP907 – ident: 32 doi: 10.1214/16-BJPS319 – ident: 4 doi: 10.1103/PhysRevE.69.026106 – ident: 21 doi: 10.1137/21M1425062 – ident: 29 doi: 10.1103/PhysRevLett.58.86 – ident: 31 doi: 10.1017/CBO9780511815478 – ident: 14 doi: 10.1145/3519935.3519964 – ident: 13 doi: 10.1111/j.2517-6161.1992.tb01443.x – ident: 2 doi: 10.1145/1132516.1132556 – ident: 27 doi: 10.1214/19-AAP1478 |
SSID | ssj0009497 |
Score | 2.4168909 |
Snippet | In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 517 |
SubjectTerms | Graph theory Low temperature Markov analysis Markov chains Metastable state Monte Carlo simulation Sampling Temperature |
Title | Metastable mixing of Markov chains: Efficiently sampling low temperature exponential random graphs |
URI | https://www.proquest.com/docview/3055131571 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBab9NIeQvqiadIiaG_BrWXJazk30zgNJdkWsoHcjB52kpLshng3tP--M5K89lIo7aEXY2Qjm5lP4xl55htC3iMlizHaRpnIbSQ0t5G0PI5M4rwJq6VLkD0-yyYX8rAU5WjUdcrsx_6rpmEMdI2Vs_-g7dWkMADnoHM4gtbh-Fd6P60XCjw-LIi6vf4RcpqxImf-gFW-uL3MC2yofO1KIW9-7rcKs8rhxhtsL1eDH-15lpH9fz7DbCIk_1czO7_dd_zW7dCjdV2dVyzMKji12KfGM4D3BRMQ2Ieyw8_L1ehEXap75X4hHV7V8OTv_Z8SLEp2yQZle6UCisMGRSK6nOYuaB0mPZyuuGiR6wSTDRwb9cAAx2kcpcwzm3-o3VjCxhKstieH6ax22AIN6CwGNjj1xaC_fRsSJrD8hUdF8Y3lvvHLOgH35Gt1dH5yUk3Li-kGeZSA7cIs0bMvk57HWfh-Pd1rBsZbmPtjP_O6j7P-iXd-y3SbbIWAgxYeKU_JqJ49I096CbXPie4xQz1m6LyhHjPUY-aADhBDO8RQQAwdIIYOEEM9YqhHzAtyflROPx1HofcGrFImF5GRViVmzHScQ2CTG5Fx22hwlxXnUhoF6xvTe5oGwo1MZWPDpGVWpMrkErzqnL8kmzN44itCGwgRdMJUDDeJuo7xXKNbikRkotE75F0nrerOU6xUGJqCTKuEV0GmO2SvE2QVlltbIV0d4yzN2Os_X94lj3to7pHNxf2yfkM2Wrt86_T7CzAue8A |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metastable+mixing+of+Markov+chains%3A+Efficiently+sampling+low+temperature+exponential+random+graphs&rft.jtitle=The+Annals+of+applied+probability&rft.au=Bresler%2C+Guy&rft.au=Nagaraj%2C+Dheeraj&rft.au=Nichani%2C+Eshaan&rft.date=2024-02-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=1050-5164&rft.eissn=2168-8737&rft.volume=34&rft.issue=1A&rft.spage=517&rft_id=info:doi/10.1214%2F23-AAP1971&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-5164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-5164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-5164&client=summon |