Metastable mixing of Markov chains: Efficiently sampling low temperature exponential random graphs

In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We in...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of applied probability Vol. 34; no. 1A; p. 517
Main Authors: Bresler, Guy, Nagaraj, Dheeraj, Nichani, Eshaan
Format: Journal Article
Language:English
Published: Hayward Institute of Mathematical Statistics 01-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We instead consider metastable mixing, a notion of approximate mixing relative to the stationary distribution, for which it turns out to suffice to mix only within a collection of metastable states. We show that the Glauber dynamics for the ERGM at any temperature-except at a lower-dimensional critical set of parameters-when initialized at G ( n , p ) for the right choice of p has a metastable mixing time of O ( n 2 log n ) to within total variation distance exp ( − Ω ( n ) ) .
AbstractList In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We instead consider metastable mixing, a notion of approximate mixing relative to the stationary distribution, for which it turns out to suffice to mix only within a collection of metastable states. We show that the Glauber dynamics for the ERGM at any temperature-except at a lower-dimensional critical set of parameters-when initialized at G ( n , p ) for the right choice of p has a metastable mixing time of O ( n 2 log n ) to within total variation distance exp ( − Ω ( n ) ) .
Author Bresler, Guy
Nagaraj, Dheeraj
Nichani, Eshaan
Author_xml – sequence: 1
  givenname: Guy
  surname: Bresler
  fullname: Bresler, Guy
  organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
– sequence: 2
  givenname: Dheeraj
  surname: Nagaraj
  fullname: Nagaraj, Dheeraj
  organization: Google Research
– sequence: 3
  givenname: Eshaan
  surname: Nichani
  fullname: Nichani, Eshaan
  organization: Department of Electrical and Computer Engineering, Princeton University
BookMark eNotkM1OAjEYRRuDiYBufIIm7kxG-7VT2nFHCP4kEF3oetLptDA4045tUXh7IbC6m5N7b84IDZx3BqFbIA9AIX-kLJtOP6AQcIGGFCYyk4KJARoC4STjMMmv0CjGDSGkyAsxRNXSJBWTqlqDu2bXuBX2Fi9V-Pa_WK9V4-ITnlvb6Ma41O5xVF3fHrHW_-Fkut4ElbbBYLPrD19calSLg3K17_AqqH4dr9GlVW00N-cco6_n-efsNVu8v7zNpotMU5Ap07JWVE-gIoWEqtC5YLWtOOGKMSm10rqihFBrCSVCiYkGWUOdc6ULSTkp2BjdnXr74H-2JqZy47fBHSZLRjgHBlzAgbo_UTr4GIOxZR-aToV9CaQ8OiwpK88O2T-_FWaM
Cites_doi 10.1214/009053606000000515
10.1080/01621459.1981.10477598
10.3150/21-bej1448
10.1103/PhysRevE.72.026136
10.1214/10-AOAS346
10.1214/10-AOAS365
10.1137/120864003
10.1016/0890-5401(89)90067-9
10.1080/01621459.1986.10478342
10.1137/0222066
10.1137/1.9781611974782.118
10.1214/10-AAP740
10.1090/mbk/107
10.1214/ss/1028905934
10.1214/13-AOS1155
10.1007/s00440-008-0189-z
10.1007/s00440-006-0029-y
10.1007/s00440-020-01015-3
10.1214/18-AAP1402
10.1103/PhysRevE.70.066146
10.1214/12-AAP907
10.1214/16-BJPS319
10.1103/PhysRevE.69.026106
10.1137/21M1425062
10.1103/PhysRevLett.58.86
10.1017/CBO9780511815478
10.1145/3519935.3519964
10.1111/j.2517-6161.1992.tb01443.x
10.1145/1132516.1132556
10.1214/19-AAP1478
ContentType Journal Article
Copyright Copyright Institute of Mathematical Statistics Feb 2024
Copyright_xml – notice: Copyright Institute of Mathematical Statistics Feb 2024
DBID AAYXX
CITATION
JQ2
DOI 10.1214/23-AAP1971
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2168-8737
ExternalDocumentID 10_1214_23_AAP1971
GroupedDBID -~X
123
23M
2FS
5RE
6J9
85S
AAYXX
ABFAN
ABPFR
ABYWD
ACGFO
ACIPV
ACIWK
ACMTB
ACNCT
ACTMH
AECCQ
AEILP
AENEX
AETVE
AEUPB
AFVYC
AFXHP
ALMA_UNASSIGNED_HOLDINGS
CITATION
CJ0
CS3
D0L
E3Z
EBS
EJD
F5P
GR0
JAS
MS~
OK1
P2P
PQQKQ
PUASD
RBU
RPE
SJN
TN5
TR2
UPT
WH7
XSW
JQ2
ID FETCH-LOGICAL-c218t-c8da2c61b0981b9c473dfb505a3388caccb2002ff0207a76c18d1d45ac9825093
ISSN 1050-5164
IngestDate Thu Oct 10 19:56:55 EDT 2024
Thu Sep 26 17:05:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1A
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c218t-c8da2c61b0981b9c473dfb505a3388caccb2002ff0207a76c18d1d45ac9825093
PQID 3055131571
PQPubID 105647
ParticipantIDs proquest_journals_3055131571
crossref_primary_10_1214_23_AAP1971
PublicationCentury 2000
PublicationDate 2024-2-1
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-2-1
  day: 01
PublicationDecade 2020
PublicationPlace Hayward
PublicationPlace_xml – name: Hayward
PublicationTitle The Annals of applied probability
PublicationYear 2024
Publisher Institute of Mathematical Statistics
Publisher_xml – name: Institute of Mathematical Statistics
References 22
23
24
25
26
27
28
29
30
31
10
32
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 18
  doi: 10.1214/009053606000000515
– ident: 16
  doi: 10.1080/01621459.1981.10477598
– ident: 23
  doi: 10.3150/21-bej1448
– ident: 25
  doi: 10.1103/PhysRevE.72.026136
– ident: 8
  doi: 10.1214/10-AOAS346
– ident: 9
  doi: 10.1214/10-AOAS365
– ident: 30
  doi: 10.1137/120864003
– ident: 28
  doi: 10.1016/0890-5401(89)90067-9
– ident: 10
  doi: 10.1080/01621459.1986.10478342
– ident: 17
  doi: 10.1137/0222066
– ident: 15
  doi: 10.1137/1.9781611974782.118
– ident: 1
  doi: 10.1214/10-AAP740
– ident: 20
  doi: 10.1090/mbk/107
– ident: 12
  doi: 10.1214/ss/1028905934
– ident: 6
  doi: 10.1214/13-AOS1155
– ident: 19
  doi: 10.1007/s00440-008-0189-z
– ident: 5
  doi: 10.1007/s00440-006-0029-y
– ident: 22
  doi: 10.1007/s00440-020-01015-3
– ident: 3
– ident: 7
  doi: 10.1214/18-AAP1402
– ident: 24
  doi: 10.1103/PhysRevE.70.066146
– ident: 11
– ident: 26
  doi: 10.1214/12-AAP907
– ident: 32
  doi: 10.1214/16-BJPS319
– ident: 4
  doi: 10.1103/PhysRevE.69.026106
– ident: 21
  doi: 10.1137/21M1425062
– ident: 29
  doi: 10.1103/PhysRevLett.58.86
– ident: 31
  doi: 10.1017/CBO9780511815478
– ident: 14
  doi: 10.1145/3519935.3519964
– ident: 13
  doi: 10.1111/j.2517-6161.1992.tb01443.x
– ident: 2
  doi: 10.1145/1132516.1132556
– ident: 27
  doi: 10.1214/19-AAP1478
SSID ssj0009497
Score 2.4168909
Snippet In this paper, we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 517
SubjectTerms Graph theory
Low temperature
Markov analysis
Markov chains
Metastable state
Monte Carlo simulation
Sampling
Temperature
Title Metastable mixing of Markov chains: Efficiently sampling low temperature exponential random graphs
URI https://www.proquest.com/docview/3055131571
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBab9NIeQvqiadIiaG_BrWXJazk30zgNJdkWsoHcjB52kpLshng3tP--M5K89lIo7aEXY2Qjm5lP4xl55htC3iMlizHaRpnIbSQ0t5G0PI5M4rwJq6VLkD0-yyYX8rAU5WjUdcrsx_6rpmEMdI2Vs_-g7dWkMADnoHM4gtbh-Fd6P60XCjw-LIi6vf4RcpqxImf-gFW-uL3MC2yofO1KIW9-7rcKs8rhxhtsL1eDH-15lpH9fz7DbCIk_1czO7_dd_zW7dCjdV2dVyzMKji12KfGM4D3BRMQ2Ieyw8_L1ehEXap75X4hHV7V8OTv_Z8SLEp2yQZle6UCisMGRSK6nOYuaB0mPZyuuGiR6wSTDRwb9cAAx2kcpcwzm3-o3VjCxhKstieH6ax22AIN6CwGNjj1xaC_fRsSJrD8hUdF8Y3lvvHLOgH35Gt1dH5yUk3Li-kGeZSA7cIs0bMvk57HWfh-Pd1rBsZbmPtjP_O6j7P-iXd-y3SbbIWAgxYeKU_JqJ49I096CbXPie4xQz1m6LyhHjPUY-aADhBDO8RQQAwdIIYOEEM9YqhHzAtyflROPx1HofcGrFImF5GRViVmzHScQ2CTG5Fx22hwlxXnUhoF6xvTe5oGwo1MZWPDpGVWpMrkErzqnL8kmzN44itCGwgRdMJUDDeJuo7xXKNbikRkotE75F0nrerOU6xUGJqCTKuEV0GmO2SvE2QVlltbIV0d4yzN2Os_X94lj3to7pHNxf2yfkM2Wrt86_T7CzAue8A
link.rule.ids 315,782,786,27935,27936
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metastable+mixing+of+Markov+chains%3A+Efficiently+sampling+low+temperature+exponential+random+graphs&rft.jtitle=The+Annals+of+applied+probability&rft.au=Bresler%2C+Guy&rft.au=Nagaraj%2C+Dheeraj&rft.au=Nichani%2C+Eshaan&rft.date=2024-02-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=1050-5164&rft.eissn=2168-8737&rft.volume=34&rft.issue=1A&rft.spage=517&rft_id=info:doi/10.1214%2F23-AAP1971&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-5164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-5164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-5164&client=summon