Parallel Geothermal Numerical Model with Fractures and Multi-Branch Wells
To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology incl...
Saved in:
Published in: | ESAIM. Proceedings and surveys Vol. 63; pp. 109 - 134 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Les Ulis
EDP Sciences
2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications.
Afin de dépasser les limites des codes actuels de simulation des systemes géothermiques en matière de complexité géologique et physique, nous avons initié le développement d’un nouveau simulateur d’écoulements géothermiques parallèle à base de maillages non structurés. Le modèle prenden compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un r ôle majeur dans le transport de masse et d’énergie, ainsi qu’une physique complexe couplant les conservations de la masse et de l’énergie à l’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif de ce projet Cemracs était d’y incorporer un modèle de puits qui constitue un ingrédient essentiel pour réaliser des études géothermiques réalistes à la fois pour la surveillance du réservoir et la reproduction des historiques de production. Le puits est discrétisé par un sous ensemble d’arêtes du maillage de façon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le transport de masse et d’énergie dans le puits se base sur un modèle classique en simulation de réservoir a une inconnue par puits qui suppose l’équilibre hydrostatique et thermodynamique dans le puits. La parallélisation du modèle de puits est réalisée de façon à pouvoir assembler la Jacobienne et à calculer les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications MPI. |
---|---|
AbstractList | To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications. Afin de dépasser les limites des codes actuels de simulation des systemes géothermiques en matière de complexité géologique et physique, nous avons initié le développement d’un nouveau simulateur d’écoulements géothermiques parallèle à base de maillages non structurés. Le modèle prenden compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un r ôle majeur dans le transport de masse et d’énergie, ainsi qu’une physique complexe couplant les conservations de la masse et de l’énergie à l’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif de ce projet Cemracs était d’y incorporer un modèle de puits qui constitue un ingrédient essentiel pour réaliser des études géothermiques réalistes à la fois pour la surveillance du réservoir et la reproduction des historiques de production. Le puits est discrétisé par un sous ensemble d’arêtes du maillage de façon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le transport de masse et d’énergie dans le puits se base sur un modèle classique en simulation de réservoir a une inconnue par puits qui suppose l’équilibre hydrostatique et thermodynamique dans le puits. La parallélisation du modèle de puits est réalisée de façon à pouvoir assembler la Jacobienne et à calculer les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications MPI. To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications. To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications. Afin de dépasser les limites des codes actuels de simulation des systemes géothermiques en matière de complexité géologique et physique, nous avons initié le développement d’un nouveau simulateur d’écoulements géothermiques parallèle à base de maillages non structurés. Le modèle prenden compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un r ôle majeur dans le transport de masse et d’énergie, ainsi qu’une physique complexe couplant les conservations de la masse et de l’énergie à l’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif de ce projet Cemracs était d’y incorporer un modèle de puits qui constitue un ingrédient essentiel pour réaliser des études géothermiques réalistes à la fois pour la surveillance du réservoir et la reproduction des historiques de production. Le puits est discrétisé par un sous ensemble d’arêtes du maillage de façon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le transport de masse et d’énergie dans le puits se base sur un modèle classique en simulation de réservoir a une inconnue par puits qui suppose l’équilibre hydrostatique et thermodynamique dans le puits. La parallélisation du modèle de puits est réalisée de façon à pouvoir assembler la Jacobienne et à calculer les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications MPI. |
Author | Thebault, Jean-frédéric Masson, Roland Smai, Farid Brenner, Konstantin Lopez, Simon Xing, Feng Beltzung, Thibaud Beaude, Laurence |
Author_xml | – sequence: 1 givenname: Laurence surname: Beaude fullname: Beaude, Laurence – sequence: 2 givenname: Thibaud surname: Beltzung fullname: Beltzung, Thibaud – sequence: 3 givenname: Konstantin surname: Brenner fullname: Brenner, Konstantin – sequence: 4 givenname: Simon surname: Lopez fullname: Lopez, Simon – sequence: 5 givenname: Roland surname: Masson fullname: Masson, Roland – sequence: 6 givenname: Farid surname: Smai fullname: Smai, Farid – sequence: 7 givenname: Jean-frédéric surname: Thebault fullname: Thebault, Jean-frédéric – sequence: 8 givenname: Feng surname: Xing fullname: Xing, Feng |
BookMark | eNpNkDFPwzAQhS0EEqV0ZY7EnNZnO3E8QkVLpRYYQIyWa19oKjcuTiLEvyelqGK6p7vTe0_fFTmvQ42E3AAdA81gso_BThiFIudA1RkZMJbLlNNMnf_Tl2TUNFtKKQiZ50INyOLFROM9-mSOod1g3BmfPHU7jJXt1Sq4_vRVtZtkFo1tu4hNYmqXrDrfVul9NLXdJO_ofXNNLkrjGxz9zSF5mz28Th_T5fN8Mb1bppZBoVKJVFHOGUjJ3XqNpZAZrIE7htKxtWMFx1LZArgxTDmhHPZ1nVUULBpUfEgWR18XzFbvY7Uz8VsHU-nfRYgf2sS2sh51AUpYpCgpRZFlsiil4miFsy5juZO91-3Rq8f32WHT6m3oYt3X1wyYzEUBcEgcH79sDE0TsTylAtUH-vpAX5_o8x-AhHh4 |
CitedBy_id | crossref_primary_10_5802_smai_jcm_97 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7U5 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ H8D HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1051/proc/201863109 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2267-3059 |
Editor | Japhet, C. Moireau, P. Grigori, L. |
Editor_xml | – sequence: 1 givenname: L. surname: Grigori fullname: Grigori, L. – sequence: 2 givenname: C. surname: Japhet fullname: Japhet, C. – sequence: 3 givenname: P. surname: Moireau fullname: Moireau, P. |
EndPage | 134 |
ExternalDocumentID | oai_doaj_org_article_8194ce0e700e45578f793ec4dcd526d7 10_1051_proc_201863109 |
GroupedDBID | 3V. 8FE 8FG AAFWJ AAYXX ABJCF ABUWG ACACO ACIWK AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EBS EJD GI~ GNUQQ GROUPED_DOAJ HCIFZ K6V K7- L6V M0N M7S M~E OK1 PIMPY PQQKQ PROAC PTHSS RED 7SC 7TB 7U5 7XB 8AL 8FD 8FK FR3 H8D JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2189-7e0903321773dbbef4751b13d2e7d2bd283ef9c813aa29d49de001dc901ceae93 |
IEDL.DBID | DOA |
ISSN | 2267-3059 |
IngestDate | Tue Oct 22 15:11:59 EDT 2024 Thu Oct 10 15:38:03 EDT 2024 Thu Nov 21 22:09:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2189-7e0903321773dbbef4751b13d2e7d2bd283ef9c813aa29d49de001dc901ceae93 |
OpenAccessLink | https://doaj.org/article/8194ce0e700e45578f793ec4dcd526d7 |
PQID | 2127648119 |
PQPubID | 1796391 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8194ce0e700e45578f793ec4dcd526d7 proquest_journals_2127648119 crossref_primary_10_1051_proc_201863109 |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 20180101 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | ESAIM. Proceedings and surveys |
PublicationYear | 2018 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
SSID | ssj0001476649 |
Score | 2.0658915 |
Snippet | To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 109 |
SubjectTerms | Complexity Computer simulation Finite element method Heat transfer Isothermal flow Liquid phases Mass transfer Mathematical models Parallel processing Robustness (mathematics) Simulation Thermodynamic equilibrium Transportation corridors |
Title | Parallel Geothermal Numerical Model with Fractures and Multi-Branch Wells |
URI | https://www.proquest.com/docview/2127648119 https://doaj.org/article/8194ce0e700e45578f793ec4dcd526d7 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsCAaJQkAckpog4cex4pNBSlgoJEGyWH2cxhIIo-f_4nLSqxMDCGlmKc3fOdw_fd4RcBBHQT8fSoJcZD4JnljGfQV7HYw6SQcBG4dmjnL_WtxOkyVmP-sI7YR09cCe4q4hY3EEOMs-BV9G-QrQocNw7XxXCd33kudgIplJ2hUshuFqxNFYMG9tcjPRZLcp0-3ADhRJZ_69_cQKY6R7Z7T1Det3taJ9sweKA3D-YL5x20tA7SL1S73HJvO3KLA3FSWYNxVwqnWK7UxuDZ2oWnqa-2myMUzPe6As0zfKQPE8nTzezrJ9-kLkIuyqTgCmUMoYMsvTWQuCyYpaVvgDpC-ujXwBBuZqVxhTKc-Uhfrd3EeAdGFDlERksPhZwTGj06hRWmEWuLLfgjYsgpIIx1vNgQzEklytp6M-O5EKn4nTFNMpNr-U2JGMU1noVklOnB1FluleZ_ktlQzJaiVr3J2apkWle8JoxdfIf7zglO7jpLlkyIoPvrxbOyPbSt-fJUn4AR6HCqA |
link.rule.ids | 315,782,786,866,2106,4028,27932,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Geothermal+Numerical+Model+with+Fractures+and+Multi-Branch+Wells&rft.jtitle=ESAIM.+Proceedings+and+surveys&rft.au=Beaude%2C+Laurence&rft.au=Beltzung%2C+Thibaud&rft.au=Brenner%2C+Konstantin&rft.au=Lopez%2C+Simon&rft.date=2018&rft.issn=2267-3059&rft.eissn=2267-3059&rft.volume=63&rft.spage=109&rft.epage=134&rft_id=info:doi/10.1051%2Fproc%2F201863109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_proc_201863109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-3059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-3059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-3059&client=summon |