Parallel Geothermal Numerical Model with Fractures and Multi-Branch Wells

To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology incl...

Full description

Saved in:
Bibliographic Details
Published in:ESAIM. Proceedings and surveys Vol. 63; pp. 109 - 134
Main Authors: Beaude, Laurence, Beltzung, Thibaud, Brenner, Konstantin, Lopez, Simon, Masson, Roland, Smai, Farid, Thebault, Jean-frédéric, Xing, Feng
Format: Journal Article
Language:English
Published: Les Ulis EDP Sciences 2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications. Afin de dépasser les limites des codes actuels de simulation des systemes géothermiques en matière de complexité géologique et physique, nous avons initié le développement d’un nouveau simulateur d’écoulements géothermiques parallèle à base de maillages non structurés. Le modèle prenden compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un r ôle majeur dans le transport de masse et d’énergie, ainsi qu’une physique complexe couplant les conservations de la masse et de l’énergie à l’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif de ce projet Cemracs était d’y incorporer un modèle de puits qui constitue un ingrédient essentiel pour réaliser des études géothermiques réalistes à la fois pour la surveillance du réservoir et la reproduction des historiques de production. Le puits est discrétisé par un sous ensemble d’arêtes du maillage de façon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le transport de masse et d’énergie dans le puits se base sur un modèle classique en simulation de réservoir a une inconnue par puits qui suppose l’équilibre hydrostatique et thermodynamique dans le puits. La parallélisation du modèle de puits est réalisée de façon à pouvoir assembler la Jacobienne et à calculer les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications MPI.
AbstractList To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications. Afin de dépasser les limites des codes actuels de simulation des systemes géothermiques en matière de complexité géologique et physique, nous avons initié le développement d’un nouveau simulateur d’écoulements géothermiques parallèle à base de maillages non structurés. Le modèle prenden compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un r ôle majeur dans le transport de masse et d’énergie, ainsi qu’une physique complexe couplant les conservations de la masse et de l’énergie à l’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif de ce projet Cemracs était d’y incorporer un modèle de puits qui constitue un ingrédient essentiel pour réaliser des études géothermiques réalistes à la fois pour la surveillance du réservoir et la reproduction des historiques de production. Le puits est discrétisé par un sous ensemble d’arêtes du maillage de façon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le transport de masse et d’énergie dans le puits se base sur un modèle classique en simulation de réservoir a une inconnue par puits qui suppose l’équilibre hydrostatique et thermodynamique dans le puits. La parallélisation du modèle de puits est réalisée de façon à pouvoir assembler la Jacobienne et à calculer les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications MPI.
To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications.
To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications. Afin de dépasser les limites des codes actuels de simulation des systemes géothermiques en matière de complexité géologique et physique, nous avons initié le développement d’un nouveau simulateur d’écoulements géothermiques parallèle à base de maillages non structurés. Le modèle prenden compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un r ôle majeur dans le transport de masse et d’énergie, ainsi qu’une physique complexe couplant les conservations de la masse et de l’énergie à l’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif de ce projet Cemracs était d’y incorporer un modèle de puits qui constitue un ingrédient essentiel pour réaliser des études géothermiques réalistes à la fois pour la surveillance du réservoir et la reproduction des historiques de production. Le puits est discrétisé par un sous ensemble d’arêtes du maillage de façon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le transport de masse et d’énergie dans le puits se base sur un modèle classique en simulation de réservoir a une inconnue par puits qui suppose l’équilibre hydrostatique et thermodynamique dans le puits. La parallélisation du modèle de puits est réalisée de façon à pouvoir assembler la Jacobienne et à calculer les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications MPI.
Author Thebault, Jean-frédéric
Masson, Roland
Smai, Farid
Brenner, Konstantin
Lopez, Simon
Xing, Feng
Beltzung, Thibaud
Beaude, Laurence
Author_xml – sequence: 1
  givenname: Laurence
  surname: Beaude
  fullname: Beaude, Laurence
– sequence: 2
  givenname: Thibaud
  surname: Beltzung
  fullname: Beltzung, Thibaud
– sequence: 3
  givenname: Konstantin
  surname: Brenner
  fullname: Brenner, Konstantin
– sequence: 4
  givenname: Simon
  surname: Lopez
  fullname: Lopez, Simon
– sequence: 5
  givenname: Roland
  surname: Masson
  fullname: Masson, Roland
– sequence: 6
  givenname: Farid
  surname: Smai
  fullname: Smai, Farid
– sequence: 7
  givenname: Jean-frédéric
  surname: Thebault
  fullname: Thebault, Jean-frédéric
– sequence: 8
  givenname: Feng
  surname: Xing
  fullname: Xing, Feng
BookMark eNpNkDFPwzAQhS0EEqV0ZY7EnNZnO3E8QkVLpRYYQIyWa19oKjcuTiLEvyelqGK6p7vTe0_fFTmvQ42E3AAdA81gso_BThiFIudA1RkZMJbLlNNMnf_Tl2TUNFtKKQiZ50INyOLFROM9-mSOod1g3BmfPHU7jJXt1Sq4_vRVtZtkFo1tu4hNYmqXrDrfVul9NLXdJO_ofXNNLkrjGxz9zSF5mz28Th_T5fN8Mb1bppZBoVKJVFHOGUjJ3XqNpZAZrIE7htKxtWMFx1LZArgxTDmhHPZ1nVUULBpUfEgWR18XzFbvY7Uz8VsHU-nfRYgf2sS2sh51AUpYpCgpRZFlsiil4miFsy5juZO91-3Rq8f32WHT6m3oYt3X1wyYzEUBcEgcH79sDE0TsTylAtUH-vpAX5_o8x-AhHh4
CitedBy_id crossref_primary_10_5802_smai_jcm_97
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7U5
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1051/proc/201863109
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2267-3059
Editor Japhet, C.
Moireau, P.
Grigori, L.
Editor_xml – sequence: 1
  givenname: L.
  surname: Grigori
  fullname: Grigori, L.
– sequence: 2
  givenname: C.
  surname: Japhet
  fullname: Japhet, C.
– sequence: 3
  givenname: P.
  surname: Moireau
  fullname: Moireau, P.
EndPage 134
ExternalDocumentID oai_doaj_org_article_8194ce0e700e45578f793ec4dcd526d7
10_1051_proc_201863109
GroupedDBID 3V.
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ACACO
ACIWK
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EBS
EJD
GI~
GNUQQ
GROUPED_DOAJ
HCIFZ
K6V
K7-
L6V
M0N
M7S
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RED
7SC
7TB
7U5
7XB
8AL
8FD
8FK
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2189-7e0903321773dbbef4751b13d2e7d2bd283ef9c813aa29d49de001dc901ceae93
IEDL.DBID DOA
ISSN 2267-3059
IngestDate Tue Oct 22 15:11:59 EDT 2024
Thu Oct 10 15:38:03 EDT 2024
Thu Nov 21 22:09:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2189-7e0903321773dbbef4751b13d2e7d2bd283ef9c813aa29d49de001dc901ceae93
OpenAccessLink https://doaj.org/article/8194ce0e700e45578f793ec4dcd526d7
PQID 2127648119
PQPubID 1796391
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_8194ce0e700e45578f793ec4dcd526d7
proquest_journals_2127648119
crossref_primary_10_1051_proc_201863109
PublicationCentury 2000
PublicationDate 2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle ESAIM. Proceedings and surveys
PublicationYear 2018
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
SSID ssj0001476649
Score 2.0658915
Snippet To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 109
SubjectTerms Complexity
Computer simulation
Finite element method
Heat transfer
Isothermal flow
Liquid phases
Mass transfer
Mathematical models
Parallel processing
Robustness (mathematics)
Simulation
Thermodynamic equilibrium
Transportation corridors
Title Parallel Geothermal Numerical Model with Fractures and Multi-Branch Wells
URI https://www.proquest.com/docview/2127648119
https://doaj.org/article/8194ce0e700e45578f793ec4dcd526d7
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsCAaJQkAckpog4cex4pNBSlgoJEGyWH2cxhIIo-f_4nLSqxMDCGlmKc3fOdw_fd4RcBBHQT8fSoJcZD4JnljGfQV7HYw6SQcBG4dmjnL_WtxOkyVmP-sI7YR09cCe4q4hY3EEOMs-BV9G-QrQocNw7XxXCd33kudgIplJ2hUshuFqxNFYMG9tcjPRZLcp0-3ADhRJZ_69_cQKY6R7Z7T1Det3taJ9sweKA3D-YL5x20tA7SL1S73HJvO3KLA3FSWYNxVwqnWK7UxuDZ2oWnqa-2myMUzPe6As0zfKQPE8nTzezrJ9-kLkIuyqTgCmUMoYMsvTWQuCyYpaVvgDpC-ujXwBBuZqVxhTKc-Uhfrd3EeAdGFDlERksPhZwTGj06hRWmEWuLLfgjYsgpIIx1vNgQzEklytp6M-O5EKn4nTFNMpNr-U2JGMU1noVklOnB1FluleZ_ktlQzJaiVr3J2apkWle8JoxdfIf7zglO7jpLlkyIoPvrxbOyPbSt-fJUn4AR6HCqA
link.rule.ids 315,782,786,866,2106,4028,27932,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Geothermal+Numerical+Model+with+Fractures+and+Multi-Branch+Wells&rft.jtitle=ESAIM.+Proceedings+and+surveys&rft.au=Beaude%2C+Laurence&rft.au=Beltzung%2C+Thibaud&rft.au=Brenner%2C+Konstantin&rft.au=Lopez%2C+Simon&rft.date=2018&rft.issn=2267-3059&rft.eissn=2267-3059&rft.volume=63&rft.spage=109&rft.epage=134&rft_id=info:doi/10.1051%2Fproc%2F201863109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_proc_201863109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-3059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-3059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-3059&client=summon