Protective Effects of Vitamin C Nanoparticles Supplemented Diet against Toxicity of Fe2+ and Mn2+ Mixture on Nile Tilapia; Oreochromis niloticus
The current study examines the effects of vitamin C nanoparticles on fish health as well as the acute and long-term toxic effects of Fe2+ and Mn2+ combination on Nile tilapia, Oreochromis niloticus. The metal mixture under study has a detected 96-hour LC50 of 2.7% TU (Toxic unit). Fish were divided...
Saved in:
Published in: | Journal of Water and Environment Technology Vol. 22; no. 5; pp. 232 - 240 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan Society on Water Environment
2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The current study examines the effects of vitamin C nanoparticles on fish health as well as the acute and long-term toxic effects of Fe2+ and Mn2+ combination on Nile tilapia, Oreochromis niloticus. The metal mixture under study has a detected 96-hour LC50 of 2.7% TU (Toxic unit). Fish were divided into four groups: Group 1, which served as the control group; Groups 2, 3, and 4 were exposed to 20% of the 96-hour LC50 for 30 days and fed on a conventional diet. Fish of Group 3 were supplemented with 20% vitamin C while fish of Group 4 were supplemented with 20% vitamin C as nanoparticles. The metals, levels in tissues of the liver and gills were examined, as well as the biochemical markers of metabolic processes in blood plasma. Fish from Group 2 displayed noticeable deteriorating conditions, followed by those from Group 3, whereas fish from Group 4 demonstrated noticeable good conditions across all examined criteria. Results showed that, while vitamin C nanoparticle proved to be more efficient, both vitamin C and its nanoparticles supplements had a positive impact on reducing the harmful effects of the studied metal mixture by chelating metal ions and scavenging free radicals. |
---|---|
AbstractList | The current study examines the effects of vitamin C nanoparticles on fish health as well as the acute and long-term toxic effects of Fe2+ and Mn2+ combination on Nile tilapia, Oreochromis niloticus. The metal mixture under study has a detected 96-hour LC50 of 2.7% TU (Toxic unit). Fish were divided into four groups: Group 1, which served as the control group; Groups 2, 3, and 4 were exposed to 20% of the 96-hour LC50 for 30 days and fed on a conventional diet. Fish of Group 3 were supplemented with 20% vitamin C while fish of Group 4 were supplemented with 20% vitamin C as nanoparticles. The metals, levels in tissues of the liver and gills were examined, as well as the biochemical markers of metabolic processes in blood plasma. Fish from Group 2 displayed noticeable deteriorating conditions, followed by those from Group 3, whereas fish from Group 4 demonstrated noticeable good conditions across all examined criteria. Results showed that, while vitamin C nanoparticle proved to be more efficient, both vitamin C and its nanoparticles supplements had a positive impact on reducing the harmful effects of the studied metal mixture by chelating metal ions and scavenging free radicals. |
ArticleNumber | 24-035 |
Author | Flefel, Hassan E. Aly, Mohamed Y. M. Eldesouky, Mahmoud Rasly Abd-elrahman, Hatem H. |
Author_xml | – sequence: 1 fullname: Abd-elrahman, Hatem H. organization: National Institute of Oceanography and Fisheries, Cairo, Egypt – sequence: 2 fullname: Aly, Mohamed Y. M. organization: National Institute of Oceanography and Fisheries, Cairo, Egypt – sequence: 3 fullname: Eldesouky, Mahmoud Rasly organization: Central Metallurgical Research and Development Institute, Cairo, Egypt – sequence: 4 fullname: Flefel, Hassan E. organization: Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt |
BookMark | eNpNkd1u3CAQhVGVSM1Pr_oC3EdOMRi8Vq-ibdJEyp-UbW_RGI83rLxgAdsmb5FHLq7TVbmAA3PmG6FzTA6cd0jI55Kd80bJL5vfmM55VTAhP5CjUlSLgpdKHvynP5LjGDeMyZopdUTeHoNPaJL9hfSy77OK1Pf0p02wtY4u6T04P0JI1gwY6dNuHAfcokvY0W8WE4U1WBcTXfkXa2x6nbqvkJ9RcB29c1nc2Ze0C0i9o_d2QLqyA4wWvtKHgN48B7-1kTo7-DxjF0_JYQ9DxE_v5wn5cXW5Wl4Xtw_fb5YXt4XhZe0KxWW3gKY0vAKx6LHmsqnbvJhqVVMrZXJZMFV1-d5WFROLClpRGtEZkH0rTsjNzO08bPQY7BbCq_Zg9d8HH9b6_dcaWyY70WKmYyb1TTeBJWRoxw1gZp3NLBN8jAH7Pa9kegpGT8FoXukcTHZfzO5NTLDGvfffuNnLtZy2uWdfM88QNDrxB36EnRY |
Cites_doi | 10.1016/j.ecoenv.2018.11.129 10.3390/ani11092711 10.1021/acssuschemeng.6b01183 10.1016/S1532-0456(03)00021-8 10.1016/j.biortech.2004.02.008 10.1093/ajcp/28.1.56 10.1002/etc.706 10.3390/nano10071334 10.1016/j.scitotenv.2013.07.034 10.1271/bbb.62.1201 10.1016/j.egypro.2012.05.113 10.1016/j.cbpc.2021.109132 10.3390/w15112068 10.1016/j.ecoenv.2020.111337 10.1021/jf001413m 10.1016/S0891-5849(99)00053-2 10.1007/s12517-019-4689-1 10.1007/s13197-016-2201-4 10.1111/raq.12163 10.1016/j.ecoenv.2011.11.015 10.1016/S0160-4120(01)00050-2 10.3389/fvets.2022.818866 10.1039/D0RA06026G 10.1016/j.cca.2019.11.029 10.3923/pjbs.2006.1807.1811 10.1007/s00128-021-03382-6 10.17221/7821-VETMED 10.1016/j.ecoenv.2004.01.003 10.1016/j.etap.2018.05.007 10.1016/j.fsi.2018.02.042 10.1111/are.12869 10.1007/s10661-015-4745-6 10.1016/j.foodchem.2016.10.012 10.1046/j.1365-2095.1997.00096.x 10.1177/0748233712472519 |
ContentType | Journal Article |
Copyright | 2024 Japan Society on Water Environment |
Copyright_xml | – notice: 2024 Japan Society on Water Environment |
DBID | AAYXX CITATION DOA |
DOI | 10.2965/jwet.24-035 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1348-2165 |
EndPage | 240 |
ExternalDocumentID | oai_doaj_org_article_eb05d3bebbbe440f9d30645a403d2cae 10_2965_jwet_24_035 article_jwet_22_5_22_24_035_article_char_en |
GroupedDBID | 29L 2WC 5GY ACIWK ADDVE AFRAH ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z GROUPED_DOAJ HH5 JSF JSH KQ8 M~E OK1 RJT RNS RZJ TKC TR2 XSB ZBA AAYXX CITATION |
ID | FETCH-LOGICAL-c217n-625d8a91c24a38fe72597bbbb06b69766cd8a3064d6b6b440384ab31c3dca5fb3 |
IEDL.DBID | DOA |
ISSN | 1348-2165 |
IngestDate | Mon Oct 28 19:37:46 EDT 2024 Wed Oct 16 15:30:07 EDT 2024 Thu Nov 07 14:37:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c217n-625d8a91c24a38fe72597bbbb06b69766cd8a3064d6b6b440384ab31c3dca5fb3 |
OpenAccessLink | https://doaj.org/article/eb05d3bebbbe440f9d30645a403d2cae |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eb05d3bebbbe440f9d30645a403d2cae crossref_primary_10_2965_jwet_24_035 jstage_primary_article_jwet_22_5_22_24_035_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2024 2024-00-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Water and Environment Technology |
PublicationTitleAlternate | J. of Wat. & Envir. Tech. |
PublicationYear | 2024 |
Publisher | Japan Society on Water Environment |
Publisher_xml | – name: Japan Society on Water Environment |
References | [7] Mohanty D, Samanta L: Dietary supplementation of Spirulina ameliorates iron-induced oxidative stress in Indian knife fish Notopterus Notopterus. Environ. Toxicol. Pharmacol., 61, 71–78, 2018. PMID:29852372, https://doi.org/10.1016/j.etap.2018.05.007 [34] Cottet M, Descloux S, Guédant P, Godon A, Cerdan P, Vigouroux R: Total iron concentrations in waters and fish tissues in the Nam Theun 2 Reservoir area (Lao PDR). Environ. Moni. Assesst., 187(8), 529, 2015. PMID:26215825, https://doi.org/10.1007/s10661-015-4745-6 [1] Salem MG, El-Awady MH, Amin E: Enhanced removal of dissolved iron and manganese from nonconventional water resources in Delta district, Egypt. Energy Procedia, 18, 983–993, 2012. https://doi.org/10.1016/j.egypro.2012.05.113 [5] Slaninova A, Machova J, Svobodova Z: Fish kill caused by aluminium and iron contamination in a natural pond used for fish rearing: a case report. Vet. Med. (Praha), 59(11), 573–581, 2014. https://doi.org/10.17221/7821-VETMED [22] Reitman S, Frankel S: A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28(1), 56–63, 1957. PMID:13458125, https://doi.org/10.1093/ajcp/28.1.56 [23] Shuhaimi-Othman M, Yakub N, Ramle NA, Abas A: Comparative toxicity of eight metals on freshwater fish. Toxicol. Ind. Health, 31(9), 773–782, 2015. PMID:23302712, https://doi.org/10.1177/0748233712472519 [32] Lall SP, Kaushik SJ: Nutrition and metabolism of minerals in fish. Animals (Basel), 11(9), 2711, 2021. PMID:34573676, https://doi.org/10.3390/ani11092711 [30] Burda S, Oleszek W: Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem., 49(6), 2774–2779, 2001. PMID:11409965, https://doi.org/10.1021/jf001413m [26] Passos LS, Coppo GC, Pereira TM, Teixeira BC, Bona AM, Merçon J, Lopes TOM, Chippari-Gomes AR: Do manganese and iron in association cause biochemical and genotoxic changes in Oreochromis Niloticus (Teleostei: Cichlidae)? Bull. Environ. Contam. Toxicol., 108(4), 708–715, 2022. PMID:34626211, https://doi.org/10.1007/s00128-021-03382-6 [28] Balistrieri LS, Mebane CA: Predicting the toxicity of metal mixtures. Sci. Total Environ., 466-467, 788–799, 2014. PMID:23973545, https://doi.org/10.1016/j.scitotenv.2013.07.034 [13] Dawood MAO, Koshio S: Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals. Rev. Aquacult., 10(2), 334–350, 2018. https://doi.org/10.1111/raq.12163 [15] Andersen F, Lorentzen M, Waagbø R, Maage A: Bioavailability and interactions with other micronutrients of three dietary iron sources in Atlantic salmon, Salmo salar, smolts. Aquacult. Nutr., 3(4), 239–246, 1997. https://doi.org/10.1046/j.1365-2095.1997.00096.x [21] Hseu ZY: Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour. Technol., 95(1), 53–59, 2004. PMID:15207295, https://doi.org/10.1016/j.biortech.2004.02.008 [18] Elseman AM, Rashad MM, Hassan AM: Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique. ACS Sustain. Chem. & Eng., 4(9), 4875–4886, 2016. https://doi.org/10.1021/acssuschemeng.6b01183 [12] Liang XP, Li Y, Hou YM, Qiu H, Zhou QC: Effect of dietary vitamin C on the growth performance, antioxidant ability and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco Richardson). Aquacult. Res., 48(1), 149–160, 2017. https://doi.org/10.1111/are.12869 [2] Khozyem H, Hamdan A, Tantawy AA, Emam A, Elbadry E: Distribution and origin of iron and manganese in groundwater: case study, Balat-Teneida area, El-Dakhla Basin, Egypt. Arab. J. Geosci., 12(16), 523, 2019. https://doi.org/10.1007/s12517-019-4689-1 [35] Yadav AK, Sinha AK, Egnew N, Romano N, Kumar V: Potential amelioration of waterborne iron toxicity in channel catfish (Ictalurus punctatus) through dietary supplementation of vitamin C. Ecotoxicol. Environ. Saf., 205, 111337, 2020. PMID:32979804, https://doi.org/10.1016/j.ecoenv.2020.111337 [10] Aliko V, Qirjo M, Sula E, Morina V, Faggio C: Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol., 76, 101–109, 2018. PMID:29481848, https://doi.org/10.1016/j.fsi.2018.02.042 [17] El-Sappah AH, Seif MM, Abdel-Kader HH, Soaud SA, Elhamid MAA, Abdelghaffar AM, El-Sappah HH, Sarwar H, Yadav V, Maitra P, Zhao X, Yan K, Li J, Abbas M: Genotoxicity and trace elements contents analysis in Nile Tilapia (Oreochromis niloticus) indicated the levels of aquatic contamination at three Egyptian areas. Front. Vet. Sci., 9, 818866, 2022. PMID:35478598, https://doi.org/10.3389/fvets.2022.818866 [6] Sousa L, Oliveira MM, Pessôa MTC, Barbosa LA: Iron overload: Effects on cellular biochemistry. Clin. Chim. Acta, 504, 180–189, 2020. PMID:31790701, https://doi.org/10.1016/j.cca.2019.11.029 [36] Shi H, Noguchi N, Niki E: Comparative study on dynamics of antioxidative action of α-tocopheryl hydroquinone, ubiquinol, and α-tocopherol against lipid peroxidation. Free Radic. Biol. Med., 27(3–4), 334–346, 1999. PMID:10468207, https://doi.org/10.1016/S0891-5849(99)00053-2 [24] Lappivaara J, Marttinen S: Effects of waterborne iron overload and simulated winter conditions on acute physiological stress response of whitefish, Coregonus lavaretus. Ecotoxicol. Environ. Saf., 60(2), 157–168, 2005. PMID:15546631, https://doi.org/10.1016/j.ecoenv.2004.01.003 [27] Rashed MN: Monitoring of environmental heavy metals in fish from Nasser Lake. Environ. Int., 27(1), 27–33, 2001. PMID:11488387, https://doi.org/10.1016/S0160-4120(01)00050-2 [33] Zahedi S, Vaezzade H, Rafati M, Zarei Dangesaraki M: Acute toxicity and accumulation of iron, manganese and, aluminum in Caspian kutum Fish (Rutilus kutum). Iran. J. Toxicol., 8(24), 1028–1033, 2014. [20] APHA: Standard Methods for the Examination of Water and Wastewater (Vol. 6). APHA, Washington, DC, USA, 2005. [37] Khan MZH, Hossain MMM, Khan M, Ali MS, Aktar S, Moniruzzaman M, Khan M: Influence of nanoparticle-based nano-nutrients on the growth performance and physiological parameters in tilapia (Oreochromis niloticus). RSC Adv., 10(50), 29918–29922, 2020. PMID:35518213, https://doi.org/10.1039/D0RA06026G [14] Herbig AL, Renard CMGC: Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chem., 220, 444–451, 2017. PMID:27855924, https://doi.org/10.1016/j.foodchem.2016.10.012 [9] Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, Garey JD, Zaccaria K, Citra M: Toxicological Profile for Manganese. In: Toxicological Profile for Manganese. Agency for Toxic Substances and Disease Registry, Atlanta, USA, 2012. https://www.ncbi.nlm.nih.gov/books/NBK158872 [31] Bury N, Grosell M: Iron acquisition by teleost fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 135(2), 97–105, 2003. PMID:12860048, https://doi.org/10.1016/S1532-0456(03)00021-8 [19] Yamaguchi T, Takamura H, Matoba T, Terao J: HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem., 62(6), 1201–1204, 1998. PMID:9692204, https://doi.org/10.1271/bbb.62.1201 [4] Singh M, Barman AS, Devi AL, Devi AG, Pandey PK: Iron mediated hematological, oxidative and histological alterations in freshwater fish Labeo rohita. Ecotoxicol. Environ. Saf., 170, 87–97, 2019. PMID:30529624, https://doi.org/10.1016/j.ecoenv.2018.11.129 [3] Wang M, Wang M, Yang L, Yang T, Li J, Chen Y: Distribution characteristics and genesis of iron and manganese ions in groundwater of eastern Sanjiang Plain, China. Water, 15(11), 2068, 2023. https://doi.org/10.3390/w15112068 [25] Abdullah S, Javed M: Studies on acute toxicity of metals to the fish, Catla catla. Pak. J. Biol. Sci., 9(9), 1807–1811, 2006. https://doi.org/10.3923/pjbs.2006.1807.1811 [8] Vieira MC, Torronteras R, Córdoba F, Canalejo A: Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ specific antioxidant responses. Ecotoxicol. Environ. Saf., 78, 212–217, 2012. PMID:22154142, https://doi.org/10.1016/j.ecoenv.2011.11.015 [38] Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N: Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench. Environ. Toxicol. Chem., 31(1), 15–31, 2012. PMID:22002667, https://doi.org/10.1002/etc.706 [16] Kumar H, Bhardwaj K, Nepovimova E, Kuča K, Singh Dhanjal D, Bhardwaj S, Bhatia SK, Verma R, Kumar D: Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials (Basel), 10(7), 1334, 2020. PMID:32650608, https://doi.org/10.3390/nano10071334 [29] Zaiter A, Becker L, Karam MC, Dicko A: Effect of particle size on antioxidant activity and catechin content of green tea powders. J. Food Sci. Technol., 53(4), 2025–2032, 2016. PMID:27413230, https://doi.org/10.1007/s13197-016-2201-4 [11] Correia TG, Vieira VARO, de Moraes Narcizo A, Zampieri RA, Floeter-Winter LM, Moreira RG: Endocrine disruption caused by the aquatic exposure to aluminum and manganese in Astyanax altiparanae (Teleostei: Characidae) females during the final ovarian maturation. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 249, 109132, 2021. PMID:34246795, https://doi.org/10.1016/j.cbpc.2021.109132 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 4 doi: 10.1016/j.ecoenv.2018.11.129 – ident: 32 doi: 10.3390/ani11092711 – ident: 18 doi: 10.1021/acssuschemeng.6b01183 – ident: 31 doi: 10.1016/S1532-0456(03)00021-8 – ident: 21 doi: 10.1016/j.biortech.2004.02.008 – ident: 22 doi: 10.1093/ajcp/28.1.56 – ident: 33 – ident: 38 doi: 10.1002/etc.706 – ident: 16 doi: 10.3390/nano10071334 – ident: 28 doi: 10.1016/j.scitotenv.2013.07.034 – ident: 19 doi: 10.1271/bbb.62.1201 – ident: 1 doi: 10.1016/j.egypro.2012.05.113 – ident: 11 doi: 10.1016/j.cbpc.2021.109132 – ident: 3 doi: 10.3390/w15112068 – ident: 35 doi: 10.1016/j.ecoenv.2020.111337 – ident: 30 doi: 10.1021/jf001413m – ident: 9 – ident: 36 doi: 10.1016/S0891-5849(99)00053-2 – ident: 2 doi: 10.1007/s12517-019-4689-1 – ident: 29 doi: 10.1007/s13197-016-2201-4 – ident: 13 doi: 10.1111/raq.12163 – ident: 20 – ident: 8 doi: 10.1016/j.ecoenv.2011.11.015 – ident: 27 doi: 10.1016/S0160-4120(01)00050-2 – ident: 17 doi: 10.3389/fvets.2022.818866 – ident: 37 doi: 10.1039/D0RA06026G – ident: 6 doi: 10.1016/j.cca.2019.11.029 – ident: 25 doi: 10.3923/pjbs.2006.1807.1811 – ident: 26 doi: 10.1007/s00128-021-03382-6 – ident: 5 doi: 10.17221/7821-VETMED – ident: 24 doi: 10.1016/j.ecoenv.2004.01.003 – ident: 7 doi: 10.1016/j.etap.2018.05.007 – ident: 10 doi: 10.1016/j.fsi.2018.02.042 – ident: 12 doi: 10.1111/are.12869 – ident: 34 doi: 10.1007/s10661-015-4745-6 – ident: 14 doi: 10.1016/j.foodchem.2016.10.012 – ident: 15 doi: 10.1046/j.1365-2095.1997.00096.x – ident: 23 doi: 10.1177/0748233712472519 |
SSID | ssj0057066 |
Score | 2.2945879 |
Snippet | The current study examines the effects of vitamin C nanoparticles on fish health as well as the acute and long-term toxic effects of Fe2+ and Mn2+ combination... |
SourceID | doaj crossref jstage |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 232 |
SubjectTerms | Metals Oreochromis niloticus remediation toxicity vitamin C nanoparticles |
Title | Protective Effects of Vitamin C Nanoparticles Supplemented Diet against Toxicity of Fe2+ and Mn2+ Mixture on Nile Tilapia; Oreochromis niloticus |
URI | https://www.jstage.jst.go.jp/article/jwet/22/5/22_24-035/_article/-char/en https://doaj.org/article/eb05d3bebbbe440f9d30645a403d2cae |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Water and Environment Technology, 2024, Vol.22(5), pp.232-240 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaAU3tAtAV1C1Rz4IYCwY884NQCKy48JBbELfJj0gZRB-0ugp_Rn9yxvbtw64VLlMTxQzPW-BvH8w1jO-h43RrRZgXB8UwKdFmFrsy4sEhwVrU6BtKeXZcXd9XJaaDJWaT6CmfCEj1wEtw-mlw5YdAYg1Lmbe0CZlZa5sJxqzFa37yYO1PJBquSVtIUjcfrQu3fP-N0j8ssj1ndXtefSNNPa889IbH5Ka64sAzX2OoMEcKPNJJPbAn9Z_bxDU_gF_b3KrEpkGWCRDc8gb6FW_Lr_3QejoFsJDm_szNuEDN1xm0_dHDS4RT0L90RDoRR_9JZwt2h9hD5Lmjv4NzTzXn3Ev4lQO_hggwFjLoQ5qaP4HKMvf097mk-gO8e-kDWMVlnN8PT0fFZNkulkFnyOTxpQrlK1weWSy2qFkvyekoSqckLUxAiKSwVB8E6ejYkZ1FJbcSBFc5qRcrcYCu-9_iVAa9lgdRG3iohsUBNCAOFQ-SVkYQvBmxnLuDmMTFmNORpBD00QQ8Nlw3pYcB-BuEvPgk01_EFKb-ZCaz5n_IH7DCpbtHMvGbqiTcqXFKPi7IQz0ZG4dt7jGCTfeB5mFlhU2aLrUzHT7jNlifu6Xuckf8AgjDrqA |
link.rule.ids | 315,782,786,866,2106,4028,27932,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protective+Effects+of+Vitamin+C+Nanoparticles+Supplemented+Diet+against+Toxicity+of+Fe2%2B+and+Mn2%2B+Mixture+on+Nile+Tilapia%3B+Oreochromis+niloticus&rft.jtitle=Journal+of+water+and+environment+technology&rft.au=Abd-elrahman%2C+Hatem+H.&rft.au=Aly%2C+Mohamed+Y.+M.&rft.au=Eldesouky%2C+Mahmoud+Rasly&rft.au=Flefel%2C+Hassan+E.&rft.date=2024&rft.issn=1348-2165&rft.eissn=1348-2165&rft.volume=22&rft.issue=5&rft.spage=232&rft.epage=240&rft_id=info:doi/10.2965%2Fjwet.24-035&rft.externalDBID=n%2Fa&rft.externalDocID=10_2965_jwet_24_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-2165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-2165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-2165&client=summon |