Data-Driven Digital Inspection of Photovoltaic Panels Using a Portable Hybrid Model Combining Meteorological Data and Image Processing

This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis. Utilizing two convolutional neural network models with distinct architectures for classifying thermal and red, green, blue (RGB) images of photovo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics Vol. 14; no. 6; pp. 937 - 950
Main Authors: Oufadel, Ayoub, Azouzoute, Alae, Ghennioui, Hicham, Soubai, Chaimae, Taabane, Ibrahim
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-11-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis. Utilizing two convolutional neural network models with distinct architectures for classifying thermal and red, green, blue (RGB) images of photovoltaic installations, in addition to an support vector machines model for meteorological data classification, the results from these models are concatenated, allowing the fusion of visual and meteorological information for comprehensive defect detection. Data collection from photovoltaic panels is achieved using a portable device, followed by the application of advanced image processing techniques to identify faults rapidly and accurately with up to 96% accuracy. The inspection results are presented in a user-friendly format, facilitating straightforward interpretation and analysis. This new approach has the potential to significantly enhance the efficiency and durability of solar energy systems, enabling timely maintenance and repair for photovoltaic panel issues.
AbstractList This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis. Utilizing two convolutional neural network models with distinct architectures for classifying thermal and red, green, blue (RGB) images of photovoltaic installations, in addition to an support vector machines model for meteorological data classification, the results from these models are concatenated, allowing the fusion of visual and meteorological information for comprehensive defect detection. Data collection from photovoltaic panels is achieved using a portable device, followed by the application of advanced image processing techniques to identify faults rapidly and accurately with up to 96% accuracy. The inspection results are presented in a user-friendly format, facilitating straightforward interpretation and analysis. This new approach has the potential to significantly enhance the efficiency and durability of solar energy systems, enabling timely maintenance and repair for photovoltaic panel issues.
Author Taabane, Ibrahim
Ghennioui, Hicham
Azouzoute, Alae
Oufadel, Ayoub
Soubai, Chaimae
Author_xml – sequence: 1
  givenname: Ayoub
  orcidid: 0000-0002-1469-9110
  surname: Oufadel
  fullname: Oufadel, Ayoub
  email: ayouboufadel@gmail.com
  organization: Laboratory of Signals, Systems, and Components, Sidi Mohamed Ben Abdellah University, Fez, Morocco
– sequence: 2
  givenname: Alae
  orcidid: 0000-0002-4980-4419
  surname: Azouzoute
  fullname: Azouzoute, Alae
  email: azouzoute.alae@gmail.com
  organization: Fluid Mechanics Team, Laboratory of Mechanics and Energetics, Faculty of Sciences, University Mohammed First Oujda, Oujda, Morocco
– sequence: 3
  givenname: Hicham
  surname: Ghennioui
  fullname: Ghennioui, Hicham
  organization: Laboratory of Signals, Systems, and Components, Sidi Mohamed Ben Abdellah University, Fez, Morocco
– sequence: 4
  givenname: Chaimae
  surname: Soubai
  fullname: Soubai, Chaimae
  organization: Laboratory of Signals, Systems, and Components, Sidi Mohamed Ben Abdellah University, Fez, Morocco
– sequence: 5
  givenname: Ibrahim
  orcidid: 0000-0003-4907-4310
  surname: Taabane
  fullname: Taabane, Ibrahim
  email: ibrahim.taabane@usmba.ac.ma
  organization: Institute of Electronics and Digital Technologies (IETR), University of Rennes, Rennes, France
BackLink https://hal.science/hal-04688823$$DView record in HAL
BookMark eNpNkc1O4zAUhS3ESPy-AQtLs5pFiv-TLFEL06KiZgGztRz3phildsc2lXiBeW4StYO4m3tlfedcX50LdOqDB4RuKJlQSurbx2a-el79mTDCxIQLXpZcnaBzRqUquCD89P_MK3qGrlN6I0MpIpUS5-jfzGRTzKLbg8czt3HZ9Hjh0w5sdsHj0OHmNeSwD302zuLGeOgTfknOb7DBTYjZtD3g-Ucb3Ro_hTX0eBq2rfMj8QQZQgx92Dg7GI_LsPFrvNiaDeAmBgtptLpCPzrTJ7g-9kv08nD_PJ0Xy9XvxfRuWVhGeS4qyQTIem2kJFQA2Jp0dctAtaYuLbWqliA6QWjLJWOdKKHqOG_lcHtLLC35Jfp18H01vd5FtzXxQwfj9Pxuqcc3IlRVVYzv6cD-PLC7GP6-Q8r6LbxHP3xPc8qIkkTReqDEgbIxpBSh-7KlRI8B6WNAegxIHwMaZDcHmQOAbxKluGCCfwL3YY5-
CODEN IJPEG8
Cites_doi 10.1016/j.enconman.2022.116285
10.1016/j.bcab.2023.102726
10.1016/j.procir.2018.08.318
10.1016/j.energy.2022.125902
10.1002/ese3.1043
10.1002/pip.2975
10.1016/j.erss.2023.102942
10.1016/j.egyr.2019.09.051
10.1016/j.envc.2023.100679
10.1016/j.jag.2021.102652
10.1016/j.measurement.2024.114861
10.1016/j.apenergy.2021.117964
10.3390/e23101264
10.1002/jcc.24764
10.1109/DICTA.2016.7797091
10.1016/j.egyr.2024.03.044
10.1016/j.solener.2020.01.055
10.1016/j.compeleceng.2021.107271
10.1016/j.renene.2022.04.046
10.1007/978-981-19-6223-3_83
10.1016/j.energy.2021.120565
10.1109/ACCESS.2022.3194547
10.1016/j.enbuild.2018.01.017
10.1016/j.esr.2020.100493
10.1016/j.agrformet.2008.05.017
10.1007/s10489-020-02106-3
10.3390/drones5040106
10.1016/j.renene.2021.06.086
10.1016/j.compeleceng.2019.03.004
10.1007/978-3-319-95933-7_71
10.5120/ijca2017915285
10.1016/j.enconman.2023.116978
10.1111/1467-9868.00054
10.1016/j.asoc.2023.110055
10.1109/JPHOTOV.2020.3045680
10.3390/en12183554
10.1007/s12633-017-9639-5
10.1016/j.renene.2021.07.070
10.1016/j.procs.2022.08.084
10.3390/en15207595
10.1016/j.solmat.2020.110874
10.1016/j.matpr.2020.03.646
10.3390/s22218515
10.1080/14786451.2021.1965605
10.1016/j.seta.2022.102110
10.1109/WINCOM55661.2022.9966418
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Attribution - NonCommercial
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: Attribution - NonCommercial
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
DOI 10.1109/JPHOTOV.2024.3437736
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2156-3403
2156-3381
EndPage 950
ExternalDocumentID oai_HAL_hal_04688823v1
10_1109_JPHOTOV_2024_3437736
10663424
Genre orig-research
GrantInformation_xml – fundername: Université Mohammed VI Polytechnique; Mohammed VI Polytechnic University
  funderid: 10.13039/100016566
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c213t-8524e59da55014eec90f9b2e6ba97c1c695e4f401b3522f47e8f33b5338b0c173
IEDL.DBID RIE
ISSN 2156-3381
2156-3403
IngestDate Sat Nov 23 06:36:24 EST 2024
Fri Oct 25 23:53:56 EDT 2024
Wed Nov 27 13:01:38 EST 2024
Wed Nov 06 05:53:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords image processing
Temperature distribution
photovoltaic
Inspection
machine learning (ML)
Convolutional neural network (CNN)
Solar panels
Temperature measurement
Support vector machines
innovative inspection
Accuracy
Data models
maintenance
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c213t-8524e59da55014eec90f9b2e6ba97c1c695e4f401b3522f47e8f33b5338b0c173
ORCID 0000-0003-4907-4310
0000-0002-1469-9110
0000-0002-4980-4419
0000-0002-0988-1532
OpenAccessLink https://hal.science/hal-04688823
PQID 3120650619
PQPubID 2040418
PageCount 14
ParticipantIDs proquest_journals_3120650619
crossref_primary_10_1109_JPHOTOV_2024_3437736
ieee_primary_10663424
hal_primary_oai_HAL_hal_04688823v1
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of photovoltaics
PublicationTitleAbbrev JPHOTOV
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
Dai (ref33) 2021; 34
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
Kulshreshtha (ref32) 2022
ref2
ref1
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Priyam (ref39) 2013; 3
References_xml – ident: ref23
  doi: 10.1016/j.enconman.2022.116285
– ident: ref37
  doi: 10.1016/j.bcab.2023.102726
– ident: ref4
  doi: 10.1016/j.procir.2018.08.318
– ident: ref43
  doi: 10.1016/j.energy.2022.125902
– ident: ref6
  doi: 10.1002/ese3.1043
– ident: ref26
  doi: 10.1002/pip.2975
– ident: ref2
  doi: 10.1016/j.erss.2023.102942
– ident: ref20
  doi: 10.1016/j.egyr.2019.09.051
– volume: 3
  start-page: 334
  issue: 2
  year: 2013
  ident: ref39
  article-title: Comparative analysis of decision tree classification algorithms
  publication-title: Int. J. Curr. Eng. Technol.
  contributor:
    fullname: Priyam
– ident: ref45
  doi: 10.1016/j.envc.2023.100679
– ident: ref15
  doi: 10.1016/j.jag.2021.102652
– volume: 34
  start-page: 3965
  year: 2021
  ident: ref33
  article-title: CoAtNet: Marrying convolution and attention for all data sizes
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Dai
– ident: ref41
  doi: 10.1016/j.measurement.2024.114861
– ident: ref7
  doi: 10.1016/j.apenergy.2021.117964
– ident: ref49
  doi: 10.3390/e23101264
– ident: ref18
  doi: 10.1002/jcc.24764
– ident: ref35
  doi: 10.1109/DICTA.2016.7797091
– ident: ref44
  doi: 10.1016/j.egyr.2024.03.044
– ident: ref13
  doi: 10.1016/j.solener.2020.01.055
– ident: ref48
  doi: 10.1016/j.compeleceng.2021.107271
– ident: ref14
  doi: 10.1016/j.renene.2022.04.046
– ident: ref29
  doi: 10.1007/978-981-19-6223-3_83
– ident: ref22
  doi: 10.1016/j.energy.2021.120565
– ident: ref12
  doi: 10.1109/ACCESS.2022.3194547
– ident: ref17
  doi: 10.1016/j.enbuild.2018.01.017
– ident: ref1
  doi: 10.1016/j.esr.2020.100493
– ident: ref27
  doi: 10.1016/j.agrformet.2008.05.017
– ident: ref40
  doi: 10.1007/s10489-020-02106-3
– ident: ref3
  doi: 10.3390/drones5040106
– ident: ref16
  doi: 10.1016/j.renene.2021.06.086
– ident: ref38
  doi: 10.1016/j.compeleceng.2019.03.004
– year: 2022
  ident: ref32
  article-title: Feature refinement to improve high resolution image inpainting
  contributor:
    fullname: Kulshreshtha
– ident: ref34
  doi: 10.1007/978-3-319-95933-7_71
– ident: ref46
  doi: 10.5120/ijca2017915285
– ident: ref24
  doi: 10.1016/j.enconman.2023.116978
– ident: ref31
  doi: 10.1111/1467-9868.00054
– ident: ref36
  doi: 10.1016/j.asoc.2023.110055
– ident: ref11
  doi: 10.1109/JPHOTOV.2020.3045680
– ident: ref25
  doi: 10.3390/en12183554
– ident: ref19
  doi: 10.1007/s12633-017-9639-5
– ident: ref8
  doi: 10.1016/j.renene.2021.07.070
– ident: ref42
  doi: 10.1016/j.procs.2022.08.084
– ident: ref5
  doi: 10.3390/en15207595
– ident: ref30
  doi: 10.1016/j.solmat.2020.110874
– ident: ref21
  doi: 10.1016/j.matpr.2020.03.646
– ident: ref9
  doi: 10.3390/s22218515
– ident: ref28
  doi: 10.1080/14786451.2021.1965605
– ident: ref10
  doi: 10.1016/j.seta.2022.102110
– ident: ref47
  doi: 10.1109/WINCOM55661.2022.9966418
SSID ssj0000605664
Score 2.4009821
Snippet This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis....
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 937
SubjectTerms Accuracy
Artificial neural networks
Convolutional neural network (CNN)
Convolutional neural networks
Data analysis
Data collection
Data models
Digital imaging
Engineering Sciences
Fault detection
Image classification
Image enhancement
Image processing
innovative inspection
Inspection
Machine learning
machine learning (ML)
maintenance
Meteorological data
Meteorology
Panels
photovoltaic
Portable equipment
Solar energy
Solar panels
Support vector machines
Temperature distribution
Temperature measurement
Title Data-Driven Digital Inspection of Photovoltaic Panels Using a Portable Hybrid Model Combining Meteorological Data and Image Processing
URI https://ieeexplore.ieee.org/document/10663424
https://www.proquest.com/docview/3120650619
https://hal.science/hal-04688823
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbYnuDAs4iFUlmIq4tfieNj1W2VIqArURC3yK_QSiVB2ywSf4Df3Rknu62EOHCLIsex9Hle9nwzhLz1vPAygQCKwnGmnffMShOZ8lEbWbWBC-QO15_Np2_V4hjL5LAtFyallJPP0gE-5rv82Ic1HpWBhIN91FLPyMzYaiRrbQ9UODjmZS4XBVasZBB6iYkqJ7h9935Zn52ffYWAUOoDpZUxuSjzrSmaXWAiZO6w8pdazrbm5NF_rvIxeTg5lfRw3AVPyL3UPSUP7pQafEb-LNzg2GKFyo0uLr9jrxB62o1Ey76jfUuXF_3Qg7Ya3GWgS9eB1aQ5o4A6mhNO_VWi9W-keFFsoXZFQZn43GCCfgTfu19tFCnFn1HXRXr6A_QVndgIMHCXfDk5Pj-q2dSDgQUp1MCqQupU2OgKvIBMKVjeWkTXO2uCCKUtkm4hSPPoybXapKpVyoMTWXkehFHPyU7Xd-kFoVyBLgiujG2AmQpXtV7GKhkTylbG4OaEbeBofo6lNpoconDbTPA1CF8zwTcnbwCz7VCsk10ffmjwHQT9ENlL9UvMyS4idGfCEZw52dtg3ExSe90oIdFjhZjy5T8-e0Xu4xJGMuIe2RlW6_SazK7jej_vxhucUNx4
link.rule.ids 230,315,782,786,798,887,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbYcgAOlEcrFgpYiKtLYjtxcqy6rbKwbVdiQdwiP9tKbVJts5X4A_xuZpzsUglx4BZFjmPp87zs-WYI-WiSzHAPAphmOmFSG8NKrhwTxknFi2CTFLnD1Vd1-qOYHGGZHLbhwnjvY_KZ38fHeJfvWrvCozKQcLCPkssReZhJlauerrU5UknANc9jwSiwYzmD4CsdyHJpUn76PK_OFmffISTkcl9IoVQsy_zHGI0uMBUy9lj5SzFHa3O8_Z_rfEaeDm4lPej3wXPywDcvyJN7xQZfkl8T3Wk2WaJ6o5PLc-wWQqdNT7VsG9oGOr9ouxb0VacvLZ3rBuwmjTkFVNOYcmquPK1-IsmLYhO1KwrqxMQWE_QEvO92uValFH9GdePo9Bo0Fh34CDBwh3w7PlocVmzowsAsT0XHioxLn5VOZ3gF6b0tk1AivkaXyqY2LzMvA4RpBn25IJUvghAG3MjCJDZVYpdsNW3jXxGaCNAGVucuWJgp00Uw3BVeKZsH7qweE7aGo77pi23UMUhJynqAr0b46gG-MfkAmG2GYqXs6mBW4zsI-yG25-IuHZMdROjehD04Y7K3xrge5Pa2FilHnxWiytf_-Ow9eVQtTmb1bHr65Q15jMvpqYl7ZKtbrvxbMrp1q3dxZ_4GXCLfyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Digital+Inspection+of+Photovoltaic+Panels+Using+a+Portable+Hybrid+Model+Combining+Meteorological+Data+and+Image+Processing&rft.jtitle=IEEE+journal+of+photovoltaics&rft.au=Oufadel%2C+Ayoub&rft.au=Azouzoute%2C+Alae&rft.au=Ghennioui%2C+Hicham&rft.au=Soubai%2C+Chaimae&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=2156-3381&rft.volume=14&rft.issue=6&rft.spage=937&rft.epage=950&rft_id=info:doi/10.1109%2FJPHOTOV.2024.3437736&rft.externalDocID=10663424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3381&client=summon