Data-Driven Digital Inspection of Photovoltaic Panels Using a Portable Hybrid Model Combining Meteorological Data and Image Processing
This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis. Utilizing two convolutional neural network models with distinct architectures for classifying thermal and red, green, blue (RGB) images of photovo...
Saved in:
Published in: | IEEE journal of photovoltaics Vol. 14; no. 6; pp. 937 - 950 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-11-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis. Utilizing two convolutional neural network models with distinct architectures for classifying thermal and red, green, blue (RGB) images of photovoltaic installations, in addition to an support vector machines model for meteorological data classification, the results from these models are concatenated, allowing the fusion of visual and meteorological information for comprehensive defect detection. Data collection from photovoltaic panels is achieved using a portable device, followed by the application of advanced image processing techniques to identify faults rapidly and accurately with up to 96% accuracy. The inspection results are presented in a user-friendly format, facilitating straightforward interpretation and analysis. This new approach has the potential to significantly enhance the efficiency and durability of solar energy systems, enabling timely maintenance and repair for photovoltaic panel issues. |
---|---|
AbstractList | This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis. Utilizing two convolutional neural network models with distinct architectures for classifying thermal and red, green, blue (RGB) images of photovoltaic installations, in addition to an support vector machines model for meteorological data classification, the results from these models are concatenated, allowing the fusion of visual and meteorological information for comprehensive defect detection. Data collection from photovoltaic panels is achieved using a portable device, followed by the application of advanced image processing techniques to identify faults rapidly and accurately with up to 96% accuracy. The inspection results are presented in a user-friendly format, facilitating straightforward interpretation and analysis. This new approach has the potential to significantly enhance the efficiency and durability of solar energy systems, enabling timely maintenance and repair for photovoltaic panel issues. |
Author | Taabane, Ibrahim Ghennioui, Hicham Azouzoute, Alae Oufadel, Ayoub Soubai, Chaimae |
Author_xml | – sequence: 1 givenname: Ayoub orcidid: 0000-0002-1469-9110 surname: Oufadel fullname: Oufadel, Ayoub email: ayouboufadel@gmail.com organization: Laboratory of Signals, Systems, and Components, Sidi Mohamed Ben Abdellah University, Fez, Morocco – sequence: 2 givenname: Alae orcidid: 0000-0002-4980-4419 surname: Azouzoute fullname: Azouzoute, Alae email: azouzoute.alae@gmail.com organization: Fluid Mechanics Team, Laboratory of Mechanics and Energetics, Faculty of Sciences, University Mohammed First Oujda, Oujda, Morocco – sequence: 3 givenname: Hicham surname: Ghennioui fullname: Ghennioui, Hicham organization: Laboratory of Signals, Systems, and Components, Sidi Mohamed Ben Abdellah University, Fez, Morocco – sequence: 4 givenname: Chaimae surname: Soubai fullname: Soubai, Chaimae organization: Laboratory of Signals, Systems, and Components, Sidi Mohamed Ben Abdellah University, Fez, Morocco – sequence: 5 givenname: Ibrahim orcidid: 0000-0003-4907-4310 surname: Taabane fullname: Taabane, Ibrahim email: ibrahim.taabane@usmba.ac.ma organization: Institute of Electronics and Digital Technologies (IETR), University of Rennes, Rennes, France |
BackLink | https://hal.science/hal-04688823$$DView record in HAL |
BookMark | eNpNkc1O4zAUhS3ESPy-AQtLs5pFiv-TLFEL06KiZgGztRz3phildsc2lXiBeW4StYO4m3tlfedcX50LdOqDB4RuKJlQSurbx2a-el79mTDCxIQLXpZcnaBzRqUquCD89P_MK3qGrlN6I0MpIpUS5-jfzGRTzKLbg8czt3HZ9Hjh0w5sdsHj0OHmNeSwD302zuLGeOgTfknOb7DBTYjZtD3g-Ucb3Ro_hTX0eBq2rfMj8QQZQgx92Dg7GI_LsPFrvNiaDeAmBgtptLpCPzrTJ7g-9kv08nD_PJ0Xy9XvxfRuWVhGeS4qyQTIem2kJFQA2Jp0dctAtaYuLbWqliA6QWjLJWOdKKHqOG_lcHtLLC35Jfp18H01vd5FtzXxQwfj9Pxuqcc3IlRVVYzv6cD-PLC7GP6-Q8r6LbxHP3xPc8qIkkTReqDEgbIxpBSh-7KlRI8B6WNAegxIHwMaZDcHmQOAbxKluGCCfwL3YY5- |
CODEN | IJPEG8 |
Cites_doi | 10.1016/j.enconman.2022.116285 10.1016/j.bcab.2023.102726 10.1016/j.procir.2018.08.318 10.1016/j.energy.2022.125902 10.1002/ese3.1043 10.1002/pip.2975 10.1016/j.erss.2023.102942 10.1016/j.egyr.2019.09.051 10.1016/j.envc.2023.100679 10.1016/j.jag.2021.102652 10.1016/j.measurement.2024.114861 10.1016/j.apenergy.2021.117964 10.3390/e23101264 10.1002/jcc.24764 10.1109/DICTA.2016.7797091 10.1016/j.egyr.2024.03.044 10.1016/j.solener.2020.01.055 10.1016/j.compeleceng.2021.107271 10.1016/j.renene.2022.04.046 10.1007/978-981-19-6223-3_83 10.1016/j.energy.2021.120565 10.1109/ACCESS.2022.3194547 10.1016/j.enbuild.2018.01.017 10.1016/j.esr.2020.100493 10.1016/j.agrformet.2008.05.017 10.1007/s10489-020-02106-3 10.3390/drones5040106 10.1016/j.renene.2021.06.086 10.1016/j.compeleceng.2019.03.004 10.1007/978-3-319-95933-7_71 10.5120/ijca2017915285 10.1016/j.enconman.2023.116978 10.1111/1467-9868.00054 10.1016/j.asoc.2023.110055 10.1109/JPHOTOV.2020.3045680 10.3390/en12183554 10.1007/s12633-017-9639-5 10.1016/j.renene.2021.07.070 10.1016/j.procs.2022.08.084 10.3390/en15207595 10.1016/j.solmat.2020.110874 10.1016/j.matpr.2020.03.646 10.3390/s22218515 10.1080/14786451.2021.1965605 10.1016/j.seta.2022.102110 10.1109/WINCOM55661.2022.9966418 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 Attribution - NonCommercial |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 – notice: Attribution - NonCommercial |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M 1XC VOOES |
DOI | 10.1109/JPHOTOV.2024.3437736 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2156-3403 2156-3381 |
EndPage | 950 |
ExternalDocumentID | oai_HAL_hal_04688823v1 10_1109_JPHOTOV_2024_3437736 10663424 |
Genre | orig-research |
GrantInformation_xml | – fundername: Université Mohammed VI Polytechnique; Mohammed VI Polytechnic University funderid: 10.13039/100016566 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ACIWK AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RIG RNS AAYXX CITATION 7SP 8FD L7M 1XC VOOES |
ID | FETCH-LOGICAL-c213t-8524e59da55014eec90f9b2e6ba97c1c695e4f401b3522f47e8f33b5338b0c173 |
IEDL.DBID | RIE |
ISSN | 2156-3381 2156-3403 |
IngestDate | Sat Nov 23 06:36:24 EST 2024 Fri Oct 25 23:53:56 EDT 2024 Wed Nov 27 13:01:38 EST 2024 Wed Nov 06 05:53:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | image processing Temperature distribution photovoltaic Inspection machine learning (ML) Convolutional neural network (CNN) Solar panels Temperature measurement Support vector machines innovative inspection Accuracy Data models maintenance |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c213t-8524e59da55014eec90f9b2e6ba97c1c695e4f401b3522f47e8f33b5338b0c173 |
ORCID | 0000-0003-4907-4310 0000-0002-1469-9110 0000-0002-4980-4419 0000-0002-0988-1532 |
OpenAccessLink | https://hal.science/hal-04688823 |
PQID | 3120650619 |
PQPubID | 2040418 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3120650619 crossref_primary_10_1109_JPHOTOV_2024_3437736 ieee_primary_10663424 hal_primary_oai_HAL_hal_04688823v1 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of photovoltaics |
PublicationTitleAbbrev | JPHOTOV |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 Dai (ref33) 2021; 34 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 Kulshreshtha (ref32) 2022 ref2 ref1 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Priyam (ref39) 2013; 3 |
References_xml | – ident: ref23 doi: 10.1016/j.enconman.2022.116285 – ident: ref37 doi: 10.1016/j.bcab.2023.102726 – ident: ref4 doi: 10.1016/j.procir.2018.08.318 – ident: ref43 doi: 10.1016/j.energy.2022.125902 – ident: ref6 doi: 10.1002/ese3.1043 – ident: ref26 doi: 10.1002/pip.2975 – ident: ref2 doi: 10.1016/j.erss.2023.102942 – ident: ref20 doi: 10.1016/j.egyr.2019.09.051 – volume: 3 start-page: 334 issue: 2 year: 2013 ident: ref39 article-title: Comparative analysis of decision tree classification algorithms publication-title: Int. J. Curr. Eng. Technol. contributor: fullname: Priyam – ident: ref45 doi: 10.1016/j.envc.2023.100679 – ident: ref15 doi: 10.1016/j.jag.2021.102652 – volume: 34 start-page: 3965 year: 2021 ident: ref33 article-title: CoAtNet: Marrying convolution and attention for all data sizes publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Dai – ident: ref41 doi: 10.1016/j.measurement.2024.114861 – ident: ref7 doi: 10.1016/j.apenergy.2021.117964 – ident: ref49 doi: 10.3390/e23101264 – ident: ref18 doi: 10.1002/jcc.24764 – ident: ref35 doi: 10.1109/DICTA.2016.7797091 – ident: ref44 doi: 10.1016/j.egyr.2024.03.044 – ident: ref13 doi: 10.1016/j.solener.2020.01.055 – ident: ref48 doi: 10.1016/j.compeleceng.2021.107271 – ident: ref14 doi: 10.1016/j.renene.2022.04.046 – ident: ref29 doi: 10.1007/978-981-19-6223-3_83 – ident: ref22 doi: 10.1016/j.energy.2021.120565 – ident: ref12 doi: 10.1109/ACCESS.2022.3194547 – ident: ref17 doi: 10.1016/j.enbuild.2018.01.017 – ident: ref1 doi: 10.1016/j.esr.2020.100493 – ident: ref27 doi: 10.1016/j.agrformet.2008.05.017 – ident: ref40 doi: 10.1007/s10489-020-02106-3 – ident: ref3 doi: 10.3390/drones5040106 – ident: ref16 doi: 10.1016/j.renene.2021.06.086 – ident: ref38 doi: 10.1016/j.compeleceng.2019.03.004 – year: 2022 ident: ref32 article-title: Feature refinement to improve high resolution image inpainting contributor: fullname: Kulshreshtha – ident: ref34 doi: 10.1007/978-3-319-95933-7_71 – ident: ref46 doi: 10.5120/ijca2017915285 – ident: ref24 doi: 10.1016/j.enconman.2023.116978 – ident: ref31 doi: 10.1111/1467-9868.00054 – ident: ref36 doi: 10.1016/j.asoc.2023.110055 – ident: ref11 doi: 10.1109/JPHOTOV.2020.3045680 – ident: ref25 doi: 10.3390/en12183554 – ident: ref19 doi: 10.1007/s12633-017-9639-5 – ident: ref8 doi: 10.1016/j.renene.2021.07.070 – ident: ref42 doi: 10.1016/j.procs.2022.08.084 – ident: ref5 doi: 10.3390/en15207595 – ident: ref30 doi: 10.1016/j.solmat.2020.110874 – ident: ref21 doi: 10.1016/j.matpr.2020.03.646 – ident: ref9 doi: 10.3390/s22218515 – ident: ref28 doi: 10.1080/14786451.2021.1965605 – ident: ref10 doi: 10.1016/j.seta.2022.102110 – ident: ref47 doi: 10.1109/WINCOM55661.2022.9966418 |
SSID | ssj0000605664 |
Score | 2.4009821 |
Snippet | This article proposes a novel approach to photovoltaic panel inspection through the integration of image classification and meteorological data analysis.... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 937 |
SubjectTerms | Accuracy Artificial neural networks Convolutional neural network (CNN) Convolutional neural networks Data analysis Data collection Data models Digital imaging Engineering Sciences Fault detection Image classification Image enhancement Image processing innovative inspection Inspection Machine learning machine learning (ML) maintenance Meteorological data Meteorology Panels photovoltaic Portable equipment Solar energy Solar panels Support vector machines Temperature distribution Temperature measurement |
Title | Data-Driven Digital Inspection of Photovoltaic Panels Using a Portable Hybrid Model Combining Meteorological Data and Image Processing |
URI | https://ieeexplore.ieee.org/document/10663424 https://www.proquest.com/docview/3120650619 https://hal.science/hal-04688823 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbYnuDAs4iFUlmIq4tfieNj1W2VIqArURC3yK_QSiVB2ywSf4Df3Rknu62EOHCLIsex9Hle9nwzhLz1vPAygQCKwnGmnffMShOZ8lEbWbWBC-QO15_Np2_V4hjL5LAtFyallJPP0gE-5rv82Ic1HpWBhIN91FLPyMzYaiRrbQ9UODjmZS4XBVasZBB6iYkqJ7h9935Zn52ffYWAUOoDpZUxuSjzrSmaXWAiZO6w8pdazrbm5NF_rvIxeTg5lfRw3AVPyL3UPSUP7pQafEb-LNzg2GKFyo0uLr9jrxB62o1Ey76jfUuXF_3Qg7Ya3GWgS9eB1aQ5o4A6mhNO_VWi9W-keFFsoXZFQZn43GCCfgTfu19tFCnFn1HXRXr6A_QVndgIMHCXfDk5Pj-q2dSDgQUp1MCqQupU2OgKvIBMKVjeWkTXO2uCCKUtkm4hSPPoybXapKpVyoMTWXkehFHPyU7Xd-kFoVyBLgiujG2AmQpXtV7GKhkTylbG4OaEbeBofo6lNpoconDbTPA1CF8zwTcnbwCz7VCsk10ffmjwHQT9ENlL9UvMyS4idGfCEZw52dtg3ExSe90oIdFjhZjy5T8-e0Xu4xJGMuIe2RlW6_SazK7jej_vxhucUNx4 |
link.rule.ids | 230,315,782,786,798,887,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbYcgAOlEcrFgpYiKtLYjtxcqy6rbKwbVdiQdwiP9tKbVJts5X4A_xuZpzsUglx4BZFjmPp87zs-WYI-WiSzHAPAphmOmFSG8NKrhwTxknFi2CTFLnD1Vd1-qOYHGGZHLbhwnjvY_KZ38fHeJfvWrvCozKQcLCPkssReZhJlauerrU5UknANc9jwSiwYzmD4CsdyHJpUn76PK_OFmffISTkcl9IoVQsy_zHGI0uMBUy9lj5SzFHa3O8_Z_rfEaeDm4lPej3wXPywDcvyJN7xQZfkl8T3Wk2WaJ6o5PLc-wWQqdNT7VsG9oGOr9ouxb0VacvLZ3rBuwmjTkFVNOYcmquPK1-IsmLYhO1KwrqxMQWE_QEvO92uValFH9GdePo9Bo0Fh34CDBwh3w7PlocVmzowsAsT0XHioxLn5VOZ3gF6b0tk1AivkaXyqY2LzMvA4RpBn25IJUvghAG3MjCJDZVYpdsNW3jXxGaCNAGVucuWJgp00Uw3BVeKZsH7qweE7aGo77pi23UMUhJynqAr0b46gG-MfkAmG2GYqXs6mBW4zsI-yG25-IuHZMdROjehD04Y7K3xrge5Pa2FilHnxWiytf_-Ow9eVQtTmb1bHr65Q15jMvpqYl7ZKtbrvxbMrp1q3dxZ_4GXCLfyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Digital+Inspection+of+Photovoltaic+Panels+Using+a+Portable+Hybrid+Model+Combining+Meteorological+Data+and+Image+Processing&rft.jtitle=IEEE+journal+of+photovoltaics&rft.au=Oufadel%2C+Ayoub&rft.au=Azouzoute%2C+Alae&rft.au=Ghennioui%2C+Hicham&rft.au=Soubai%2C+Chaimae&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=2156-3381&rft.volume=14&rft.issue=6&rft.spage=937&rft.epage=950&rft_id=info:doi/10.1109%2FJPHOTOV.2024.3437736&rft.externalDocID=10663424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3381&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3381&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3381&client=summon |