Effect of Particle Size Distribution on Laser Powder Bed Fusion Manufacturability of Copper

One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels whic...

Full description

Saved in:
Bibliographic Details
Published in:BHM. Berg- und hüttenmännische Monatshefte Vol. 166; no. 5; pp. 256 - 262
Main Authors: Bonesso, Massimiliano, Rebesan, Pietro, Gennari, Claudio, Mancin, Simone, Dima, Razvan, Pepato, Adriano, Calliari, Irene
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts. In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.
AbstractList One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts. In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.
One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.
One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts. In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation. Einer der Hauptvorteile der LPBF-Technologie (Laser Powder Bed Fusion) ist die Möglichkeit, komplexe Geometrien und Merkmale in nur einem Produktionsschritt herzustellen. Insbesondere im Fall von Wärmetauschern ist dies sehr praktisch für die Herstellung von konformen Kühlkanälen, die die Leistung der Wärmeübertragungsfähigkeit verbessern können. Das Erhalten von dichten Kupferteilen, die über LPBF gedruckt werden, stellt jedoch zwei Hauptprobleme dar: das hohe Reflexionsvermögen von 1 μm (die Wellenlänge üblicherweise verwendeter Laserquellen) und die hohe Wärmeleitfähigkeit von Kupfer, die die maximal erreichbare lokale Temperatur begrenzt. Dies führt zur Bildung poröser Teile. In diesem Beitrag wird der Einfluss der Partikelgrößenverteilung des Pulvers auf die physikalischen und mechanischen Eigenschaften von über LPBF hergestellten Teilen untersucht. In dieser Studie werden drei Kupferpulverchargen mit unterschiedlichen Partikelgrößenverteilungen verwendet. Der Einfluss von zwei Laser-Scan-Parametern (Scan-Geschwindigkeit und Schraffurabstand) auf die Verdichtung und der Einfluss von Kontur-Scans auf die Rauheit der Seitenoberfläche wird angegeben. Anschließend werden mit den optimalen Prozessparametern hergestellte Proben zur Bewertung der thermischen und mechanischen Eigenschaften getestet.
Author Mancin, Simone
Pepato, Adriano
Rebesan, Pietro
Gennari, Claudio
Dima, Razvan
Calliari, Irene
Bonesso, Massimiliano
Author_xml – sequence: 1
  givenname: Massimiliano
  surname: Bonesso
  fullname: Bonesso, Massimiliano
  email: massimiliano.bonesso@pd.infn.it
  organization: National Institute for Nuclear Physics (INFN)—Padova Division, Department of Industrial Engineering (DII), University of Padua
– sequence: 2
  givenname: Pietro
  surname: Rebesan
  fullname: Rebesan, Pietro
  organization: National Institute for Nuclear Physics (INFN)—Padova Division, Department of Mechanical Engineering, Politecnico di Milano
– sequence: 3
  givenname: Claudio
  surname: Gennari
  fullname: Gennari, Claudio
  organization: Department of Industrial Engineering (DII), University of Padua
– sequence: 4
  givenname: Simone
  surname: Mancin
  fullname: Mancin, Simone
  organization: Department of Management and Engineering (DTG), University of Padua
– sequence: 5
  givenname: Razvan
  surname: Dima
  fullname: Dima, Razvan
  organization: National Institute for Nuclear Physics (INFN)—Padova Division
– sequence: 6
  givenname: Adriano
  surname: Pepato
  fullname: Pepato, Adriano
  organization: National Institute for Nuclear Physics (INFN)—Padova Division
– sequence: 7
  givenname: Irene
  surname: Calliari
  fullname: Calliari, Irene
  organization: Department of Industrial Engineering (DII), University of Padua
BookMark eNp9kE9Lw0AQxRdRsK1-AU8Bz9HZyZ9NjlpbFSoW1JOHZZPMypaajbsJUj-9WyN4E2Z4h_m9N_Cm7LC1LTF2xuGCA4hLD5ABjwHDcg4ihgM24TlPYpEl_JBNIABxUXI8ZlPvNwBpIkQ5Ya8LranuI6ujtXK9qbcUPZkvim6M752pht7YNgqzUp5ctLafTZBraqLl4PenB9UOWtX94FRltqbf7aPmtuvInbAjrbaeTn91xl6Wi-f5Xbx6vL2fX63iGqGAmBcKsGmSIhFYYVoWkCIRiRrrRkPO81KTSlIAqiiwFWYEmJcoSAuV8SqZsfMxt3P2YyDfy40dXBteSsywKFIskQcKR6p21ntHWnbOvCu3kxzkvkQ5lihDifKnRAnBlIwmH-D2jdxf9D-ub4cudYc
CitedBy_id crossref_primary_10_1007_s00170_022_10408_8
crossref_primary_10_1016_j_actamat_2024_119685
crossref_primary_10_1016_j_addma_2023_103828
crossref_primary_10_1016_j_optlastec_2022_107880
crossref_primary_10_1108_RPJ_09_2022_0290
crossref_primary_10_3390_jmmp7040151
crossref_primary_10_1016_j_icheatmasstransfer_2022_106128
crossref_primary_10_1109_TPS_2022_3162902
crossref_primary_10_3390_jfb14100521
crossref_primary_10_1088_1742_6596_2766_1_012184
crossref_primary_10_3390_jmmp6050102
crossref_primary_10_3390_ma15196556
crossref_primary_10_1016_j_heliyon_2023_e23202
crossref_primary_10_1016_j_compositesa_2024_108194
crossref_primary_10_1016_j_ijfatigue_2023_107775
crossref_primary_10_1007_s12289_023_01755_2
crossref_primary_10_1108_RPJ_03_2021_0055
crossref_primary_10_1007_s00170_023_12338_5
crossref_primary_10_3390_ma14174892
crossref_primary_10_1016_j_addma_2024_104145
crossref_primary_10_1016_j_matdes_2023_112023
Cites_doi 10.1016/B978-0-08-100433-3.00002-6
10.1007/s00170-019-04015-3
10.1063/1.4935926
10.1016/j.jmatprotec.2019.02.022
10.1007/s11663-004-0088-3
10.3390/ma12152469
10.1108/13552541211193520
10.1007/s40964-019-00078-6
10.2514/6.2019-4228
10.1016/j.jpcs.2011.11.033
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00501-021-01107-0
DatabaseName SpringerOpen
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Wirkung der Verteilung der Partikelgrösse auf die Herstellbarkeit von Kupfer im Laserpulverbett
EISSN 1613-7531
EndPage 262
ExternalDocumentID 10_1007_s00501_021_01107_0
GrantInformation_xml – fundername: Università degli Studi di Padova
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHACP
AHAVH
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
C6C
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9P
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c2080-18a02dd38372b2498042eee7c2cdf06169fea3400ebe18ab25e026927ef7a51b3
IEDL.DBID AEJHL
ISSN 0005-8912
IngestDate Thu Oct 10 18:07:20 EDT 2024
Thu Nov 21 21:36:55 EST 2024
Sat Dec 16 12:09:42 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Particle Size Distribution
Porosität
Additive Manufacturing
Laser Powder Bed Fusion
Porosity
Copper
Laser Pulverbettfusion
Kupfer
Partikelgrößenverteilung
Additive Fertigung
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2080-18a02dd38372b2498042eee7c2cdf06169fea3400ebe18ab25e026927ef7a51b3
OpenAccessLink http://link.springer.com/10.1007/s00501-021-01107-0
PQID 2528842921
PQPubID 2044402
PageCount 7
ParticipantIDs proquest_journals_2528842921
crossref_primary_10_1007_s00501_021_01107_0
springer_journals_10_1007_s00501_021_01107_0
PublicationCentury 2000
PublicationDate 5-2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 5-2021
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle BHM. Berg- und hüttenmännische Monatshefte
PublicationTitleAbbrev Berg Huettenmaenn Monatsh
PublicationYear 2021
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Heussen, D.; Meiners, W.: Green Light for New 3D Printing Process, (2017), https://www.ilt.fraunhofer.de/en/press/press-releases/press-release-2017/press-release-2017-08-30.html (16.02.2021)
Chapman, D.: High Conductivity Coppers for Electrical Engineering, Copper Development Association Publication No 122, European Copper Institute Publication No Cu023, 2016, pp 1–30
VincentCSilvainJFHeintzJMChandraNEffect of porosity on the thermal conductivity of copper processed by powder metallurgyJournal of Physics and Chemistry of Solids20127349950410.1016/j.jpcs.2011.11.033
KhanMDickensPSelective laser melting (SLM) of gold (Au)Rapid Prototyping Journal201218819410.1108/13552541211193520
Gradl, P. R.; Protz, C. S.; Cooper, K.; Ellis, D.; Evans, L. J.; Garcia, C.: GRCop-42 Development and Hot-fire Testing Using Additive Manufacturing Powder Bed Fusion for Channel-cooled Combustion Chambers, in: AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, USA 2019
LideDRCRC Handbook of Chemistry and Physics, Internet Version 20052005Boca RatonCRC Press756812
ZinkleSJApplicability of copper alloys for DEMO high heat flux componentsPhysica Scripta20162016T167
JadhavSDVleugelsJKruthJVan HumbeeckJVanmeenselKMechanical and electrical properties of selective laser melted parts produced from surface oxidized copper powderMaterial Design & Processing Communications20192e94
VockSKlödenBKirchnerAWeißgärberTKiebackBPowders for powder bed fusion: a reviewProgress in Additive Manufacturing2019438339710.1007/s40964-019-00078-6
KingWEAndersonATFerenczRMHodgeNEKamathCKhairallahSARubenchikAMLaser powder-bed fusion additive manufacturing of metals; physics, computational, and materials challengesApplied Physics Reviews20152041304461506
ColopiMDemirAGCaprioLPrevitaliBLimits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laserInternational Journal of Advanced Manufacturing Technology20191042473248610.1007/s00170-019-04015-3
SunSBrandtMEastonMBrandtMPowder bed fusion processesLaser additive manufacturing: materials, design, technologies, and applications20171557710.1016/B978-0-08-100433-3.00002-6
Trevisan, F.; Calignano, F.; Lorusso, M.; Lombardi, M.; Manfredi, D.; Fino, P.: Selective laser melting of chemical pure copper powders, in: Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, Milan, Italy, 2017
ISO/ASTM 52900: Standard Terminology for Additive Manufacturing—General Principles—Terminology, ASTM International, 2015
JadhavSDDadbakhshSGoossensLKruthJPVan HumbeeckJVanmeenselKInfluence of selective laser melting process parameters on texture evolution in pure copperJournal of Materials Processing Technology2019270475810.1016/j.jmatprotec.2019.02.022
JadhavSDDadbakhshSVleugelsJHofkensJVan PuyveldePYangSKruthJPVan HumbeeckJVanmeenselKInfluence of carbon nanoparticle addition (and impurities) on selective laser melting of pure copperMaterials20191215246910.3390/ma12152469
YapCYChuaCKDongZLLiuZHZhangDQLohLESingSLReview of selective laser melting: Materials and applicationsApplied Physics Reviews2015204110110.1063/1.4935926
SimchiAThe role of particle size on the laser sintering of iron powderMetallurgical and Materials Transactions B20043593794810.1007/s11663-004-0088-3
TranTQChinnappanALeeJKYLocNHTranLTWangGKumarVVJayathilakaWADMJiDDoddamaniMRamakrishnaS3D printing of highly pure copperMetals201991220
Sinico, M.; Cogo, G.; Benettoni, M.; Calliari, I.; Pepato, A.: Influence of powder particle size distribution on the printability of pure copper for selective laser melting, in: 30th Annual International Solid Freeform Fabrication Symposium, Austin, Texas, USA 2019, pp 657–667
(1107_CR17) 2005
TQ Tran (1107_CR3) 2019; 9
M Colopi (1107_CR6) 2019; 104
SD Jadhav (1107_CR10) 2019; 2
S Vock (1107_CR15) 2019; 4
1107_CR4
1107_CR1
A Simchi (1107_CR13) 2004; 35
WE King (1107_CR14) 2015; 2
SJ Zinkle (1107_CR5) 2016; 2016
CY Yap (1107_CR2) 2015; 2
SD Jadhav (1107_CR8) 2019; 270
S Sun (1107_CR16) 2017
1107_CR9
1107_CR7
SD Jadhav (1107_CR19) 2019; 12
1107_CR12
M Khan (1107_CR11) 2012; 18
1107_CR18
C Vincent (1107_CR20) 2012; 73
References_xml – volume: 2016
  start-page: T167
  year: 2016
  ident: 1107_CR5
  publication-title: Physica Scripta
  contributor:
    fullname: SJ Zinkle
– ident: 1107_CR12
– volume: 2
  start-page: 461
  issue: 041304
  year: 2015
  ident: 1107_CR14
  publication-title: Applied Physics Reviews
  contributor:
    fullname: WE King
– ident: 1107_CR7
– start-page: 756
  volume-title: CRC Handbook of Chemistry and Physics, Internet Version 2005
  year: 2005
  ident: 1107_CR17
– ident: 1107_CR9
– start-page: 55
  volume-title: Laser additive manufacturing: materials, design, technologies, and applications
  year: 2017
  ident: 1107_CR16
  doi: 10.1016/B978-0-08-100433-3.00002-6
  contributor:
    fullname: S Sun
– volume: 104
  start-page: 2473
  year: 2019
  ident: 1107_CR6
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-04015-3
  contributor:
    fullname: M Colopi
– volume: 2
  start-page: 041101
  year: 2015
  ident: 1107_CR2
  publication-title: Applied Physics Reviews
  doi: 10.1063/1.4935926
  contributor:
    fullname: CY Yap
– volume: 2
  start-page: e94
  year: 2019
  ident: 1107_CR10
  publication-title: Material Design & Processing Communications
  contributor:
    fullname: SD Jadhav
– ident: 1107_CR1
– volume: 270
  start-page: 47
  year: 2019
  ident: 1107_CR8
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2019.02.022
  contributor:
    fullname: SD Jadhav
– volume: 35
  start-page: 937
  year: 2004
  ident: 1107_CR13
  publication-title: Metallurgical and Materials Transactions B
  doi: 10.1007/s11663-004-0088-3
  contributor:
    fullname: A Simchi
– volume: 12
  start-page: 2469
  issue: 15
  year: 2019
  ident: 1107_CR19
  publication-title: Materials
  doi: 10.3390/ma12152469
  contributor:
    fullname: SD Jadhav
– volume: 18
  start-page: 81
  year: 2012
  ident: 1107_CR11
  publication-title: Rapid Prototyping Journal
  doi: 10.1108/13552541211193520
  contributor:
    fullname: M Khan
– volume: 4
  start-page: 383
  year: 2019
  ident: 1107_CR15
  publication-title: Progress in Additive Manufacturing
  doi: 10.1007/s40964-019-00078-6
  contributor:
    fullname: S Vock
– ident: 1107_CR18
– ident: 1107_CR4
  doi: 10.2514/6.2019-4228
– volume: 9
  start-page: 12
  year: 2019
  ident: 1107_CR3
  publication-title: Metals
  contributor:
    fullname: TQ Tran
– volume: 73
  start-page: 499
  year: 2012
  ident: 1107_CR20
  publication-title: Journal of Physics and Chemistry of Solids
  doi: 10.1016/j.jpcs.2011.11.033
  contributor:
    fullname: C Vincent
SSID ssj0043779
Score 2.182856
Snippet One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 256
SubjectTerms Copper
Densification
Earth and Environmental Science
Earth Sciences
Heat exchangers
Lasers
Manufacturability
Mechanical properties
Mineral Resources
Originalarbeit
Particle size
Particle size distribution
Physical properties
Powder beds
Process parameters
Surface roughness
Thermal conductivity
Thermodynamic properties
Title Effect of Particle Size Distribution on Laser Powder Bed Fusion Manufacturability of Copper
URI https://link.springer.com/article/10.1007/s00501-021-01107-0
https://www.proquest.com/docview/2528842921
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60vejBt1itsgdvGmk22WZzrG1jlSqFVhA8hE0zARGSkhpEf72zebQqelBY2EOWJczM7sw3y3wDcBo4UolAOYZwBRq2dG3dyF0ZSN5QRZZybcxTF2Pn7kH2-pomx1qkLuLni-pFMr-oF7VumqmEkC_X6NfU-bVVqJPvEWTc9U7_ZjCsLmBbc-gVUa8wpGvyslbm512--qNlkPntXTR3N97mv350CzbK6JJ1CnPYhhWMd2D9E-fgLjwWfMUsidioNBs2fnpH1tMUumX3K0ZjSP4tZaPkNaTpEkPmZTqzxm5VnOlyiCwtKL7f9FbdZDbDdA_uvf6kOzDKDgvGlFOoaJhStXgYapTKAwJiko4wIjpTPg0j8vRtN0Jl0TEnVdPagAskzOZyByNHCTOw9qEWJzEeAONti5ClmkpOACyQWtGuRIE6eueR6zTgrJKzPyuINPwFZXIuMp9E5uci81sNaFaq8MtDNfe54FLq9lpmA84r2S8__77b4d-WH8EaL9RHowm1lzTDY1idh9lJaWp6vp5ceR_S5cvX
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH32K16h68aaDZJM3mWPugYlsKrdDiIWySCXhJSmoQ_fXO5tGq6EFhIYcsQ5jZ3ZlvNvMNwLVnC2l50tYsx0LNFI6pGrlLDckbytCQjolZ6mJij2ai01U0OWZZC5P97V5eSWYn9arYTVGVEPTlCv7qKsG2CVXFds4rUG3N5vNOeQKbikQvD3stTTg6L4plfpby1SGto8xvF6OZv-nt_e9L92G3iC9ZK18QB7CB0SHsfGIdPIKnnLGYxSEbFwuHTZ7fkXUUiW7R_4rRGJCHS9g4fg3ocYcB66Uqt8aGMkpVQUSa5CTfb0pUO14sMDmGx1532u5rRY8FzecULGq6kA0eBAqnco-gmKBNjIi2z_0gJF_fdEKUBm10MjbN9biFhNocbmNoS0v3jBOoRHGEp8B40yBsKX3BCYJ5QpnaEWihit956Ng1uCkV7S5yKg13RZqcqcwllbmZytxGDeqlLdxiWy1dbnEhVIMtvQa3pe7Xr3-Xdva36Vew1Z8OB-7gfvRwDts8NyWNOlRekhQvYHMZpJfFuvsACN7Oew
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BdGDb7FadQ_eNLTZJs3mWNtGi7UUWkHwEDbNBLwkIW0Q_fXO5tGq6EGEhRyyLGFmdme-2cw3AJeeJaTpSUszbRM1Q9iGauQuNSRvKIOWtA3MUhcTa_Qken1Fk7Os4s_-di-vJPOaBsXSFC4asR80loVviraEYDBXUFhXybZ1qKq0mFGBamcwvXXK09hQhHp5CGxqwtZ5UTjz8ypfndMq4vx2SZr5Hmfn_1-9C9tF3Mk6uaHswRqG-7D1iY3wAJ5zJmMWBWxcGBSbvLwj6yly3aIvFqMxJM-XsHH06tPjBn3mpCrnxh5kmKpCiTTJyb_f1FLdKI4xOYRHpz_t3mlF7wVtximI1HQhm9z3FX7lHkE0QZsbEa0Zn_kBxQBtO0DZogOAjIDmetxEQnM2tzCwpKl7rSOohFGIx8B4m_TSljPBCZp5QpmALdBEFdfzwLZqcFUK3Y1zig13SaacicwlkbmZyNxmDeqlXtxiu81dbnIhVOMtvQbXpR5Wr39f7eRv0y9gY9xz3OFgdH8KmzzXJI06VBZJimewPvfT88IEPwBxS9cS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Particle+Size+Distribution+on+Laser+Powder+Bed+Fusion+Manufacturability+of+Copper&rft.jtitle=BHM.+Berg-+und+h%C3%BCttenm%C3%A4nnische+Monatshefte&rft.au=Bonesso%2C+Massimiliano&rft.au=Rebesan%2C+Pietro&rft.au=Gennari%2C+Claudio&rft.au=Mancin%2C+Simone&rft.date=2021-01-01&rft.pub=Springer+Vienna&rft.issn=0005-8912&rft.eissn=1613-7531&rft.volume=166&rft.issue=5&rft.spage=256&rft.epage=262&rft_id=info:doi/10.1007%2Fs00501-021-01107-0&rft.externalDocID=10_1007_s00501_021_01107_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-8912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-8912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-8912&client=summon