Effect of Particle Size Distribution on Laser Powder Bed Fusion Manufacturability of Copper
One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels whic...
Saved in:
Published in: | BHM. Berg- und hüttenmännische Monatshefte Vol. 166; no. 5; pp. 256 - 262 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Vienna
Springer Vienna
2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.
In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation. |
---|---|
AbstractList | One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.
In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation. One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation. One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts. In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation. Einer der Hauptvorteile der LPBF-Technologie (Laser Powder Bed Fusion) ist die Möglichkeit, komplexe Geometrien und Merkmale in nur einem Produktionsschritt herzustellen. Insbesondere im Fall von Wärmetauschern ist dies sehr praktisch für die Herstellung von konformen Kühlkanälen, die die Leistung der Wärmeübertragungsfähigkeit verbessern können. Das Erhalten von dichten Kupferteilen, die über LPBF gedruckt werden, stellt jedoch zwei Hauptprobleme dar: das hohe Reflexionsvermögen von 1 μm (die Wellenlänge üblicherweise verwendeter Laserquellen) und die hohe Wärmeleitfähigkeit von Kupfer, die die maximal erreichbare lokale Temperatur begrenzt. Dies führt zur Bildung poröser Teile. In diesem Beitrag wird der Einfluss der Partikelgrößenverteilung des Pulvers auf die physikalischen und mechanischen Eigenschaften von über LPBF hergestellten Teilen untersucht. In dieser Studie werden drei Kupferpulverchargen mit unterschiedlichen Partikelgrößenverteilungen verwendet. Der Einfluss von zwei Laser-Scan-Parametern (Scan-Geschwindigkeit und Schraffurabstand) auf die Verdichtung und der Einfluss von Kontur-Scans auf die Rauheit der Seitenoberfläche wird angegeben. Anschließend werden mit den optimalen Prozessparametern hergestellte Proben zur Bewertung der thermischen und mechanischen Eigenschaften getestet. |
Author | Mancin, Simone Pepato, Adriano Rebesan, Pietro Gennari, Claudio Dima, Razvan Calliari, Irene Bonesso, Massimiliano |
Author_xml | – sequence: 1 givenname: Massimiliano surname: Bonesso fullname: Bonesso, Massimiliano email: massimiliano.bonesso@pd.infn.it organization: National Institute for Nuclear Physics (INFN)—Padova Division, Department of Industrial Engineering (DII), University of Padua – sequence: 2 givenname: Pietro surname: Rebesan fullname: Rebesan, Pietro organization: National Institute for Nuclear Physics (INFN)—Padova Division, Department of Mechanical Engineering, Politecnico di Milano – sequence: 3 givenname: Claudio surname: Gennari fullname: Gennari, Claudio organization: Department of Industrial Engineering (DII), University of Padua – sequence: 4 givenname: Simone surname: Mancin fullname: Mancin, Simone organization: Department of Management and Engineering (DTG), University of Padua – sequence: 5 givenname: Razvan surname: Dima fullname: Dima, Razvan organization: National Institute for Nuclear Physics (INFN)—Padova Division – sequence: 6 givenname: Adriano surname: Pepato fullname: Pepato, Adriano organization: National Institute for Nuclear Physics (INFN)—Padova Division – sequence: 7 givenname: Irene surname: Calliari fullname: Calliari, Irene organization: Department of Industrial Engineering (DII), University of Padua |
BookMark | eNp9kE9Lw0AQxRdRsK1-AU8Bz9HZyZ9NjlpbFSoW1JOHZZPMypaajbsJUj-9WyN4E2Z4h_m9N_Cm7LC1LTF2xuGCA4hLD5ABjwHDcg4ihgM24TlPYpEl_JBNIABxUXI8ZlPvNwBpIkQ5Ya8LranuI6ujtXK9qbcUPZkvim6M752pht7YNgqzUp5ctLafTZBraqLl4PenB9UOWtX94FRltqbf7aPmtuvInbAjrbaeTn91xl6Wi-f5Xbx6vL2fX63iGqGAmBcKsGmSIhFYYVoWkCIRiRrrRkPO81KTSlIAqiiwFWYEmJcoSAuV8SqZsfMxt3P2YyDfy40dXBteSsywKFIskQcKR6p21ntHWnbOvCu3kxzkvkQ5lihDifKnRAnBlIwmH-D2jdxf9D-ub4cudYc |
CitedBy_id | crossref_primary_10_1007_s00170_022_10408_8 crossref_primary_10_1016_j_actamat_2024_119685 crossref_primary_10_1016_j_addma_2023_103828 crossref_primary_10_1016_j_optlastec_2022_107880 crossref_primary_10_1108_RPJ_09_2022_0290 crossref_primary_10_3390_jmmp7040151 crossref_primary_10_1016_j_icheatmasstransfer_2022_106128 crossref_primary_10_1109_TPS_2022_3162902 crossref_primary_10_3390_jfb14100521 crossref_primary_10_1088_1742_6596_2766_1_012184 crossref_primary_10_3390_jmmp6050102 crossref_primary_10_3390_ma15196556 crossref_primary_10_1016_j_heliyon_2023_e23202 crossref_primary_10_1016_j_compositesa_2024_108194 crossref_primary_10_1016_j_ijfatigue_2023_107775 crossref_primary_10_1007_s12289_023_01755_2 crossref_primary_10_1108_RPJ_03_2021_0055 crossref_primary_10_1007_s00170_023_12338_5 crossref_primary_10_3390_ma14174892 crossref_primary_10_1016_j_addma_2024_104145 crossref_primary_10_1016_j_matdes_2023_112023 |
Cites_doi | 10.1016/B978-0-08-100433-3.00002-6 10.1007/s00170-019-04015-3 10.1063/1.4935926 10.1016/j.jmatprotec.2019.02.022 10.1007/s11663-004-0088-3 10.3390/ma12152469 10.1108/13552541211193520 10.1007/s40964-019-00078-6 10.2514/6.2019-4228 10.1016/j.jpcs.2011.11.033 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00501-021-01107-0 |
DatabaseName | SpringerOpen CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Wirkung der Verteilung der Partikelgrösse auf die Herstellbarkeit von Kupfer im Laserpulverbett |
EISSN | 1613-7531 |
EndPage | 262 |
ExternalDocumentID | 10_1007_s00501_021_01107_0 |
GrantInformation_xml | – fundername: Università degli Studi di Padova |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHACP AHAVH AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA C6C CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM P9P PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 ZMTXR ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c2080-18a02dd38372b2498042eee7c2cdf06169fea3400ebe18ab25e026927ef7a51b3 |
IEDL.DBID | AEJHL |
ISSN | 0005-8912 |
IngestDate | Thu Oct 10 18:07:20 EDT 2024 Thu Nov 21 21:36:55 EST 2024 Sat Dec 16 12:09:42 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Particle Size Distribution Porosität Additive Manufacturing Laser Powder Bed Fusion Porosity Copper Laser Pulverbettfusion Kupfer Partikelgrößenverteilung Additive Fertigung |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2080-18a02dd38372b2498042eee7c2cdf06169fea3400ebe18ab25e026927ef7a51b3 |
OpenAccessLink | http://link.springer.com/10.1007/s00501-021-01107-0 |
PQID | 2528842921 |
PQPubID | 2044402 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2528842921 crossref_primary_10_1007_s00501_021_01107_0 springer_journals_10_1007_s00501_021_01107_0 |
PublicationCentury | 2000 |
PublicationDate | 5-2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 5-2021 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Heidelberg |
PublicationTitle | BHM. Berg- und hüttenmännische Monatshefte |
PublicationTitleAbbrev | Berg Huettenmaenn Monatsh |
PublicationYear | 2021 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | Heussen, D.; Meiners, W.: Green Light for New 3D Printing Process, (2017), https://www.ilt.fraunhofer.de/en/press/press-releases/press-release-2017/press-release-2017-08-30.html (16.02.2021) Chapman, D.: High Conductivity Coppers for Electrical Engineering, Copper Development Association Publication No 122, European Copper Institute Publication No Cu023, 2016, pp 1–30 VincentCSilvainJFHeintzJMChandraNEffect of porosity on the thermal conductivity of copper processed by powder metallurgyJournal of Physics and Chemistry of Solids20127349950410.1016/j.jpcs.2011.11.033 KhanMDickensPSelective laser melting (SLM) of gold (Au)Rapid Prototyping Journal201218819410.1108/13552541211193520 Gradl, P. R.; Protz, C. S.; Cooper, K.; Ellis, D.; Evans, L. J.; Garcia, C.: GRCop-42 Development and Hot-fire Testing Using Additive Manufacturing Powder Bed Fusion for Channel-cooled Combustion Chambers, in: AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, USA 2019 LideDRCRC Handbook of Chemistry and Physics, Internet Version 20052005Boca RatonCRC Press756812 ZinkleSJApplicability of copper alloys for DEMO high heat flux componentsPhysica Scripta20162016T167 JadhavSDVleugelsJKruthJVan HumbeeckJVanmeenselKMechanical and electrical properties of selective laser melted parts produced from surface oxidized copper powderMaterial Design & Processing Communications20192e94 VockSKlödenBKirchnerAWeißgärberTKiebackBPowders for powder bed fusion: a reviewProgress in Additive Manufacturing2019438339710.1007/s40964-019-00078-6 KingWEAndersonATFerenczRMHodgeNEKamathCKhairallahSARubenchikAMLaser powder-bed fusion additive manufacturing of metals; physics, computational, and materials challengesApplied Physics Reviews20152041304461506 ColopiMDemirAGCaprioLPrevitaliBLimits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laserInternational Journal of Advanced Manufacturing Technology20191042473248610.1007/s00170-019-04015-3 SunSBrandtMEastonMBrandtMPowder bed fusion processesLaser additive manufacturing: materials, design, technologies, and applications20171557710.1016/B978-0-08-100433-3.00002-6 Trevisan, F.; Calignano, F.; Lorusso, M.; Lombardi, M.; Manfredi, D.; Fino, P.: Selective laser melting of chemical pure copper powders, in: Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, Milan, Italy, 2017 ISO/ASTM 52900: Standard Terminology for Additive Manufacturing—General Principles—Terminology, ASTM International, 2015 JadhavSDDadbakhshSGoossensLKruthJPVan HumbeeckJVanmeenselKInfluence of selective laser melting process parameters on texture evolution in pure copperJournal of Materials Processing Technology2019270475810.1016/j.jmatprotec.2019.02.022 JadhavSDDadbakhshSVleugelsJHofkensJVan PuyveldePYangSKruthJPVan HumbeeckJVanmeenselKInfluence of carbon nanoparticle addition (and impurities) on selective laser melting of pure copperMaterials20191215246910.3390/ma12152469 YapCYChuaCKDongZLLiuZHZhangDQLohLESingSLReview of selective laser melting: Materials and applicationsApplied Physics Reviews2015204110110.1063/1.4935926 SimchiAThe role of particle size on the laser sintering of iron powderMetallurgical and Materials Transactions B20043593794810.1007/s11663-004-0088-3 TranTQChinnappanALeeJKYLocNHTranLTWangGKumarVVJayathilakaWADMJiDDoddamaniMRamakrishnaS3D printing of highly pure copperMetals201991220 Sinico, M.; Cogo, G.; Benettoni, M.; Calliari, I.; Pepato, A.: Influence of powder particle size distribution on the printability of pure copper for selective laser melting, in: 30th Annual International Solid Freeform Fabrication Symposium, Austin, Texas, USA 2019, pp 657–667 (1107_CR17) 2005 TQ Tran (1107_CR3) 2019; 9 M Colopi (1107_CR6) 2019; 104 SD Jadhav (1107_CR10) 2019; 2 S Vock (1107_CR15) 2019; 4 1107_CR4 1107_CR1 A Simchi (1107_CR13) 2004; 35 WE King (1107_CR14) 2015; 2 SJ Zinkle (1107_CR5) 2016; 2016 CY Yap (1107_CR2) 2015; 2 SD Jadhav (1107_CR8) 2019; 270 S Sun (1107_CR16) 2017 1107_CR9 1107_CR7 SD Jadhav (1107_CR19) 2019; 12 1107_CR12 M Khan (1107_CR11) 2012; 18 1107_CR18 C Vincent (1107_CR20) 2012; 73 |
References_xml | – volume: 2016 start-page: T167 year: 2016 ident: 1107_CR5 publication-title: Physica Scripta contributor: fullname: SJ Zinkle – ident: 1107_CR12 – volume: 2 start-page: 461 issue: 041304 year: 2015 ident: 1107_CR14 publication-title: Applied Physics Reviews contributor: fullname: WE King – ident: 1107_CR7 – start-page: 756 volume-title: CRC Handbook of Chemistry and Physics, Internet Version 2005 year: 2005 ident: 1107_CR17 – ident: 1107_CR9 – start-page: 55 volume-title: Laser additive manufacturing: materials, design, technologies, and applications year: 2017 ident: 1107_CR16 doi: 10.1016/B978-0-08-100433-3.00002-6 contributor: fullname: S Sun – volume: 104 start-page: 2473 year: 2019 ident: 1107_CR6 publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-04015-3 contributor: fullname: M Colopi – volume: 2 start-page: 041101 year: 2015 ident: 1107_CR2 publication-title: Applied Physics Reviews doi: 10.1063/1.4935926 contributor: fullname: CY Yap – volume: 2 start-page: e94 year: 2019 ident: 1107_CR10 publication-title: Material Design & Processing Communications contributor: fullname: SD Jadhav – ident: 1107_CR1 – volume: 270 start-page: 47 year: 2019 ident: 1107_CR8 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2019.02.022 contributor: fullname: SD Jadhav – volume: 35 start-page: 937 year: 2004 ident: 1107_CR13 publication-title: Metallurgical and Materials Transactions B doi: 10.1007/s11663-004-0088-3 contributor: fullname: A Simchi – volume: 12 start-page: 2469 issue: 15 year: 2019 ident: 1107_CR19 publication-title: Materials doi: 10.3390/ma12152469 contributor: fullname: SD Jadhav – volume: 18 start-page: 81 year: 2012 ident: 1107_CR11 publication-title: Rapid Prototyping Journal doi: 10.1108/13552541211193520 contributor: fullname: M Khan – volume: 4 start-page: 383 year: 2019 ident: 1107_CR15 publication-title: Progress in Additive Manufacturing doi: 10.1007/s40964-019-00078-6 contributor: fullname: S Vock – ident: 1107_CR18 – ident: 1107_CR4 doi: 10.2514/6.2019-4228 – volume: 9 start-page: 12 year: 2019 ident: 1107_CR3 publication-title: Metals contributor: fullname: TQ Tran – volume: 73 start-page: 499 year: 2012 ident: 1107_CR20 publication-title: Journal of Physics and Chemistry of Solids doi: 10.1016/j.jpcs.2011.11.033 contributor: fullname: C Vincent |
SSID | ssj0043779 |
Score | 2.182856 |
Snippet | One of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 256 |
SubjectTerms | Copper Densification Earth and Environmental Science Earth Sciences Heat exchangers Lasers Manufacturability Mechanical properties Mineral Resources Originalarbeit Particle size Particle size distribution Physical properties Powder beds Process parameters Surface roughness Thermal conductivity Thermodynamic properties |
Title | Effect of Particle Size Distribution on Laser Powder Bed Fusion Manufacturability of Copper |
URI | https://link.springer.com/article/10.1007/s00501-021-01107-0 https://www.proquest.com/docview/2528842921 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60vejBt1itsgdvGmk22WZzrG1jlSqFVhA8hE0zARGSkhpEf72zebQqelBY2EOWJczM7sw3y3wDcBo4UolAOYZwBRq2dG3dyF0ZSN5QRZZybcxTF2Pn7kH2-pomx1qkLuLni-pFMr-oF7VumqmEkC_X6NfU-bVVqJPvEWTc9U7_ZjCsLmBbc-gVUa8wpGvyslbm512--qNlkPntXTR3N97mv350CzbK6JJ1CnPYhhWMd2D9E-fgLjwWfMUsidioNBs2fnpH1tMUumX3K0ZjSP4tZaPkNaTpEkPmZTqzxm5VnOlyiCwtKL7f9FbdZDbDdA_uvf6kOzDKDgvGlFOoaJhStXgYapTKAwJiko4wIjpTPg0j8vRtN0Jl0TEnVdPagAskzOZyByNHCTOw9qEWJzEeAONti5ClmkpOACyQWtGuRIE6eueR6zTgrJKzPyuINPwFZXIuMp9E5uci81sNaFaq8MtDNfe54FLq9lpmA84r2S8__77b4d-WH8EaL9RHowm1lzTDY1idh9lJaWp6vp5ceR_S5cvX |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH32K16h68aaDZJM3mWPugYlsKrdDiIWySCXhJSmoQ_fXO5tGq6EFhIYcsQ5jZ3ZlvNvMNwLVnC2l50tYsx0LNFI6pGrlLDckbytCQjolZ6mJij2ai01U0OWZZC5P97V5eSWYn9arYTVGVEPTlCv7qKsG2CVXFds4rUG3N5vNOeQKbikQvD3stTTg6L4plfpby1SGto8xvF6OZv-nt_e9L92G3iC9ZK18QB7CB0SHsfGIdPIKnnLGYxSEbFwuHTZ7fkXUUiW7R_4rRGJCHS9g4fg3ocYcB66Uqt8aGMkpVQUSa5CTfb0pUO14sMDmGx1532u5rRY8FzecULGq6kA0eBAqnco-gmKBNjIi2z_0gJF_fdEKUBm10MjbN9biFhNocbmNoS0v3jBOoRHGEp8B40yBsKX3BCYJ5QpnaEWihit956Ng1uCkV7S5yKg13RZqcqcwllbmZytxGDeqlLdxiWy1dbnEhVIMtvQa3pe7Xr3-Xdva36Vew1Z8OB-7gfvRwDts8NyWNOlRekhQvYHMZpJfFuvsACN7Oew |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BdGDb7FadQ_eNLTZJs3mWNtGi7UUWkHwEDbNBLwkIW0Q_fXO5tGq6EGEhRyyLGFmdme-2cw3AJeeJaTpSUszbRM1Q9iGauQuNSRvKIOWtA3MUhcTa_Qken1Fk7Os4s_-di-vJPOaBsXSFC4asR80loVviraEYDBXUFhXybZ1qKq0mFGBamcwvXXK09hQhHp5CGxqwtZ5UTjz8ypfndMq4vx2SZr5Hmfn_1-9C9tF3Mk6uaHswRqG-7D1iY3wAJ5zJmMWBWxcGBSbvLwj6yly3aIvFqMxJM-XsHH06tPjBn3mpCrnxh5kmKpCiTTJyb_f1FLdKI4xOYRHpz_t3mlF7wVtximI1HQhm9z3FX7lHkE0QZsbEa0Zn_kBxQBtO0DZogOAjIDmetxEQnM2tzCwpKl7rSOohFGIx8B4m_TSljPBCZp5QpmALdBEFdfzwLZqcFUK3Y1zig13SaacicwlkbmZyNxmDeqlXtxiu81dbnIhVOMtvQbXpR5Wr39f7eRv0y9gY9xz3OFgdH8KmzzXJI06VBZJimewPvfT88IEPwBxS9cS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Particle+Size+Distribution+on+Laser+Powder+Bed+Fusion+Manufacturability+of+Copper&rft.jtitle=BHM.+Berg-+und+h%C3%BCttenm%C3%A4nnische+Monatshefte&rft.au=Bonesso%2C+Massimiliano&rft.au=Rebesan%2C+Pietro&rft.au=Gennari%2C+Claudio&rft.au=Mancin%2C+Simone&rft.date=2021-01-01&rft.pub=Springer+Vienna&rft.issn=0005-8912&rft.eissn=1613-7531&rft.volume=166&rft.issue=5&rft.spage=256&rft.epage=262&rft_id=info:doi/10.1007%2Fs00501-021-01107-0&rft.externalDocID=10_1007_s00501_021_01107_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-8912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-8912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-8912&client=summon |