Microstructure and Corrosion Resistance of 7075 Aluminium Alloy Composite Material Obtained from Chips in the High-Energy Ball Milling Process

The high-energy ball milling process was applied to fabricate a composite material from 7075 aluminium alloy milling chips, silicon carbide, and titanium dioxide powders. Raw materials were ground, and the obtained powders were cold pressed and sintered. It was demonstrated that this method can be u...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 17; no. 21; p. 5331
Main Authors: Kościelniak, Barbara, Groch, Diana, Nowak, Wojciech J., Drajewicz, Marcin, Kwolek, Przemysław
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high-energy ball milling process was applied to fabricate a composite material from 7075 aluminium alloy milling chips, silicon carbide, and titanium dioxide powders. Raw materials were ground, and the obtained powders were cold pressed and sintered. It was demonstrated that this method can be used in the recycling of aluminium alloy scrap characterised by a high surface-to-volume ratio, and also that chemical removal of the oxide layer from chips is not necessary. The finest particles, with 50 vol.% of their population below 36 μm, were obtained after grinding for 60 min at a 1000 rpm rotational speed. Such an intensive grinding was necessary to fabricate the compact composite material with a homogeneous microstructure and a low porosity of 0.7%. The corrosion resistance of the composites was studied in 3.5 wt.% NaCl solution using cyclic voltammetry and electrochemical impedance spectroscopy, and corrosion rates in the range of ca. 342 and 3 μA∙cm−2 were obtained. The corrosion mechanism includes aluminium alloy dissolution at the matrix/reinforcement interphase and around intermetallic particles localised within the matrix grains.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17215331