Space–time discontinuous Galerkin methods for the ε-dependent stochastic Allen–Cahn equation with mild noise

We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive parameter $\varepsilon $ is a measure for the inner layers width that are generated during evolution. This equation, when the noise depends onl...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of numerical analysis Vol. 40; no. 3; pp. 2076 - 2105
Main Author: Antonopoulou, Dimitra C
Format: Journal Article
Language:English
Published: 17-07-2020
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive parameter $\varepsilon $ is a measure for the inner layers width that are generated during evolution. This equation, when the noise depends only on time, has been proposed by Funaki (1999, Singular limit for stochastic reaction–diffusion equation and generation of random interfaces. Acta Math. Sin., 15, 407–438). The noise, although smooth, becomes white on the sharp interface limit $\varepsilon \rightarrow 0^+$. We construct a nonlinear discontinous Galerkin scheme with space–time finite elements of general type that are discontinuous in time. Existence of a unique discrete solution is proven by application of Brouwer’s Theorem. We first derive abstract error estimates and then, for the case of piecewise polynomial finite elements, we prove an error in expectation of optimal order. All the appearing constants are estimated in terms of the parameter $\varepsilon $. Finally, we present a linear approximation of the nonlinear scheme, for which we prove existence of solution and optimal error in expectation in piecewise linear finite element spaces. The novelty of this work is based on the use of a finite element formulation in space and in time in $2+1$-dimensional subdomains for a nonlinear parabolic problem. In addition this problem involves noise. These types of schemes avoid any Runge–Kutta-type discretization for the evolutionary variable, and seem to be very effective when applied to equations of such a difficulty.
AbstractList We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive parameter $\varepsilon $ is a measure for the inner layers width that are generated during evolution. This equation, when the noise depends only on time, has been proposed by Funaki (1999, Singular limit for stochastic reaction–diffusion equation and generation of random interfaces. Acta Math. Sin., 15, 407–438). The noise, although smooth, becomes white on the sharp interface limit $\varepsilon \rightarrow 0^+$. We construct a nonlinear discontinous Galerkin scheme with space–time finite elements of general type that are discontinuous in time. Existence of a unique discrete solution is proven by application of Brouwer’s Theorem. We first derive abstract error estimates and then, for the case of piecewise polynomial finite elements, we prove an error in expectation of optimal order. All the appearing constants are estimated in terms of the parameter $\varepsilon $. Finally, we present a linear approximation of the nonlinear scheme, for which we prove existence of solution and optimal error in expectation in piecewise linear finite element spaces. The novelty of this work is based on the use of a finite element formulation in space and in time in $2+1$-dimensional subdomains for a nonlinear parabolic problem. In addition this problem involves noise. These types of schemes avoid any Runge–Kutta-type discretization for the evolutionary variable, and seem to be very effective when applied to equations of such a difficulty.
Author Antonopoulou, Dimitra C
Author_xml – sequence: 1
  givenname: Dimitra C
  surname: Antonopoulou
  fullname: Antonopoulou, Dimitra C
  organization: Department of Mathematics, University of Chester, Thornton Science Park, Chester, UK and Institute of Applied and Computational Mathematics, FORTH, GR–711 Heraklion, Greece
BookMark eNot0DFOwzAYhmELFYm2MLL7AqF27Dh4rCoolSoxAHPk2L8VQ2K3tiMEE3fgLFyDQ3ASisr0Sd_wDs8MTXzwgNAlJVeUSLZwg_LjsDDxnVB5gqaUC14wwcsJmpKyLgsua3mGZik9E0K4qMkU7R92SsPPx2d2A2Djkg4-Oz-GMeG16iG-OI8HyF0wCdsQce4Af38VBnbgDfiMUw66Uyk7jZd9D_7QWqnOY9iPKrvg8avLHR5cb7APLsE5OrWqT3Dxv3P0dHvzuLortvfrzWq5LXRJRC5oW5VU1pRWXGpJTF0fjrYVQlUWgHBmiLq2VGurmGZMGMFoWbHKtpxTSiibo-LY1TGkFME2u3gQim8NJc2fV3P0ao5e7Be3dWcF
CitedBy_id crossref_primary_10_1080_00207160_2024_2340694
crossref_primary_10_1093_imanum_drae012
crossref_primary_10_1137_20M1368537
crossref_primary_10_1093_imanum_drad052
Cites_doi 10.1007/s00211-004-0546-5
10.1007/BF01213390
10.1016/j.jde.2004.05.017
10.1137/080738398
10.1007/BF02650735
10.1007/s00211-002-0413-1
10.1090/S0002-9947-1992-1144013-3
10.4171/IFB/154
10.1214/09-AIHP333
10.1051/m2an/2018059
10.1007/s00211-010-0296-5
10.1515/cmam-2017-0023
10.1016/B978-0-12-208350-1.50008-X
10.1002/cpa.20323
10.1007/BF01385769
10.1016/0022-0396(92)90146-E
10.1016/0001-6160(79)90196-2
10.1007/978-1-4612-0885-3_2
10.1051/m2an:2004006
10.1214/EJP.v17-1731
10.1103/RevModPhys.49.435
10.1016/j.jde.2008.01.014
10.1137/0715059
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1093/imanum/drz019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1464-3642
EndPage 2105
ExternalDocumentID 10_1093_imanum_drz019
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6OB
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYXX
ABDBF
ABDTM
ABEJV
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
ESX
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JAVBF
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M49
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TJP
UPT
WH7
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
ID FETCH-LOGICAL-c206t-1b5219711549c90d77b52bb66a5fee043d0a8f1ccfa3c336d6312535fb4411013
ISSN 0272-4979
IngestDate Fri Nov 22 02:52:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c206t-1b5219711549c90d77b52bb66a5fee043d0a8f1ccfa3c336d6312535fb4411013
OpenAccessLink https://chesterrep.openrepository.com/bitstream/10034/621972/1/IMA_Antonopoulou.pdf
PageCount 30
ParticipantIDs crossref_primary_10_1093_imanum_drz019
PublicationCentury 2000
PublicationDate 2020-07-17
PublicationDateYYYYMMDD 2020-07-17
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-17
  day: 17
PublicationDecade 2020
PublicationTitle IMA journal of numerical analysis
PublicationYear 2020
References Jamet (2020071308423306400_ref18) 1976; 10
Lesaint (2020071308423306400_ref23) 1974
Antonopoulou (2020071308423306400_ref7) 2018
Funaki (2020071308423306400_ref15) 1999; 15
Hohenberg (2020071308423306400_ref17) 1977; 49
Akrivis (2020071308423306400_ref2) 1991; 59
Jamet (2020071308423306400_ref19) 1978; 15
Prohl (2020071308423306400_ref25) 2014
Funaki (2020071308423306400_ref14) 1995; 102
Feng (2020071308423306400_ref12) 2003; 94
Kessler (2020071308423306400_ref21) 2004; 38
Majee (2020071308423306400_ref24) 2018; 18
Reed (2020071308423306400_ref26) 1973
Lee (2020071308423306400_ref22) 2016
Weber (2020071308423306400_ref28) 2010; 63
Weber (2020071308423306400_ref27) 2010; 46
Adams (2020071308423306400_ref1) 1975
Chen (2020071308423306400_ref9) 1992; 96
Chen (2020071308423306400_ref10) 1992; 334
Allen (2020071308423306400_ref5) 1979; 27
Chen (2020071308423306400_ref11) 2004; 206
Feng (2020071308423306400_ref13) 2004; 99
Alfaro (2020071308423306400_ref3) 2008; 245
Antonopoulou (2020071308423306400_ref6) 2010; 115
Hairer (2020071308423306400_ref16) 2012; 17
Alfaro (2020071308423306400_ref4) 2018
Blowey (2020071308423306400_ref8) 1993
Zhang (2020071308423306400_ref29) 2009; 31
Katsoulakis (2020071308423306400_ref20) 2007; 9
References_xml – volume: 99
  start-page: 47
  year: 2004
  ident: 2020071308423306400_ref13
  article-title: Error analysis of a mixed finite element method for the Cahn–Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-004-0546-5
  contributor:
    fullname: Feng
– volume: 102
  start-page: 221
  year: 1995
  ident: 2020071308423306400_ref14
  article-title: The scaling limit for a stochastic PDE and the separation of phases
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/BF01213390
  contributor:
    fullname: Funaki
– volume: 206
  start-page: 399
  year: 2004
  ident: 2020071308423306400_ref11
  article-title: Generation, propagation, and annihilation of metastable patterns
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2004.05.017
  contributor:
    fullname: Chen
– volume: 31
  start-page: 3042
  year: 2009
  ident: 2020071308423306400_ref29
  article-title: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080738398
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 407
  year: 1999
  ident: 2020071308423306400_ref15
  article-title: Singular limit for stochastic reaction–diffusion equation and generation of random interfaces
  publication-title: Acta Math. Sin.
  doi: 10.1007/BF02650735
  contributor:
    fullname: Funaki
– volume: 10
  start-page: 43
  year: 1976
  ident: 2020071308423306400_ref18
  article-title: Estimation d’erreur pour des éleménts finis droits presque dégénérés
  publication-title: Rev. Francaise Automat. Informat. Recherche Opérationelle Sér. Rouge Anal. Numér.
  contributor:
    fullname: Jamet
– volume: 94
  start-page: 33
  year: 2003
  ident: 2020071308423306400_ref12
  article-title: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows
  publication-title: Numer. Math.
  doi: 10.1007/s00211-002-0413-1
  contributor:
    fullname: Feng
– volume: 334
  start-page: 877
  year: 1992
  ident: 2020071308423306400_ref10
  article-title: Generation and propagation of interfaces for reaction-diffusion systems
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1992-1144013-3
  contributor:
    fullname: Chen
– volume: 9
  start-page: 1
  year: 2007
  ident: 2020071308423306400_ref20
  article-title: Noise regularization and computations for the 1-dimensional stochastic Allen–Cahn problem
  publication-title: Interfaces Free Bound.
  doi: 10.4171/IFB/154
  contributor:
    fullname: Katsoulakis
– volume: 46
  start-page: 965
  year: 2010
  ident: 2020071308423306400_ref27
  article-title: On the short time asymptotic of the stochastic Allen–Cahn equation
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/09-AIHP333
  contributor:
    fullname: Weber
– volume-title: Sobolev Spaces
  year: 1975
  ident: 2020071308423306400_ref1
  contributor:
    fullname: Adams
– volume-title: ESAIM Math. Model. Numer. Anal.
  year: 2018
  ident: 2020071308423306400_ref7
  article-title: A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain
  doi: 10.1051/m2an/2018059
  contributor:
    fullname: Antonopoulou
– volume: 115
  start-page: 585
  year: 2010
  ident: 2020071308423306400_ref6
  article-title: Discontinuous Galerkin methods for the linear Schrödinger equation in non-cylindrical domains
  publication-title: Numer. Math.
  doi: 10.1007/s00211-010-0296-5
  contributor:
    fullname: Antonopoulou
– year: 2014
  ident: 2020071308423306400_ref25
  article-title: Strong rates of convergence for a space-time discretization of the stochastic Allen–Cahn equation with multiplicative noise
  contributor:
    fullname: Prohl
– volume: 18
  start-page: 297
  year: 2018
  ident: 2020071308423306400_ref24
  article-title: Optimal strong rates of convergence for a space–time discretization of the stochastic Allen–Cahn equation with multiplicative noise
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2017-0023
  contributor:
    fullname: Majee
– volume-title: Mathematical Aspects of Finite Elements in Partial Differential Equations
  year: 1974
  ident: 2020071308423306400_ref23
  article-title: On a finite element method for solving the neutron transport equation
  doi: 10.1016/B978-0-12-208350-1.50008-X
  contributor:
    fullname: Lesaint
– year: 2018
  ident: 2020071308423306400_ref4
  article-title: Generation of fine transition layers and their dynamics for the Stochastic Allen–Cahn equation
  contributor:
    fullname: Alfaro
– volume: 63
  start-page: 1071
  year: 2010
  ident: 2020071308423306400_ref28
  article-title: Sharp interface limit for invariant measures of a stochastic Allen–Cahn equation
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20323
  contributor:
    fullname: Weber
– volume: 59
  start-page: 31
  year: 1991
  ident: 2020071308423306400_ref2
  article-title: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation
  publication-title: Numer. Math.
  doi: 10.1007/BF01385769
  contributor:
    fullname: Akrivis
– volume: 96
  start-page: 116
  year: 1992
  ident: 2020071308423306400_ref9
  article-title: Generation and propagation of interfaces for reaction-diffusion equations
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(92)90146-E
  contributor:
    fullname: Chen
– volume: 27
  start-page: 1085
  year: 1979
  ident: 2020071308423306400_ref5
  article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
  publication-title: Acta Metallurgica
  doi: 10.1016/0001-6160(79)90196-2
  contributor:
    fullname: Allen
– start-page: 16
  volume-title: Degenerate Diffusion (Minneapolis, MN, 1991)
  year: 1993
  ident: 2020071308423306400_ref8
  article-title: Curvature dependent phase boundary motion and parabolic double obstacle problems
  doi: 10.1007/978-1-4612-0885-3_2
  contributor:
    fullname: Blowey
– volume: 38
  start-page: 129
  year: 2004
  ident: 2020071308423306400_ref21
  article-title: A posteriori error control for the Allen–Cahn problem: circumventing Gronwall’s inequality
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an:2004006
  contributor:
    fullname: Kessler
– volume: 17
  start-page: 1
  year: 2012
  ident: 2020071308423306400_ref16
  article-title: Triviality of the 2D stochastic Allen–Cahn equation
  publication-title: Electron. J. Probab.
  doi: 10.1214/EJP.v17-1731
  contributor:
    fullname: Hairer
– volume: 49
  start-page: 435
  year: 1977
  ident: 2020071308423306400_ref17
  article-title: Theory of dynamic critical phenomena
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.49.435
  contributor:
    fullname: Hohenberg
– volume: 245
  start-page: 505
  year: 2008
  ident: 2020071308423306400_ref3
  article-title: The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.01.014
  contributor:
    fullname: Alfaro
– year: 2016
  ident: 2020071308423306400_ref22
  article-title: Generation of interfaces for multi-dimensional stochastic Allen–Cahn equation with a noise smooth in space
  contributor:
    fullname: Lee
– year: 1973
  ident: 2020071308423306400_ref26
  article-title: Triangular mesh methods for the neutron transport equation
  contributor:
    fullname: Reed
– volume: 15
  start-page: 913
  year: 1978
  ident: 2020071308423306400_ref19
  article-title: Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715059
  contributor:
    fullname: Jamet
SSID ssj0004670
Score 2.3121352
Snippet We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive...
SourceID crossref
SourceType Aggregation Database
StartPage 2076
Title Space–time discontinuous Galerkin methods for the ε-dependent stochastic Allen–Cahn equation with mild noise
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29btswECYcZ2mHpk1bpE0bcGi6GEJkkaKk0XGdpkO6JA2yGRRJIQYSybGspVPfoc_S1-hD9El6J1I_DjKkQxdBoKUD5Pvw8Xg8fkfIB3BslvhZ6BmZCY_HKvBkYLjHpDFjaXSs6pL_0_Po61X8acZng0HTNaMb-6-ehjHwNZ6c_Qdvt0ZhAO7B53AFr8P1UX4_X2Je3JUwMGwdj5swWJG-yCusd_0MUwImyF3z6LItNDyczg6PQ69pi7seQVyoriUKOY8m2HGltTqV1_nI3FmVcJvKvV3c6FFeLMqN0qIvZ5O-NkVe2f0hlCewWihdFgJi0GJZVDdFVdMgnrtaSZfDdVkJWILWWpM98gqiALvXWTo0lly5ABAIvsG-VqzJoYz1qdSPRG9ahqVp-CDlWzmsxa3MsTH0iV599x0Jb4hr35v02lJEuwnP5tbA3L6-RbYDIC4-JNuT46vLy95J28hm7dzXOdVWMHBkDRxZA70opxeuXDwnz9w6g04sQF6Qgcl3yY5bc1DH6OUueXrW6vaWL8ldjZ4_P34ibugGbmiDG-pwQwE3FN6lv391mKEdZmiNGbCFaKENWiiihSJaaI2WV-Tbyexieuq5phyeCnyx9sYpBHxJhCpOiUp8HUUwkKZCyDAzxudM-zLOxkplkinGhBYMYmgWZikE3sD_7DUZ5kVu9ggVMo6VgjWAEYpzpRMVMRlynUWpgd_Gb8jH5k-cL632yvxBd7197IP75EkH1ndkuF5V5j3ZKnV14Dz9F5BXgs4
link.rule.ids 315,782,786,27934,27935
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space%E2%80%93time+discontinuous+Galerkin+methods+for+the+%CE%B5-dependent+stochastic+Allen%E2%80%93Cahn+equation+with+mild+noise&rft.jtitle=IMA+journal+of+numerical+analysis&rft.au=Antonopoulou%2C+Dimitra+C&rft.date=2020-07-17&rft.issn=0272-4979&rft.eissn=1464-3642&rft.volume=40&rft.issue=3&rft.spage=2076&rft.epage=2105&rft_id=info:doi/10.1093%2Fimanum%2Fdrz019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imanum_drz019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4979&client=summon