Space–time discontinuous Galerkin methods for the ε-dependent stochastic Allen–Cahn equation with mild noise
We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive parameter $\varepsilon $ is a measure for the inner layers width that are generated during evolution. This equation, when the noise depends onl...
Saved in:
Published in: | IMA journal of numerical analysis Vol. 40; no. 3; pp. 2076 - 2105 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
17-07-2020
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive parameter $\varepsilon $ is a measure for the inner layers width that are generated during evolution. This equation, when the noise depends only on time, has been proposed by Funaki (1999, Singular limit for stochastic reaction–diffusion equation and generation of random interfaces. Acta Math. Sin., 15, 407–438). The noise, although smooth, becomes white on the sharp interface limit $\varepsilon \rightarrow 0^+$. We construct a nonlinear discontinous Galerkin scheme with space–time finite elements of general type that are discontinuous in time. Existence of a unique discrete solution is proven by application of Brouwer’s Theorem. We first derive abstract error estimates and then, for the case of piecewise polynomial finite elements, we prove an error in expectation of optimal order. All the appearing constants are estimated in terms of the parameter $\varepsilon $. Finally, we present a linear approximation of the nonlinear scheme, for which we prove existence of solution and optimal error in expectation in piecewise linear finite element spaces. The novelty of this work is based on the use of a finite element formulation in space and in time in $2+1$-dimensional subdomains for a nonlinear parabolic problem. In addition this problem involves noise. These types of schemes avoid any Runge–Kutta-type discretization for the evolutionary variable, and seem to be very effective when applied to equations of such a difficulty. |
---|---|
AbstractList | We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive parameter $\varepsilon $ is a measure for the inner layers width that are generated during evolution. This equation, when the noise depends only on time, has been proposed by Funaki (1999, Singular limit for stochastic reaction–diffusion equation and generation of random interfaces. Acta Math. Sin., 15, 407–438). The noise, although smooth, becomes white on the sharp interface limit $\varepsilon \rightarrow 0^+$. We construct a nonlinear discontinous Galerkin scheme with space–time finite elements of general type that are discontinuous in time. Existence of a unique discrete solution is proven by application of Brouwer’s Theorem. We first derive abstract error estimates and then, for the case of piecewise polynomial finite elements, we prove an error in expectation of optimal order. All the appearing constants are estimated in terms of the parameter $\varepsilon $. Finally, we present a linear approximation of the nonlinear scheme, for which we prove existence of solution and optimal error in expectation in piecewise linear finite element spaces. The novelty of this work is based on the use of a finite element formulation in space and in time in $2+1$-dimensional subdomains for a nonlinear parabolic problem. In addition this problem involves noise. These types of schemes avoid any Runge–Kutta-type discretization for the evolutionary variable, and seem to be very effective when applied to equations of such a difficulty. |
Author | Antonopoulou, Dimitra C |
Author_xml | – sequence: 1 givenname: Dimitra C surname: Antonopoulou fullname: Antonopoulou, Dimitra C organization: Department of Mathematics, University of Chester, Thornton Science Park, Chester, UK and Institute of Applied and Computational Mathematics, FORTH, GR–711 Heraklion, Greece |
BookMark | eNot0DFOwzAYhmELFYm2MLL7AqF27Dh4rCoolSoxAHPk2L8VQ2K3tiMEE3fgLFyDQ3ASisr0Sd_wDs8MTXzwgNAlJVeUSLZwg_LjsDDxnVB5gqaUC14wwcsJmpKyLgsua3mGZik9E0K4qMkU7R92SsPPx2d2A2Djkg4-Oz-GMeG16iG-OI8HyF0wCdsQce4Af38VBnbgDfiMUw66Uyk7jZd9D_7QWqnOY9iPKrvg8avLHR5cb7APLsE5OrWqT3Dxv3P0dHvzuLortvfrzWq5LXRJRC5oW5VU1pRWXGpJTF0fjrYVQlUWgHBmiLq2VGurmGZMGMFoWbHKtpxTSiibo-LY1TGkFME2u3gQim8NJc2fV3P0ao5e7Be3dWcF |
CitedBy_id | crossref_primary_10_1080_00207160_2024_2340694 crossref_primary_10_1093_imanum_drae012 crossref_primary_10_1137_20M1368537 crossref_primary_10_1093_imanum_drad052 |
Cites_doi | 10.1007/s00211-004-0546-5 10.1007/BF01213390 10.1016/j.jde.2004.05.017 10.1137/080738398 10.1007/BF02650735 10.1007/s00211-002-0413-1 10.1090/S0002-9947-1992-1144013-3 10.4171/IFB/154 10.1214/09-AIHP333 10.1051/m2an/2018059 10.1007/s00211-010-0296-5 10.1515/cmam-2017-0023 10.1016/B978-0-12-208350-1.50008-X 10.1002/cpa.20323 10.1007/BF01385769 10.1016/0022-0396(92)90146-E 10.1016/0001-6160(79)90196-2 10.1007/978-1-4612-0885-3_2 10.1051/m2an:2004006 10.1214/EJP.v17-1731 10.1103/RevModPhys.49.435 10.1016/j.jde.2008.01.014 10.1137/0715059 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1093/imanum/drz019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1464-3642 |
EndPage | 2105 |
ExternalDocumentID | 10_1093_imanum_drz019 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6OB 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYXX ABDBF ABDTM ABEJV ABEUO ABIXL ABJNI ABLJU ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACUFI ACUTJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHXPO AIAGR AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBS EE~ ESX F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JAVBF KAQDR KBUDW KOP KSI KSN M-Z M49 N9A NGC NMDNZ NOMLY NU- O9- OCL ODMLO OJQWA OJZSN OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO TJP UPT WH7 X7H YAYTL YKOAZ YXANX ZKX ~91 |
ID | FETCH-LOGICAL-c206t-1b5219711549c90d77b52bb66a5fee043d0a8f1ccfa3c336d6312535fb4411013 |
ISSN | 0272-4979 |
IngestDate | Fri Nov 22 02:52:30 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c206t-1b5219711549c90d77b52bb66a5fee043d0a8f1ccfa3c336d6312535fb4411013 |
OpenAccessLink | https://chesterrep.openrepository.com/bitstream/10034/621972/1/IMA_Antonopoulou.pdf |
PageCount | 30 |
ParticipantIDs | crossref_primary_10_1093_imanum_drz019 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-17 |
PublicationDateYYYYMMDD | 2020-07-17 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of numerical analysis |
PublicationYear | 2020 |
References | Jamet (2020071308423306400_ref18) 1976; 10 Lesaint (2020071308423306400_ref23) 1974 Antonopoulou (2020071308423306400_ref7) 2018 Funaki (2020071308423306400_ref15) 1999; 15 Hohenberg (2020071308423306400_ref17) 1977; 49 Akrivis (2020071308423306400_ref2) 1991; 59 Jamet (2020071308423306400_ref19) 1978; 15 Prohl (2020071308423306400_ref25) 2014 Funaki (2020071308423306400_ref14) 1995; 102 Feng (2020071308423306400_ref12) 2003; 94 Kessler (2020071308423306400_ref21) 2004; 38 Majee (2020071308423306400_ref24) 2018; 18 Reed (2020071308423306400_ref26) 1973 Lee (2020071308423306400_ref22) 2016 Weber (2020071308423306400_ref28) 2010; 63 Weber (2020071308423306400_ref27) 2010; 46 Adams (2020071308423306400_ref1) 1975 Chen (2020071308423306400_ref9) 1992; 96 Chen (2020071308423306400_ref10) 1992; 334 Allen (2020071308423306400_ref5) 1979; 27 Chen (2020071308423306400_ref11) 2004; 206 Feng (2020071308423306400_ref13) 2004; 99 Alfaro (2020071308423306400_ref3) 2008; 245 Antonopoulou (2020071308423306400_ref6) 2010; 115 Hairer (2020071308423306400_ref16) 2012; 17 Alfaro (2020071308423306400_ref4) 2018 Blowey (2020071308423306400_ref8) 1993 Zhang (2020071308423306400_ref29) 2009; 31 Katsoulakis (2020071308423306400_ref20) 2007; 9 |
References_xml | – volume: 99 start-page: 47 year: 2004 ident: 2020071308423306400_ref13 article-title: Error analysis of a mixed finite element method for the Cahn–Hilliard equation publication-title: Numer. Math. doi: 10.1007/s00211-004-0546-5 contributor: fullname: Feng – volume: 102 start-page: 221 year: 1995 ident: 2020071308423306400_ref14 article-title: The scaling limit for a stochastic PDE and the separation of phases publication-title: Probab. Theory Related Fields doi: 10.1007/BF01213390 contributor: fullname: Funaki – volume: 206 start-page: 399 year: 2004 ident: 2020071308423306400_ref11 article-title: Generation, propagation, and annihilation of metastable patterns publication-title: J. Differential Equations doi: 10.1016/j.jde.2004.05.017 contributor: fullname: Chen – volume: 31 start-page: 3042 year: 2009 ident: 2020071308423306400_ref29 article-title: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit publication-title: SIAM J. Sci. Comput. doi: 10.1137/080738398 contributor: fullname: Zhang – volume: 15 start-page: 407 year: 1999 ident: 2020071308423306400_ref15 article-title: Singular limit for stochastic reaction–diffusion equation and generation of random interfaces publication-title: Acta Math. Sin. doi: 10.1007/BF02650735 contributor: fullname: Funaki – volume: 10 start-page: 43 year: 1976 ident: 2020071308423306400_ref18 article-title: Estimation d’erreur pour des éleménts finis droits presque dégénérés publication-title: Rev. Francaise Automat. Informat. Recherche Opérationelle Sér. Rouge Anal. Numér. contributor: fullname: Jamet – volume: 94 start-page: 33 year: 2003 ident: 2020071308423306400_ref12 article-title: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows publication-title: Numer. Math. doi: 10.1007/s00211-002-0413-1 contributor: fullname: Feng – volume: 334 start-page: 877 year: 1992 ident: 2020071308423306400_ref10 article-title: Generation and propagation of interfaces for reaction-diffusion systems publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1992-1144013-3 contributor: fullname: Chen – volume: 9 start-page: 1 year: 2007 ident: 2020071308423306400_ref20 article-title: Noise regularization and computations for the 1-dimensional stochastic Allen–Cahn problem publication-title: Interfaces Free Bound. doi: 10.4171/IFB/154 contributor: fullname: Katsoulakis – volume: 46 start-page: 965 year: 2010 ident: 2020071308423306400_ref27 article-title: On the short time asymptotic of the stochastic Allen–Cahn equation publication-title: Ann. Inst. Henri Poincaré Probab. Stat. doi: 10.1214/09-AIHP333 contributor: fullname: Weber – volume-title: Sobolev Spaces year: 1975 ident: 2020071308423306400_ref1 contributor: fullname: Adams – volume-title: ESAIM Math. Model. Numer. Anal. year: 2018 ident: 2020071308423306400_ref7 article-title: A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain doi: 10.1051/m2an/2018059 contributor: fullname: Antonopoulou – volume: 115 start-page: 585 year: 2010 ident: 2020071308423306400_ref6 article-title: Discontinuous Galerkin methods for the linear Schrödinger equation in non-cylindrical domains publication-title: Numer. Math. doi: 10.1007/s00211-010-0296-5 contributor: fullname: Antonopoulou – year: 2014 ident: 2020071308423306400_ref25 article-title: Strong rates of convergence for a space-time discretization of the stochastic Allen–Cahn equation with multiplicative noise contributor: fullname: Prohl – volume: 18 start-page: 297 year: 2018 ident: 2020071308423306400_ref24 article-title: Optimal strong rates of convergence for a space–time discretization of the stochastic Allen–Cahn equation with multiplicative noise publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2017-0023 contributor: fullname: Majee – volume-title: Mathematical Aspects of Finite Elements in Partial Differential Equations year: 1974 ident: 2020071308423306400_ref23 article-title: On a finite element method for solving the neutron transport equation doi: 10.1016/B978-0-12-208350-1.50008-X contributor: fullname: Lesaint – year: 2018 ident: 2020071308423306400_ref4 article-title: Generation of fine transition layers and their dynamics for the Stochastic Allen–Cahn equation contributor: fullname: Alfaro – volume: 63 start-page: 1071 year: 2010 ident: 2020071308423306400_ref28 article-title: Sharp interface limit for invariant measures of a stochastic Allen–Cahn equation publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20323 contributor: fullname: Weber – volume: 59 start-page: 31 year: 1991 ident: 2020071308423306400_ref2 article-title: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation publication-title: Numer. Math. doi: 10.1007/BF01385769 contributor: fullname: Akrivis – volume: 96 start-page: 116 year: 1992 ident: 2020071308423306400_ref9 article-title: Generation and propagation of interfaces for reaction-diffusion equations publication-title: J. Differential Equations doi: 10.1016/0022-0396(92)90146-E contributor: fullname: Chen – volume: 27 start-page: 1085 year: 1979 ident: 2020071308423306400_ref5 article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening publication-title: Acta Metallurgica doi: 10.1016/0001-6160(79)90196-2 contributor: fullname: Allen – start-page: 16 volume-title: Degenerate Diffusion (Minneapolis, MN, 1991) year: 1993 ident: 2020071308423306400_ref8 article-title: Curvature dependent phase boundary motion and parabolic double obstacle problems doi: 10.1007/978-1-4612-0885-3_2 contributor: fullname: Blowey – volume: 38 start-page: 129 year: 2004 ident: 2020071308423306400_ref21 article-title: A posteriori error control for the Allen–Cahn problem: circumventing Gronwall’s inequality publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an:2004006 contributor: fullname: Kessler – volume: 17 start-page: 1 year: 2012 ident: 2020071308423306400_ref16 article-title: Triviality of the 2D stochastic Allen–Cahn equation publication-title: Electron. J. Probab. doi: 10.1214/EJP.v17-1731 contributor: fullname: Hairer – volume: 49 start-page: 435 year: 1977 ident: 2020071308423306400_ref17 article-title: Theory of dynamic critical phenomena publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.49.435 contributor: fullname: Hohenberg – volume: 245 start-page: 505 year: 2008 ident: 2020071308423306400_ref3 article-title: The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system publication-title: J. Differential Equations doi: 10.1016/j.jde.2008.01.014 contributor: fullname: Alfaro – year: 2016 ident: 2020071308423306400_ref22 article-title: Generation of interfaces for multi-dimensional stochastic Allen–Cahn equation with a noise smooth in space contributor: fullname: Lee – year: 1973 ident: 2020071308423306400_ref26 article-title: Triangular mesh methods for the neutron transport equation contributor: fullname: Reed – volume: 15 start-page: 913 year: 1978 ident: 2020071308423306400_ref19 article-title: Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715059 contributor: fullname: Jamet |
SSID | ssj0004670 |
Score | 2.3121352 |
Snippet | We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 2076 |
Title | Space–time discontinuous Galerkin methods for the ε-dependent stochastic Allen–Cahn equation with mild noise |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29btswECYcZ2mHpk1bpE0bcGi6GEJkkaKk0XGdpkO6JA2yGRRJIQYSybGspVPfoc_S1-hD9El6J1I_DjKkQxdBoKUD5Pvw8Xg8fkfIB3BslvhZ6BmZCY_HKvBkYLjHpDFjaXSs6pL_0_Po61X8acZng0HTNaMb-6-ehjHwNZ6c_Qdvt0ZhAO7B53AFr8P1UX4_X2Je3JUwMGwdj5swWJG-yCusd_0MUwImyF3z6LItNDyczg6PQ69pi7seQVyoriUKOY8m2HGltTqV1_nI3FmVcJvKvV3c6FFeLMqN0qIvZ5O-NkVe2f0hlCewWihdFgJi0GJZVDdFVdMgnrtaSZfDdVkJWILWWpM98gqiALvXWTo0lly5ABAIvsG-VqzJoYz1qdSPRG9ahqVp-CDlWzmsxa3MsTH0iV599x0Jb4hr35v02lJEuwnP5tbA3L6-RbYDIC4-JNuT46vLy95J28hm7dzXOdVWMHBkDRxZA70opxeuXDwnz9w6g04sQF6Qgcl3yY5bc1DH6OUueXrW6vaWL8ldjZ4_P34ibugGbmiDG-pwQwE3FN6lv391mKEdZmiNGbCFaKENWiiihSJaaI2WV-Tbyexieuq5phyeCnyx9sYpBHxJhCpOiUp8HUUwkKZCyDAzxudM-zLOxkplkinGhBYMYmgWZikE3sD_7DUZ5kVu9ggVMo6VgjWAEYpzpRMVMRlynUWpgd_Gb8jH5k-cL632yvxBd7197IP75EkH1ndkuF5V5j3ZKnV14Dz9F5BXgs4 |
link.rule.ids | 315,782,786,27934,27935 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space%E2%80%93time+discontinuous+Galerkin+methods+for+the+%CE%B5-dependent+stochastic+Allen%E2%80%93Cahn+equation+with+mild+noise&rft.jtitle=IMA+journal+of+numerical+analysis&rft.au=Antonopoulou%2C+Dimitra+C&rft.date=2020-07-17&rft.issn=0272-4979&rft.eissn=1464-3642&rft.volume=40&rft.issue=3&rft.spage=2076&rft.epage=2105&rft_id=info:doi/10.1093%2Fimanum%2Fdrz019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imanum_drz019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4979&client=summon |