Approximation by Interpolation Trigonometric Polynomials in Metrics of the Space Lp on the Classes of Periodic Entire Functions
We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of interpolation nodes x k n − 1 = 2 kπ 2 n − 1 , k ∈ ℤ , in metrics of the spaces L p on the classes of 2 ⇡ -periodic functions that can be repres...
Saved in:
Published in: | Ukrainian mathematical journal Vol. 71; no. 2; pp. 322 - 332 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-07-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of interpolation nodes
x
k
n
−
1
=
2
kπ
2
n
−
1
,
k
∈
ℤ
,
in metrics of the spaces
L
p
on the classes of 2
⇡
-periodic functions that can be represented in the form of convolutions of functions 𝜑
,
𝜑 ⊥ 1
,
from the unit ball in the space
L
1
with fixed generating kernels in the case where the modules of their Fourier coefficients
ψ
(
k
) satisfy the condition lim
k
→ ∞
ψ
(
k
+ 1)/
ψ
(
k
) = 0. Similar estimates are also obtained for the classes of
r
–differentiable functions
W
1
r
with rapidly increasing exponents of smoothness
r
(
r
/
n
→ ∞,
n
→ ∞). |
---|---|
AbstractList | We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of interpolation nodes
x
k
n
−
1
=
2
kπ
2
n
−
1
,
k
∈
ℤ
,
in metrics of the spaces
L
p
on the classes of 2
⇡
-periodic functions that can be represented in the form of convolutions of functions 𝜑
,
𝜑 ⊥ 1
,
from the unit ball in the space
L
1
with fixed generating kernels in the case where the modules of their Fourier coefficients
ψ
(
k
) satisfy the condition lim
k
→ ∞
ψ
(
k
+ 1)/
ψ
(
k
) = 0. Similar estimates are also obtained for the classes of
r
–differentiable functions
W
1
r
with rapidly increasing exponents of smoothness
r
(
r
/
n
→ ∞,
n
→ ∞). |
Author | Serdyuk, A. S. Sokolenko, I. V. |
Author_xml | – sequence: 1 givenname: A. S. surname: Serdyuk fullname: Serdyuk, A. S. organization: Institute of Mathematics, Ukrainian National Academy of Sciences – sequence: 2 givenname: I. V. surname: Sokolenko fullname: Sokolenko, I. V. email: sokol@imath.kiev.ua organization: Institute of Mathematics, Ukrainian National Academy of Sciences |
BookMark | eNp9kMtqAyEUhqWk0CTtC3TlC9h6GWfGZQhJG0hpoOla1DGpYaKDTqBZ9dVrMl0XOcq5fD-efwJGPngLwCPBTwTj6jkRQjlDmIgcZVEhegPGhFcMCVaVIzDGuCCIC8HvwCSlA8YZq6sx-Jl1XQzf7qh6FzzUZ7jyvY1daIfCNrp98OFo--gM3IT2nBOn2gSdh2_XaoJhB_svCz86ZSxcdzBzl3zeqpTstb2x0YUmKyx876KFy5M3F_10D253Wc0-_L1T8LlcbOevaP3-sprP1shQXFLEiaJWKKV1rQusOctbEV6ympasqSlRNSHaCNOUVb50gxsu6iIfximjhWJTQAddE0NK0e5kF_PS8SwJlhcL5WChzBbKq4WSZogNUMrDfm-jPIRT9Pmf_1G_KRF3ZA |
CitedBy_id | crossref_primary_10_1007_s11253_022_02101_6 crossref_primary_10_1007_s11253_023_02248_w |
Cites_doi | 10.1007/s11253-009-0185-1 10.1007/BF01989807 10.1007/BF01060623 10.1007/BF02027298 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11253-019-01647-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1573-9376 |
EndPage | 332 |
ExternalDocumentID | 10_1007_s11253_019_01647_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LAS LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XU3 YLTOR Z7U ZMTXR ZWQNP ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AIGIU CITATION |
ID | FETCH-LOGICAL-c2062-51a2e9aabb8b40b5337615638263d821a811bc9cd679cdbd0d5984848352324a3 |
IEDL.DBID | AEJHL |
ISSN | 0041-5995 |
IngestDate | Thu Nov 21 22:09:37 EST 2024 Sat Dec 16 12:01:55 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2062-51a2e9aabb8b40b5337615638263d821a811bc9cd679cdbd0d5984848352324a3 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1007_s11253_019_01647_2 springer_journals_10_1007_s11253_019_01647_2 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Ukrainian mathematical journal |
PublicationTitleAbbrev | Ukr Math J |
PublicationYear | 2019 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | A. S. Serdyuk, “Approximation of periodic analytic functions by interpolation trigonometric polynomials in the metric of the space L,” Ukr. Mat. Zh., 54, No. 5, 692–699 (2002); English translation: Ukr. Math. J., 54, No. 5, 852–861 (2002). A. S. Serdyuk, “Approximation of the classes of analytic functions by Fourier sums in uniform metric,” Ukr. Mat. Zh., 57, No. 8, 1079–1096 (2005); English translation: Ukr. Math. J., 57, No. 8, 1275–1296 (2005). A. S. Serdyuk, “Approximation of infinitely differentiable analytic functions by interpolation trigonometric polynomials in integral metric,” Ukr. Mat. Zh., 53, No. 12, 1654–1663 (2001); English translation: Ukr. Math. J., 53, No. 12, 2014–2026 (2001). A. S. Serdyuk and V. A. Voitovych, “Approximation of the classes of entire functions by interpolation analogs of the de la Vall´ee- Poussin sums,” in: Approximation Theory of Functions and Related Problems [in Russian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, 7, No. 1 (2010), pp. 274–297. StepanetsA. I.SerdyukA. S.ShidlichA. L.Classification of infinitely differentiable periodic functionsUkrainian Mathematical Journal2008601219822005252311610.1007/s11253-009-0185-1 R. B. Stechkin, “Estimation of the remainder of Fourier series for differentiable functions,” in: Approximation of Functions by Polynomials and Splines, Tr. Mat. Inst. Akad. Nauk SSSR, 145, 126–151 (1980). KorneichukNPExact Constants in Approximation Theory [in Russian]1987MoscowNauka A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002). A. S. Serdyuk, “Approximation of periodic functions of high smoothness by interpolation trigonometric polynomials in the metric of L1,” Ukr. Mat. Zh., 52, No. 7, 994–998 (2000); English translation: Ukr. Math. J., 52, No. 7, 1141–1146 (2000). SharapudinovIIOn the best approximation and polynomials of the least quadratic deviationAnal. Math.19839322323473298410.1007/BF01989807 OskolkovKIInequalities of the ‘large sieve’ type and applications to problems of trigonometric approximationAnal. Math.198612214316685453610.1007/BF02027298 TelyakovskiiS. A.Approximation of functions of higher smoothness by Fourier sumsUkrainian Mathematical Journal1989414444451100485710.1007/BF01060623 V. P. Motornyi, “Approximation of periodic functions by interpolation polynomials in L1,” Ukr. Mat. Zh., 42, No. 6, 781–786 (1990); English translation: Ukr. Math. J., 42, No. 6, 690–693 (1990). II Sharapudinov (1647_CR3) 1983; 9 1647_CR9 NP Korneichuk (1647_CR10) 1987 KI Oskolkov (1647_CR4) 1986; 12 A. I. Stepanets (1647_CR2) 2008; 60 1647_CR1 S. A. Telyakovskii (1647_CR13) 1989; 41 1647_CR12 cr-split#-1647_CR7.2 cr-split#-1647_CR8.1 cr-split#-1647_CR11.1 cr-split#-1647_CR6.2 cr-split#-1647_CR7.1 cr-split#-1647_CR5.2 cr-split#-1647_CR6.1 cr-split#-1647_CR5.1 cr-split#-1647_CR8.2 cr-split#-1647_CR11.2 |
References_xml | – ident: #cr-split#-1647_CR7.1 – ident: 1647_CR9 – ident: 1647_CR12 – volume: 60 start-page: 1982 issue: 12 year: 2008 ident: 1647_CR2 publication-title: Ukrainian Mathematical Journal doi: 10.1007/s11253-009-0185-1 contributor: fullname: A. I. Stepanets – ident: #cr-split#-1647_CR5.2 – ident: #cr-split#-1647_CR5.1 – volume: 9 start-page: 223 issue: 3 year: 1983 ident: 1647_CR3 publication-title: Anal. Math. doi: 10.1007/BF01989807 contributor: fullname: II Sharapudinov – ident: #cr-split#-1647_CR7.2 – ident: #cr-split#-1647_CR11.1 – ident: #cr-split#-1647_CR11.2 – ident: 1647_CR1 – volume: 41 start-page: 444 issue: 4 year: 1989 ident: 1647_CR13 publication-title: Ukrainian Mathematical Journal doi: 10.1007/BF01060623 contributor: fullname: S. A. Telyakovskii – ident: #cr-split#-1647_CR8.1 – ident: #cr-split#-1647_CR8.2 – volume-title: Exact Constants in Approximation Theory [in Russian] year: 1987 ident: 1647_CR10 contributor: fullname: NP Korneichuk – volume: 12 start-page: 143 issue: 2 year: 1986 ident: 1647_CR4 publication-title: Anal. Math. doi: 10.1007/BF02027298 contributor: fullname: KI Oskolkov – ident: #cr-split#-1647_CR6.1 – ident: #cr-split#-1647_CR6.2 |
SSID | ssj0010087 |
Score | 2.1602418 |
Snippet | We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 322 |
SubjectTerms | Algebra Analysis Applications of Mathematics Geometry Mathematics Mathematics and Statistics Statistics |
Title | Approximation by Interpolation Trigonometric Polynomials in Metrics of the Space Lp on the Classes of Periodic Entire Functions |
URI | https://link.springer.com/article/10.1007/s11253-019-01647-2 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6qXuyhD9vSN3vorU3Jw5jNUWpEihZBC3oK2ewGpCWRRqGe-tc7s4mKUAotgYQkmyXszma-ycx8A3DnKcsjxWRYMjaNpmMKgwvPNETiK9dWCCoSXTph5L1MeCcgmhxn8-sifXtceyT1h3qb64aqmEJ_KLynRfQCFaih7nFRuGvt4LnX3zgPiGatcCxbBvFplbkyP_eyq492naFax3QP__V2R3BQQkrWLmTgGPZU2oD9wYaPNW9AnTBlQcl8Al9t4hH_nBVJi0ysWBF5mBVhcWyMBjulOlCtrZgNs_cVpS6jmLJZygb6as6yhGH_bIQmt2L9OcPn6FzX2FT69hBlO5PYQ5Au8LvKuqhBtZCfwms3GD_1jLIOgxHbZgttVSuylR9FQnDRNAUCRA9xEC5cu-VIblsRtywR-7FsebgT0pSuz5u4IbhDvBY5Z1BNs1SdA3N5LLmLbR2BdmEi0IaViFk5eUvdRNgXcL-ejXBe0G2EW2JlGuMQxzjUYxxi64f1bITl0st_aX75t-ZXULf1hFJs7jVUFx9LdQOVXC5vS4mj42Q67XwDvWPQnw |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5se7AefFTFt3vwpoG8szkWbWyxLYVG8Bay2Q0UJCmmBXvyrzu7SVoKIiiBQJLJEnZnM98wM98A3HnC8KRh0gye6Jpt6UyjzNM1lvrCMQWCilS1Tph64zf61JM0OXZdC6Oy3euQpPpTb4rd0BbL3B-Z3-NKfoEGtGzftVGXW91B-BysoweSZ62MLBuaJNSqimV-HmXbIG1HQ5WRCQ7-93mHsF-BStItteAIdkTWgb3RmpG16EBbosqSlPkYvrqSSfxzVpYtErYiZe5hXibGkRBddlnsILttJWSSv69k8TIqKpllZKTuFiRPCY5Ppuh0CzKcE3xPXqsum0I9nqB25xxH6GUL_LOSAG2oUvMTeA164WNfqzoxaImpu-itGrEp_DhmjDJbZwgRPURCuHVN1-LUNGJqGCzxE-56eGJc545PbTwQ3iFii61TaGZ5Js6AODTh1EFZi6FnmDL0YjmiVirjpU7KzHO4r5cjmpeEG9GGWlnOcYRzHKk5jlD6oV6NqNp8xS_iF38Tv4XdfjgaRsPB-OUS2qZaXJmpewXNxcdSXEOj4MubSv2-AcH60t0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6qQrGHPmxL391Db20wD2M2R6mmlaoIWugtZLMbEEoiVaGe-tc7s4mKUAqlBAJJJkvYnWS-ycx8A3DnKcsjw2RYMjaNhmMKgwvPNETiK9dWCCoS3Tph5A3eeLtDNDnrKn6d7b4KSeY1DcTSlM7rU5nUN4VvaJcpD4hyfZrENVCCCv0Wa5Sh0uqOn4J1JIE41_Ios2UQuVZROPPzKNvGaTsyqg1OcPD_Rz2E_QJsslauHUewo9Ia7PXXTK2zGlQJbeZkzcfw1SKG8c9JXs7IxJLlOYlZnjDHxujKUxEEdeGK2TB7X1JRMyowm6Ssr8_OWJYwHJ-N0BlXrDdleB8d6-6bSl8eotZnEkfopHP84rIAbatW_xN4DTrjx2ej6NBgxLbZRC_WimzlR5EQXDRMgdDRQ4SEr7TddCS3rYhbloj9WDY93AlpStfnDdwQ9iGSi5xTKKdZqs6AuTyW3EVZR6DHmAj0biWiWU5xVDcR9jncr5YmnOZEHOGGcpnmOMQ5DvUchyj9sFqZsHgpZ7-IX_xN_BZ2h-0g7HUHL5dQtfXaUgLvFZTnHwt1DaWZXNwUmvgNsqTbtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+by+Interpolation+Trigonometric+Polynomials+in+Metrics+of+the+Space+Lp+on+the+Classes+of+Periodic+Entire+Functions&rft.jtitle=Ukrainian+mathematical+journal&rft.au=Serdyuk%2C+A.+S.&rft.au=Sokolenko%2C+I.+V.&rft.date=2019-07-01&rft.pub=Springer+US&rft.issn=0041-5995&rft.eissn=1573-9376&rft.volume=71&rft.issue=2&rft.spage=322&rft.epage=332&rft_id=info:doi/10.1007%2Fs11253-019-01647-2&rft.externalDocID=10_1007_s11253_019_01647_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-5995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-5995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-5995&client=summon |