Approximation by Interpolation Trigonometric Polynomials in Metrics of the Space Lp on the Classes of Periodic Entire Functions

We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of interpolation nodes x k n − 1 = 2 kπ 2 n − 1 , k ∈ ℤ , in metrics of the spaces L p on the classes of 2 ⇡ -periodic functions that can be repres...

Full description

Saved in:
Bibliographic Details
Published in:Ukrainian mathematical journal Vol. 71; no. 2; pp. 322 - 332
Main Authors: Serdyuk, A. S., Sokolenko, I. V.
Format: Journal Article
Language:English
Published: New York Springer US 01-07-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of interpolation nodes x k n − 1 = 2 kπ 2 n − 1 , k ∈ ℤ , in metrics of the spaces L p on the classes of 2 ⇡ -periodic functions that can be represented in the form of convolutions of functions 𝜑 , 𝜑 ⊥ 1 , from the unit ball in the space L 1 with fixed generating kernels in the case where the modules of their Fourier coefficients ψ ( k ) satisfy the condition lim k  → ∞ ψ ( k  + 1)/ ψ ( k ) = 0. Similar estimates are also obtained for the classes of r –differentiable functions W 1 r with rapidly increasing exponents of smoothness r ( r / n  → ∞,  n  → ∞).
AbstractList We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of interpolation nodes x k n − 1 = 2 kπ 2 n − 1 , k ∈ ℤ , in metrics of the spaces L p on the classes of 2 ⇡ -periodic functions that can be represented in the form of convolutions of functions 𝜑 , 𝜑 ⊥ 1 , from the unit ball in the space L 1 with fixed generating kernels in the case where the modules of their Fourier coefficients ψ ( k ) satisfy the condition lim k  → ∞ ψ ( k  + 1)/ ψ ( k ) = 0. Similar estimates are also obtained for the classes of r –differentiable functions W 1 r with rapidly increasing exponents of smoothness r ( r / n  → ∞,  n  → ∞).
Author Serdyuk, A. S.
Sokolenko, I. V.
Author_xml – sequence: 1
  givenname: A. S.
  surname: Serdyuk
  fullname: Serdyuk, A. S.
  organization: Institute of Mathematics, Ukrainian National Academy of Sciences
– sequence: 2
  givenname: I. V.
  surname: Sokolenko
  fullname: Sokolenko, I. V.
  email: sokol@imath.kiev.ua
  organization: Institute of Mathematics, Ukrainian National Academy of Sciences
BookMark eNp9kMtqAyEUhqWk0CTtC3TlC9h6GWfGZQhJG0hpoOla1DGpYaKDTqBZ9dVrMl0XOcq5fD-efwJGPngLwCPBTwTj6jkRQjlDmIgcZVEhegPGhFcMCVaVIzDGuCCIC8HvwCSlA8YZq6sx-Jl1XQzf7qh6FzzUZ7jyvY1daIfCNrp98OFo--gM3IT2nBOn2gSdh2_XaoJhB_svCz86ZSxcdzBzl3zeqpTstb2x0YUmKyx876KFy5M3F_10D253Wc0-_L1T8LlcbOevaP3-sprP1shQXFLEiaJWKKV1rQusOctbEV6ympasqSlRNSHaCNOUVb50gxsu6iIfximjhWJTQAddE0NK0e5kF_PS8SwJlhcL5WChzBbKq4WSZogNUMrDfm-jPIRT9Pmf_1G_KRF3ZA
CitedBy_id crossref_primary_10_1007_s11253_022_02101_6
crossref_primary_10_1007_s11253_023_02248_w
Cites_doi 10.1007/s11253-009-0185-1
10.1007/BF01989807
10.1007/BF01060623
10.1007/BF02027298
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
DBID AAYXX
CITATION
DOI 10.1007/s11253-019-01647-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1573-9376
EndPage 332
ExternalDocumentID 10_1007_s11253_019_01647_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
Z7U
ZMTXR
ZWQNP
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
CITATION
ID FETCH-LOGICAL-c2062-51a2e9aabb8b40b5337615638263d821a811bc9cd679cdbd0d5984848352324a3
IEDL.DBID AEJHL
ISSN 0041-5995
IngestDate Thu Nov 21 22:09:37 EST 2024
Sat Dec 16 12:01:55 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2062-51a2e9aabb8b40b5337615638263d821a811bc9cd679cdbd0d5984848352324a3
PageCount 11
ParticipantIDs crossref_primary_10_1007_s11253_019_01647_2
springer_journals_10_1007_s11253_019_01647_2
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Ukrainian mathematical journal
PublicationTitleAbbrev Ukr Math J
PublicationYear 2019
Publisher Springer US
Publisher_xml – name: Springer US
References A. S. Serdyuk, “Approximation of periodic analytic functions by interpolation trigonometric polynomials in the metric of the space L,” Ukr. Mat. Zh., 54, No. 5, 692–699 (2002); English translation: Ukr. Math. J., 54, No. 5, 852–861 (2002).
A. S. Serdyuk, “Approximation of the classes of analytic functions by Fourier sums in uniform metric,” Ukr. Mat. Zh., 57, No. 8, 1079–1096 (2005); English translation: Ukr. Math. J., 57, No. 8, 1275–1296 (2005).
A. S. Serdyuk, “Approximation of infinitely differentiable analytic functions by interpolation trigonometric polynomials in integral metric,” Ukr. Mat. Zh., 53, No. 12, 1654–1663 (2001); English translation: Ukr. Math. J., 53, No. 12, 2014–2026 (2001).
A. S. Serdyuk and V. A. Voitovych, “Approximation of the classes of entire functions by interpolation analogs of the de la Vall´ee- Poussin sums,” in: Approximation Theory of Functions and Related Problems [in Russian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, 7, No. 1 (2010), pp. 274–297.
StepanetsA. I.SerdyukA. S.ShidlichA. L.Classification of infinitely differentiable periodic functionsUkrainian Mathematical Journal2008601219822005252311610.1007/s11253-009-0185-1
R. B. Stechkin, “Estimation of the remainder of Fourier series for differentiable functions,” in: Approximation of Functions by Polynomials and Splines, Tr. Mat. Inst. Akad. Nauk SSSR, 145, 126–151 (1980).
KorneichukNPExact Constants in Approximation Theory [in Russian]1987MoscowNauka
A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).
A. S. Serdyuk, “Approximation of periodic functions of high smoothness by interpolation trigonometric polynomials in the metric of L1,” Ukr. Mat. Zh., 52, No. 7, 994–998 (2000); English translation: Ukr. Math. J., 52, No. 7, 1141–1146 (2000).
SharapudinovIIOn the best approximation and polynomials of the least quadratic deviationAnal. Math.19839322323473298410.1007/BF01989807
OskolkovKIInequalities of the ‘large sieve’ type and applications to problems of trigonometric approximationAnal. Math.198612214316685453610.1007/BF02027298
TelyakovskiiS. A.Approximation of functions of higher smoothness by Fourier sumsUkrainian Mathematical Journal1989414444451100485710.1007/BF01060623
V. P. Motornyi, “Approximation of periodic functions by interpolation polynomials in L1,” Ukr. Mat. Zh., 42, No. 6, 781–786 (1990); English translation: Ukr. Math. J., 42, No. 6, 690–693 (1990).
II Sharapudinov (1647_CR3) 1983; 9
1647_CR9
NP Korneichuk (1647_CR10) 1987
KI Oskolkov (1647_CR4) 1986; 12
A. I. Stepanets (1647_CR2) 2008; 60
1647_CR1
S. A. Telyakovskii (1647_CR13) 1989; 41
1647_CR12
cr-split#-1647_CR7.2
cr-split#-1647_CR8.1
cr-split#-1647_CR11.1
cr-split#-1647_CR6.2
cr-split#-1647_CR7.1
cr-split#-1647_CR5.2
cr-split#-1647_CR6.1
cr-split#-1647_CR5.1
cr-split#-1647_CR8.2
cr-split#-1647_CR11.2
References_xml – ident: #cr-split#-1647_CR7.1
– ident: 1647_CR9
– ident: 1647_CR12
– volume: 60
  start-page: 1982
  issue: 12
  year: 2008
  ident: 1647_CR2
  publication-title: Ukrainian Mathematical Journal
  doi: 10.1007/s11253-009-0185-1
  contributor:
    fullname: A. I. Stepanets
– ident: #cr-split#-1647_CR5.2
– ident: #cr-split#-1647_CR5.1
– volume: 9
  start-page: 223
  issue: 3
  year: 1983
  ident: 1647_CR3
  publication-title: Anal. Math.
  doi: 10.1007/BF01989807
  contributor:
    fullname: II Sharapudinov
– ident: #cr-split#-1647_CR7.2
– ident: #cr-split#-1647_CR11.1
– ident: #cr-split#-1647_CR11.2
– ident: 1647_CR1
– volume: 41
  start-page: 444
  issue: 4
  year: 1989
  ident: 1647_CR13
  publication-title: Ukrainian Mathematical Journal
  doi: 10.1007/BF01060623
  contributor:
    fullname: S. A. Telyakovskii
– ident: #cr-split#-1647_CR8.1
– ident: #cr-split#-1647_CR8.2
– volume-title: Exact Constants in Approximation Theory [in Russian]
  year: 1987
  ident: 1647_CR10
  contributor:
    fullname: NP Korneichuk
– volume: 12
  start-page: 143
  issue: 2
  year: 1986
  ident: 1647_CR4
  publication-title: Anal. Math.
  doi: 10.1007/BF02027298
  contributor:
    fullname: KI Oskolkov
– ident: #cr-split#-1647_CR6.1
– ident: #cr-split#-1647_CR6.2
SSID ssj0010087
Score 2.1602418
Snippet We establish asymptotic equalities for the least upper bounds of approximations by interpolation trigonometric polynomials with equidistant distribution of...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 322
SubjectTerms Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Statistics
Title Approximation by Interpolation Trigonometric Polynomials in Metrics of the Space Lp on the Classes of Periodic Entire Functions
URI https://link.springer.com/article/10.1007/s11253-019-01647-2
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6qXuyhD9vSN3vorU3Jw5jNUWpEihZBC3oK2ewGpCWRRqGe-tc7s4mKUAotgYQkmyXszma-ycx8A3DnKcsjxWRYMjaNpmMKgwvPNETiK9dWCCoSXTph5L1MeCcgmhxn8-sifXtceyT1h3qb64aqmEJ_KLynRfQCFaih7nFRuGvt4LnX3zgPiGatcCxbBvFplbkyP_eyq492naFax3QP__V2R3BQQkrWLmTgGPZU2oD9wYaPNW9AnTBlQcl8Al9t4hH_nBVJi0ysWBF5mBVhcWyMBjulOlCtrZgNs_cVpS6jmLJZygb6as6yhGH_bIQmt2L9OcPn6FzX2FT69hBlO5PYQ5Au8LvKuqhBtZCfwms3GD_1jLIOgxHbZgttVSuylR9FQnDRNAUCRA9xEC5cu-VIblsRtywR-7FsebgT0pSuz5u4IbhDvBY5Z1BNs1SdA3N5LLmLbR2BdmEi0IaViFk5eUvdRNgXcL-ejXBe0G2EW2JlGuMQxzjUYxxi64f1bITl0st_aX75t-ZXULf1hFJs7jVUFx9LdQOVXC5vS4mj42Q67XwDvWPQnw
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5se7AefFTFt3vwpoG8szkWbWyxLYVG8Bay2Q0UJCmmBXvyrzu7SVoKIiiBQJLJEnZnM98wM98A3HnC8KRh0gye6Jpt6UyjzNM1lvrCMQWCilS1Tph64zf61JM0OXZdC6Oy3euQpPpTb4rd0BbL3B-Z3-NKfoEGtGzftVGXW91B-BysoweSZ62MLBuaJNSqimV-HmXbIG1HQ5WRCQ7-93mHsF-BStItteAIdkTWgb3RmpG16EBbosqSlPkYvrqSSfxzVpYtErYiZe5hXibGkRBddlnsILttJWSSv69k8TIqKpllZKTuFiRPCY5Ppuh0CzKcE3xPXqsum0I9nqB25xxH6GUL_LOSAG2oUvMTeA164WNfqzoxaImpu-itGrEp_DhmjDJbZwgRPURCuHVN1-LUNGJqGCzxE-56eGJc545PbTwQ3iFii61TaGZ5Js6AODTh1EFZi6FnmDL0YjmiVirjpU7KzHO4r5cjmpeEG9GGWlnOcYRzHKk5jlD6oV6NqNp8xS_iF38Tv4XdfjgaRsPB-OUS2qZaXJmpewXNxcdSXEOj4MubSv2-AcH60t0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6qQrGHPmxL391Db20wD2M2R6mmlaoIWugtZLMbEEoiVaGe-tc7s4mKUAqlBAJJJkvYnWS-ycx8A3DnKcsjw2RYMjaNhmMKgwvPNETiK9dWCCoS3Tph5A3eeLtDNDnrKn6d7b4KSeY1DcTSlM7rU5nUN4VvaJcpD4hyfZrENVCCCv0Wa5Sh0uqOn4J1JIE41_Ios2UQuVZROPPzKNvGaTsyqg1OcPD_Rz2E_QJsslauHUewo9Ia7PXXTK2zGlQJbeZkzcfw1SKG8c9JXs7IxJLlOYlZnjDHxujKUxEEdeGK2TB7X1JRMyowm6Ssr8_OWJYwHJ-N0BlXrDdleB8d6-6bSl8eotZnEkfopHP84rIAbatW_xN4DTrjx2ej6NBgxLbZRC_WimzlR5EQXDRMgdDRQ4SEr7TddCS3rYhbloj9WDY93AlpStfnDdwQ9iGSi5xTKKdZqs6AuTyW3EVZR6DHmAj0biWiWU5xVDcR9jncr5YmnOZEHOGGcpnmOMQ5DvUchyj9sFqZsHgpZ7-IX_xN_BZ2h-0g7HUHL5dQtfXaUgLvFZTnHwt1DaWZXNwUmvgNsqTbtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+by+Interpolation+Trigonometric+Polynomials+in+Metrics+of+the+Space+Lp+on+the+Classes+of+Periodic+Entire+Functions&rft.jtitle=Ukrainian+mathematical+journal&rft.au=Serdyuk%2C+A.+S.&rft.au=Sokolenko%2C+I.+V.&rft.date=2019-07-01&rft.pub=Springer+US&rft.issn=0041-5995&rft.eissn=1573-9376&rft.volume=71&rft.issue=2&rft.spage=322&rft.epage=332&rft_id=info:doi/10.1007%2Fs11253-019-01647-2&rft.externalDocID=10_1007_s11253_019_01647_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-5995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-5995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-5995&client=summon