Regulating the Photoisomerization of Covalent Organic Framework for Enhanced Photocatalytic Hydrogen Evolution
Comprehensive Summary Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate...
Saved in:
Published in: | Chinese journal of chemistry Vol. 42; no. 21; pp. 2621 - 2626 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01-11-2024
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Comprehensive Summary
Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g–1·h–1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications.
The molecular engineering on the regulation of the excited‐state configurations for β‐ketoenamine‐linked covalent organic frameworks (COF) has been proposed. Through the chemical modification of COF linkers, it is found that the electron‐withdrawing cyano groups facilitate the ESIPT‐induced photoisomerization of COFs and in turn, benefit the photoinduced electron‐hole separation for the optimum photocatalytic hydrogen evolution rate of as high as 162.72 mmol·g–1·h–1 under visible irradiation. |
---|---|
AbstractList | Comprehensive SummaryCovalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g–1·h–1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications. Comprehensive Summary Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g–1·h–1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications. The molecular engineering on the regulation of the excited‐state configurations for β‐ketoenamine‐linked covalent organic frameworks (COF) has been proposed. Through the chemical modification of COF linkers, it is found that the electron‐withdrawing cyano groups facilitate the ESIPT‐induced photoisomerization of COFs and in turn, benefit the photoinduced electron‐hole separation for the optimum photocatalytic hydrogen evolution rate of as high as 162.72 mmol·g–1·h–1 under visible irradiation. Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g –1 ·h –1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications. |
Author | Huang, Xingye Guo, Jia |
Author_xml | – sequence: 1 givenname: Xingye surname: Huang fullname: Huang, Xingye organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science – sequence: 2 givenname: Jia surname: Guo fullname: Guo, Jia email: guojia@fudan.edu.cn organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science |
BookMark | eNqFkMFLwzAUh4NMcE6vngOeO5M0TdajlM0pg4koeAtJmnadXTLTdqP-9WZU9OjpPR7f9x7vdwlG1lkDwA1GU4wQudNbp6cEEYoQjfkZGGOGacQRS0ahRwhHDNH3C3DZNNvAc07YGNgXU3a1bCtbwnZj4PPGta5q3M746iuMnYWugJk7yNrYFq59KW2l4cLLnTk6_wEL5-HcbqTVJh9sLVtZ922gln3uXWksnB9c3Z2WXYHzQtaNuf6pE_C2mL9my2i1fnjM7leRDg_wiORaSUJmhqeIYMIZ04bomNCEx4wpTFCqWEooJSznTBUyLkySs0QpVcQzROIJuB327r377EzTiq3rvA0nRYwxpjSZIRyo6UBp75rGm0LsfbWTvhcYiVOm4pSp-M00COkgHKva9P_QIntaZ3_uN6V-fg8 |
Cites_doi | 10.1039/D3TA02189K 10.1021/ja0386593 10.1039/C5CS00543D 10.1016/0263-7855(96)00018-5 10.1002/smll.202307138 10.1038/238037a0 10.1021/acs.chemrev.9b00550 10.1038/s41467-021-24179-5 10.1038/s41560-019-0456-5 10.1002/anie.201502659 10.1002/anie.202401969 10.1016/j.carbon.2020.05.023 10.1021/jacsau.3c00554 10.1021/jacs.2c11893 10.1002/jcc.22885 10.1021/jacs.9b05964 10.1039/C8CS00185E 10.1126/science.1120411 10.1002/anie.201106203 10.1038/s41557-020-00562-5 10.1021/jp002942w |
ContentType | Journal Article |
Copyright | 2024 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
Copyright_xml | – notice: 2024 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cjoc.202400437 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1614-7065 |
EndPage | 2626 |
ExternalDocumentID | 10_1002_cjoc_202400437 CJOC202400437 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52173197; 52373202 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 29B 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VR 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM AAESR AAEVG AAHHS AANLZ AAONW AAXDM AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCEZO CDRFL CHBEP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FA0 G-S G.N GODZA H.T H.X HGLYW HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P4D Q.N Q11 QB0 QRW R.K RK2 RNS ROL RWI RX1 RYL SUPJJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT -SB -S~ .Y3 31~ 53G 5XA 5XC AAMNL AASGY AAYXX ACBWZ AFUIB AZFZN BDRZF BZXJU CAJEB CITATION EJD FEDTE HF~ HVGLF LH4 PALCI Q-- RIWAO RJQFR SAMSI U1G U5L |
ID | FETCH-LOGICAL-c2027-2dcba228e790212766ce2c32457366b1209b6924426d76bfa3fe5d65bbbf38023 |
IEDL.DBID | 33P |
ISSN | 1001-604X |
IngestDate | Thu Oct 10 21:11:44 EDT 2024 Fri Nov 22 01:46:31 EST 2024 Tue Oct 01 09:50:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2027-2dcba228e790212766ce2c32457366b1209b6924426d76bfa3fe5d65bbbf38023 |
Notes | Dedicated to the Special Issue of Emerging Themes in Polymer Science. |
PQID | 3111445801 |
PQPubID | 986331 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3111445801 crossref_primary_10_1002_cjoc_202400437 wiley_primary_10_1002_cjoc_202400437_CJOC202400437 |
PublicationCentury | 2000 |
PublicationDate | 1 November 2024 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 1 November 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationYear | 2024 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2004; 33 2019; 4 2004; 126 2021; 12 2023; 11 2020; 120 2005; 310 2020; 165 2023; 145 2015; 54 2024; 63 2024; 20 2020; 12 2023; 3 1996; 14 2019; 141 2012; 33 1972; 238 2018; 47 2016; 45 2012; 51 2001; 105 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Hadjoudis E. (e_1_2_6_14_1) 2004; 33 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 51 start-page: 2618 year: 2012 article-title: High‐Rate Charge‐Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 7230 year: 2015 end-page: 7232 article-title: Solar Water Splitting at =600 nm: A Step Closer to Sustainable Hydrogen Production publication-title: Angew. Chem. Int. Ed. – volume: 33 start-page: 580 year: 2012 end-page: 592 article-title: Multiwfn: A Multifunctional Wavefunction Analyzer publication-title: J. Comput. Chem. – volume: 165 start-page: 461 year: 2020 end-page: 467 article-title: An sp‐Hybridized All‐Carboatomic Ring, Cyclo[18]Carbon: Electronic Structure, Electronic Spectrum, and Optical Nonlinearity publication-title: Carbon – volume: 4 start-page: 746 year: 2019 end-page: 760 article-title: Current Understanding and Challenges of Solar‐driven Hydrogen Generation Using Polymeric Photocatalysts publication-title: Nat. Energy – volume: 3 start-page: 3391 year: 2023 end-page: 3399 article-title: Effect of ESIPT‐Induced Photoisomerization of Keto‐Enamine Linkages on The Photocatalytic Hydrogen Evolution Performance of Covalent Organic Frameworks publication-title: JACS Au – volume: 120 start-page: 8814 year: 2020 end-page: 8933 article-title: Covalent Organic Frameworks: Design, Synthesis, and Functions publication-title: Chem. Rev. – volume: 238 start-page: 37 year: 1972 end-page: 38 article-title: Electrochemical Photolysis of Water at a Semiconductor Electrode publication-title: Nature – volume: 12 start-page: 3934 year: 2021 article-title: PEG‐Stabilized Coaxial Stacking of Two‐Dimensional Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Evolution publication-title: Nat. Commun. – volume: 45 start-page: 169 year: 2016 end-page: 202 article-title: Excited‐State Intramolecular Proton‐Transfer (ESIPT)‐Inspired Solid State Emitters publication-title: Chem. Soc. Rev. – volume: 14 start-page: 33 year: 1996 end-page: 38 article-title: VMD: Visual Molecular Dynamics publication-title: J. Mol. Graph. Model. – volume: 33 start-page: 579 year: 2004 end-page: 588 article-title: Photochromism and Thermochromism of Schiff Bases in The Solid State: Structural Aspects publication-title: Chem. Soc. Rev. – volume: 12 start-page: 1115 year: 2020 end-page: 1122 article-title: Partitioning the Interlayer Space of Covalent Organic Frameworks by Embedding Pseudorotaxanes in Their Backbones publication-title: Nat. Chem. – volume: 47 start-page: 8842 year: 2018 end-page: 8880 article-title: Excited‐State Intramolecular Proton‐Transfer (ESIPT) Based Fluorescence Sensors and Imaging Agents publication-title: Chem. Soc. Rev. – volume: 20 start-page: 2307138 year: 2024 article-title: Photostimulated Covalent Linkage Transformation Isomerizing Covalent Organic Frameworks for Improved Photocatalytic Performances publication-title: Small – volume: 126 start-page: 2912 year: 2004 end-page: 2922 article-title: Theoretical Study of Benzotriazole UV Photostability: Ultrafast Dseactivation Through Coupled Proton and Electron Transfer Triggered by a Charge‐Transfer State publication-title: J. Am. Chem. Soc. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 article-title: Porous, Crystalline, Covalent Organic Frameworks publication-title: Science – volume: 63 year: 2024 article-title: Photoelectron Migration Boosted by Hollow Double‐Shell Dyads Based on Covalent Organic Frameworks for Highly Efficient Photocatalytic Hydrogen Generation publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 12219 year: 2019 end-page: 12223 article-title: Titanium Hydroxide Secondary Building Units in Metal‐Organic Frameworks Catalyze Hydrogen Evolution Under Visible Light publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 14489 year: 2023 end-page: 14538 article-title: Strategic Design of Covalent Organic Frameworks (COFs) for Photocatalytic Hydrogen Generation publication-title: J. Mater. Chem. A – volume: 105 start-page: 1731 year: 2001 end-page: 1740 article-title: Excited‐State Intramolecular Proton Transfer in 10‐Hydroxybenzo[ ]quinolone publication-title: J. Phys. Chem. A – volume: 145 start-page: 8364 year: 2023 end-page: 8374 article-title: Three‐Component Donor−π–Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_10_1 doi: 10.1039/D3TA02189K – ident: e_1_2_6_16_1 doi: 10.1021/ja0386593 – ident: e_1_2_6_18_1 doi: 10.1039/C5CS00543D – ident: e_1_2_6_22_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_6_20_1 doi: 10.1002/smll.202307138 – ident: e_1_2_6_5_1 doi: 10.1038/238037a0 – ident: e_1_2_6_6_1 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_6_9_1 doi: 10.1038/s41467-021-24179-5 – ident: e_1_2_6_3_1 doi: 10.1038/s41560-019-0456-5 – ident: e_1_2_6_2_1 doi: 10.1002/anie.201502659 – ident: e_1_2_6_12_1 doi: 10.1002/anie.202401969 – ident: e_1_2_6_23_1 doi: 10.1016/j.carbon.2020.05.023 – ident: e_1_2_6_19_1 doi: 10.1021/jacsau.3c00554 – ident: e_1_2_6_11_1 doi: 10.1021/jacs.2c11893 – ident: e_1_2_6_21_1 doi: 10.1002/jcc.22885 – ident: e_1_2_6_4_1 doi: 10.1021/jacs.9b05964 – ident: e_1_2_6_17_1 doi: 10.1039/C8CS00185E – ident: e_1_2_6_7_1 doi: 10.1126/science.1120411 – ident: e_1_2_6_8_1 doi: 10.1002/anie.201106203 – ident: e_1_2_6_13_1 doi: 10.1038/s41557-020-00562-5 – volume: 33 start-page: 579 year: 2004 ident: e_1_2_6_14_1 article-title: Photochromism and Thermochromism of Schiff Bases in The Solid State: Structural Aspects publication-title: Chem. Soc. Rev. contributor: fullname: Hadjoudis E. – ident: e_1_2_6_15_1 doi: 10.1021/jp002942w |
SSID | ssj0027726 |
Score | 2.3881817 |
Snippet | Comprehensive Summary
Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances.... Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on... Comprehensive SummaryCovalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2621 |
SubjectTerms | Charge distribution Charge separation Configuration management Conjugation Covalent organic framework Hole distribution Hydrogen evolution Hydrogen evolution reaction Photocatalysis Photochemicals Photoisomerization Quantum efficiency Water splitting |
Title | Regulating the Photoisomerization of Covalent Organic Framework for Enhanced Photocatalytic Hydrogen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202400437 https://www.proquest.com/docview/3111445801 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgCyx8IwoFeUBiilrsxElGFFJVDFDxIXWL7MRRYYhR0yL133NnJy2dkGBLBieR787v7Nx7R8i1jKPiNlQFBJIoPD8qlacElx4fKOTqAsRr2zrhJXycRPcpyuSsWPxOH2J14IaRYddrDHCp6v5aNDT_MChBiDWQPkc6OWwVLIeDj9c7rtD2W0OdIU8M_Emr2jhg_c3hm6i0TjV_JqwWcYb7___WA7LXZJv0zrnHIdnS1RHZSdomb8ekena96AHAKKSCdDw1c_NeG_yP4wia1JQ0MeCPgE7UMTdzOmxLuijkvDStpraOwI22B0JLeCEdLYuZAQel6Vfj4CfkbZi-JiOvacHg5Xgq4rEiV5KxSIex1YIX2EAshyQsCLkQCom3SsAWDnC-CIUqJS91UIhAKVVy1JY7JZ3KVPqM0CCWQvpMizxCjbo4ipWWEStjsBvKinXJTWuC7NMpbWROU5llOH_Zav66pNdaKGsirs44LNq-HwDgdgmztvjlKVny8JSs7s7_MuiC7OK1oyb2SGc-W-hLsl0Xiyvrh9-an9yI |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMpSFN6JQwAMSU9QSJ04yVqFVgVIqKFI3K85DhSFGfSD13-Ozk5ZOSIgxkZxE9p2_8-W-7wCuo8BPbj2RKEdiieX4mbAEo5FFWwK5ugriU9064dUbjP27DsrktEsujNGHWCXc0DP0fo0Ojgnp5lo1NP6QqEGIRZAO9Sqw7TBljcjioMP1mcvTHddQachiLWdc6ja27Obm-E1cWgebP0NWjTndvX_42n3YLQJO0jYWcgBbaX4ItbDs83YE-YtpR68wjKhokAwnci7fZxJ_5RiOJpEZCaUySQVQxJA3Y9Itq7qICntJJ5_oUgIzWueEluqFpLdMplLZKOl8FTZ-DG_dzijsWUUXBivGxIhlJ7GIbNtPvUDLwTPsIRarOMz1KGMCubeCqVOcgvrEYyKLaJa6CXOFEBlFebkTqOYyT0-BuEHEIsdOWeyjTF3gByKNfDsL1CkPlcXqcFOuAf80YhvcyCrbHOePr-avDo1yiXjhdDNO1b7tOK7C3DrYejF-eQoPH57D1dXZXwZdQa03eurz_v3g8Rx28L5hKjagOp8u0guozJLFpTbKb6C34LA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ7YmqgX38Zq1T2YeCKtLCxwNBRSH6mNj6Q3wrKQ6gGaPkz6793ZBWpPJnqEZIDszuz3zbLzDcB17Lni1uFCBhIThuVm3OCMxgbtcqzVlRCfqtYJr85g5PYClMmpq_i1PkS94YaRodZrDPCJyDor0dDks0AJQjwDaVGnAZuW5OKonk_pcJVyOarhGgoNGaxrjSrZxq7ZWbdfh6UV1_zJWBXkhHv__9h92C3pJrnT_nEAG2l-CNt-1eXtCPIX3YxeIhiRXJAMx8W8-JgV-CNHV2iSIiN-IR1SwhPRpZsJCaszXUSSXhLkY3WQQFurHaGlfCHpL8W0kB5Kgq_Sw4_hPQze_L5R9mAwEtwWMUyR8Ng03dTxlBg8ww5iiWRhtkMZ41h5y5nM4STQC4fxLKZZagtmc84ziuJyJ9DMizw9BWJ7MYstM2WJiyJ1nuvxNHbNzJM5HuqKteCmmoJooqU2Ii2qbEY4flE9fi1oVzMUlSE3i6hctS3LlojbAlPNxS9PifyHZ7--OvuL0RVsDXth9HQ_eDyHHbytyxTb0JxPF-kFNGZicalc8hv2NN9W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Photoisomerization+of+Covalent+Organic+Framework+for+Enhanced+Photocatalytic+Hydrogen+Evolution&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Huang%2C+Xingye&rft.au=Guo%2C+Jia&rft.date=2024-11-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=42&rft.issue=21&rft.spage=2621&rft.epage=2626&rft_id=info:doi/10.1002%2Fcjoc.202400437&rft.externalDBID=10.1002%252Fcjoc.202400437&rft.externalDocID=CJOC202400437 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon |