Regulating the Photoisomerization of Covalent Organic Framework for Enhanced Photocatalytic Hydrogen Evolution

Comprehensive Summary Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemistry Vol. 42; no. 21; pp. 2621 - 2626
Main Authors: Huang, Xingye, Guo, Jia
Format: Journal Article
Language:English
Published: Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01-11-2024
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Comprehensive Summary Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g–1·h–1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications. The molecular engineering on the regulation of the excited‐state configurations for β‐ketoenamine‐linked covalent organic frameworks (COF) has been proposed. Through the chemical modification of COF linkers, it is found that the electron‐withdrawing cyano groups facilitate the ESIPT‐induced photoisomerization of COFs and in turn, benefit the photoinduced electron‐hole separation for the optimum photocatalytic hydrogen evolution rate of as high as 162.72 mmol·g–1·h–1 under visible irradiation.
AbstractList Comprehensive SummaryCovalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g–1·h–1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications.
Comprehensive Summary Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g–1·h–1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications. The molecular engineering on the regulation of the excited‐state configurations for β‐ketoenamine‐linked covalent organic frameworks (COF) has been proposed. Through the chemical modification of COF linkers, it is found that the electron‐withdrawing cyano groups facilitate the ESIPT‐induced photoisomerization of COFs and in turn, benefit the photoinduced electron‐hole separation for the optimum photocatalytic hydrogen evolution rate of as high as 162.72 mmol·g–1·h–1 under visible irradiation.
Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g –1 ·h –1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications.
Author Huang, Xingye
Guo, Jia
Author_xml – sequence: 1
  givenname: Xingye
  surname: Huang
  fullname: Huang, Xingye
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science
– sequence: 2
  givenname: Jia
  surname: Guo
  fullname: Guo, Jia
  email: guojia@fudan.edu.cn
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science
BookMark eNqFkMFLwzAUh4NMcE6vngOeO5M0TdajlM0pg4koeAtJmnadXTLTdqP-9WZU9OjpPR7f9x7vdwlG1lkDwA1GU4wQudNbp6cEEYoQjfkZGGOGacQRS0ahRwhHDNH3C3DZNNvAc07YGNgXU3a1bCtbwnZj4PPGta5q3M746iuMnYWugJk7yNrYFq59KW2l4cLLnTk6_wEL5-HcbqTVJh9sLVtZ922gln3uXWksnB9c3Z2WXYHzQtaNuf6pE_C2mL9my2i1fnjM7leRDg_wiORaSUJmhqeIYMIZ04bomNCEx4wpTFCqWEooJSznTBUyLkySs0QpVcQzROIJuB327r377EzTiq3rvA0nRYwxpjSZIRyo6UBp75rGm0LsfbWTvhcYiVOm4pSp-M00COkgHKva9P_QIntaZ3_uN6V-fg8
Cites_doi 10.1039/D3TA02189K
10.1021/ja0386593
10.1039/C5CS00543D
10.1016/0263-7855(96)00018-5
10.1002/smll.202307138
10.1038/238037a0
10.1021/acs.chemrev.9b00550
10.1038/s41467-021-24179-5
10.1038/s41560-019-0456-5
10.1002/anie.201502659
10.1002/anie.202401969
10.1016/j.carbon.2020.05.023
10.1021/jacsau.3c00554
10.1021/jacs.2c11893
10.1002/jcc.22885
10.1021/jacs.9b05964
10.1039/C8CS00185E
10.1126/science.1120411
10.1002/anie.201106203
10.1038/s41557-020-00562-5
10.1021/jp002942w
ContentType Journal Article
Copyright 2024 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
Copyright_xml – notice: 2024 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cjoc.202400437
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1614-7065
EndPage 2626
ExternalDocumentID 10_1002_cjoc_202400437
CJOC202400437
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52173197; 52373202
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
29B
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXDM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCEZO
CDRFL
CHBEP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FA0
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P4D
Q.N
Q11
QB0
QRW
R.K
RK2
RNS
ROL
RWI
RX1
RYL
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
-SB
-S~
.Y3
31~
53G
5XA
5XC
AAMNL
AASGY
AAYXX
ACBWZ
AFUIB
AZFZN
BDRZF
BZXJU
CAJEB
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
PALCI
Q--
RIWAO
RJQFR
SAMSI
U1G
U5L
ID FETCH-LOGICAL-c2027-2dcba228e790212766ce2c32457366b1209b6924426d76bfa3fe5d65bbbf38023
IEDL.DBID 33P
ISSN 1001-604X
IngestDate Thu Oct 10 21:11:44 EDT 2024
Fri Nov 22 01:46:31 EST 2024
Tue Oct 01 09:50:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2027-2dcba228e790212766ce2c32457366b1209b6924426d76bfa3fe5d65bbbf38023
Notes Dedicated to the Special Issue of Emerging Themes in Polymer Science.
PQID 3111445801
PQPubID 986331
PageCount 6
ParticipantIDs proquest_journals_3111445801
crossref_primary_10_1002_cjoc_202400437
wiley_primary_10_1002_cjoc_202400437_CJOC202400437
PublicationCentury 2000
PublicationDate 1 November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 1 November 2024
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationYear 2024
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2004; 33
2019; 4
2004; 126
2021; 12
2023; 11
2020; 120
2005; 310
2020; 165
2023; 145
2015; 54
2024; 63
2024; 20
2020; 12
2023; 3
1996; 14
2019; 141
2012; 33
1972; 238
2018; 47
2016; 45
2012; 51
2001; 105
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Hadjoudis E. (e_1_2_6_14_1) 2004; 33
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 51
  start-page: 2618
  year: 2012
  article-title: High‐Rate Charge‐Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 7230
  year: 2015
  end-page: 7232
  article-title: Solar Water Splitting at =600 nm: A Step Closer to Sustainable Hydrogen Production
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  article-title: Multiwfn: A Multifunctional Wavefunction Analyzer
  publication-title: J. Comput. Chem.
– volume: 165
  start-page: 461
  year: 2020
  end-page: 467
  article-title: An sp‐Hybridized All‐Carboatomic Ring, Cyclo[18]Carbon: Electronic Structure, Electronic Spectrum, and Optical Nonlinearity
  publication-title: Carbon
– volume: 4
  start-page: 746
  year: 2019
  end-page: 760
  article-title: Current Understanding and Challenges of Solar‐driven Hydrogen Generation Using Polymeric Photocatalysts
  publication-title: Nat. Energy
– volume: 3
  start-page: 3391
  year: 2023
  end-page: 3399
  article-title: Effect of ESIPT‐Induced Photoisomerization of Keto‐Enamine Linkages on The Photocatalytic Hydrogen Evolution Performance of Covalent Organic Frameworks
  publication-title: JACS Au
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  article-title: Covalent Organic Frameworks: Design, Synthesis, and Functions
  publication-title: Chem. Rev.
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  article-title: Electrochemical Photolysis of Water at a Semiconductor Electrode
  publication-title: Nature
– volume: 12
  start-page: 3934
  year: 2021
  article-title: PEG‐Stabilized Coaxial Stacking of Two‐Dimensional Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: Nat. Commun.
– volume: 45
  start-page: 169
  year: 2016
  end-page: 202
  article-title: Excited‐State Intramolecular Proton‐Transfer (ESIPT)‐Inspired Solid State Emitters
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  article-title: VMD: Visual Molecular Dynamics
  publication-title: J. Mol. Graph. Model.
– volume: 33
  start-page: 579
  year: 2004
  end-page: 588
  article-title: Photochromism and Thermochromism of Schiff Bases in The Solid State: Structural Aspects
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 1115
  year: 2020
  end-page: 1122
  article-title: Partitioning the Interlayer Space of Covalent Organic Frameworks by Embedding Pseudorotaxanes in Their Backbones
  publication-title: Nat. Chem.
– volume: 47
  start-page: 8842
  year: 2018
  end-page: 8880
  article-title: Excited‐State Intramolecular Proton‐Transfer (ESIPT) Based Fluorescence Sensors and Imaging Agents
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 2307138
  year: 2024
  article-title: Photostimulated Covalent Linkage Transformation Isomerizing Covalent Organic Frameworks for Improved Photocatalytic Performances
  publication-title: Small
– volume: 126
  start-page: 2912
  year: 2004
  end-page: 2922
  article-title: Theoretical Study of Benzotriazole UV Photostability: Ultrafast Dseactivation Through Coupled Proton and Electron Transfer Triggered by a Charge‐Transfer State
  publication-title: J. Am. Chem. Soc.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  article-title: Porous, Crystalline, Covalent Organic Frameworks
  publication-title: Science
– volume: 63
  year: 2024
  article-title: Photoelectron Migration Boosted by Hollow Double‐Shell Dyads Based on Covalent Organic Frameworks for Highly Efficient Photocatalytic Hydrogen Generation
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 12219
  year: 2019
  end-page: 12223
  article-title: Titanium Hydroxide Secondary Building Units in Metal‐Organic Frameworks Catalyze Hydrogen Evolution Under Visible Light
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 14489
  year: 2023
  end-page: 14538
  article-title: Strategic Design of Covalent Organic Frameworks (COFs) for Photocatalytic Hydrogen Generation
  publication-title: J. Mater. Chem. A
– volume: 105
  start-page: 1731
  year: 2001
  end-page: 1740
  article-title: Excited‐State Intramolecular Proton Transfer in 10‐Hydroxybenzo[ ]quinolone
  publication-title: J. Phys. Chem. A
– volume: 145
  start-page: 8364
  year: 2023
  end-page: 8374
  article-title: Three‐Component Donor−π–Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_10_1
  doi: 10.1039/D3TA02189K
– ident: e_1_2_6_16_1
  doi: 10.1021/ja0386593
– ident: e_1_2_6_18_1
  doi: 10.1039/C5CS00543D
– ident: e_1_2_6_22_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_6_20_1
  doi: 10.1002/smll.202307138
– ident: e_1_2_6_5_1
  doi: 10.1038/238037a0
– ident: e_1_2_6_6_1
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_6_9_1
  doi: 10.1038/s41467-021-24179-5
– ident: e_1_2_6_3_1
  doi: 10.1038/s41560-019-0456-5
– ident: e_1_2_6_2_1
  doi: 10.1002/anie.201502659
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.202401969
– ident: e_1_2_6_23_1
  doi: 10.1016/j.carbon.2020.05.023
– ident: e_1_2_6_19_1
  doi: 10.1021/jacsau.3c00554
– ident: e_1_2_6_11_1
  doi: 10.1021/jacs.2c11893
– ident: e_1_2_6_21_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_6_4_1
  doi: 10.1021/jacs.9b05964
– ident: e_1_2_6_17_1
  doi: 10.1039/C8CS00185E
– ident: e_1_2_6_7_1
  doi: 10.1126/science.1120411
– ident: e_1_2_6_8_1
  doi: 10.1002/anie.201106203
– ident: e_1_2_6_13_1
  doi: 10.1038/s41557-020-00562-5
– volume: 33
  start-page: 579
  year: 2004
  ident: e_1_2_6_14_1
  article-title: Photochromism and Thermochromism of Schiff Bases in The Solid State: Structural Aspects
  publication-title: Chem. Soc. Rev.
  contributor:
    fullname: Hadjoudis E.
– ident: e_1_2_6_15_1
  doi: 10.1021/jp002942w
SSID ssj0027726
Score 2.3881817
Snippet Comprehensive Summary Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances....
Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on...
Comprehensive SummaryCovalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2621
SubjectTerms Charge distribution
Charge separation
Configuration management
Conjugation
Covalent organic framework
Hole distribution
Hydrogen evolution
Hydrogen evolution reaction
Photocatalysis
Photochemicals
Photoisomerization
Quantum efficiency
Water splitting
Title Regulating the Photoisomerization of Covalent Organic Framework for Enhanced Photocatalytic Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202400437
https://www.proquest.com/docview/3111445801
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgCyx8IwoFeUBiilrsxElGFFJVDFDxIXWL7MRRYYhR0yL133NnJy2dkGBLBieR787v7Nx7R8i1jKPiNlQFBJIoPD8qlacElx4fKOTqAsRr2zrhJXycRPcpyuSsWPxOH2J14IaRYddrDHCp6v5aNDT_MChBiDWQPkc6OWwVLIeDj9c7rtD2W0OdIU8M_Emr2jhg_c3hm6i0TjV_JqwWcYb7___WA7LXZJv0zrnHIdnS1RHZSdomb8ekena96AHAKKSCdDw1c_NeG_yP4wia1JQ0MeCPgE7UMTdzOmxLuijkvDStpraOwI22B0JLeCEdLYuZAQel6Vfj4CfkbZi-JiOvacHg5Xgq4rEiV5KxSIex1YIX2EAshyQsCLkQCom3SsAWDnC-CIUqJS91UIhAKVVy1JY7JZ3KVPqM0CCWQvpMizxCjbo4ipWWEStjsBvKinXJTWuC7NMpbWROU5llOH_Zav66pNdaKGsirs44LNq-HwDgdgmztvjlKVny8JSs7s7_MuiC7OK1oyb2SGc-W-hLsl0Xiyvrh9-an9yI
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMpSFN6JQwAMSU9QSJ04yVqFVgVIqKFI3K85DhSFGfSD13-Ozk5ZOSIgxkZxE9p2_8-W-7wCuo8BPbj2RKEdiieX4mbAEo5FFWwK5ugriU9064dUbjP27DsrktEsujNGHWCXc0DP0fo0Ojgnp5lo1NP6QqEGIRZAO9Sqw7TBljcjioMP1mcvTHddQachiLWdc6ja27Obm-E1cWgebP0NWjTndvX_42n3YLQJO0jYWcgBbaX4ItbDs83YE-YtpR68wjKhokAwnci7fZxJ_5RiOJpEZCaUySQVQxJA3Y9Itq7qICntJJ5_oUgIzWueEluqFpLdMplLZKOl8FTZ-DG_dzijsWUUXBivGxIhlJ7GIbNtPvUDLwTPsIRarOMz1KGMCubeCqVOcgvrEYyKLaJa6CXOFEBlFebkTqOYyT0-BuEHEIsdOWeyjTF3gByKNfDsL1CkPlcXqcFOuAf80YhvcyCrbHOePr-avDo1yiXjhdDNO1b7tOK7C3DrYejF-eQoPH57D1dXZXwZdQa03eurz_v3g8Rx28L5hKjagOp8u0guozJLFpTbKb6C34LA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ7YmqgX38Zq1T2YeCKtLCxwNBRSH6mNj6Q3wrKQ6gGaPkz6793ZBWpPJnqEZIDszuz3zbLzDcB17Lni1uFCBhIThuVm3OCMxgbtcqzVlRCfqtYJr85g5PYClMmpq_i1PkS94YaRodZrDPCJyDor0dDks0AJQjwDaVGnAZuW5OKonk_pcJVyOarhGgoNGaxrjSrZxq7ZWbdfh6UV1_zJWBXkhHv__9h92C3pJrnT_nEAG2l-CNt-1eXtCPIX3YxeIhiRXJAMx8W8-JgV-CNHV2iSIiN-IR1SwhPRpZsJCaszXUSSXhLkY3WQQFurHaGlfCHpL8W0kB5Kgq_Sw4_hPQze_L5R9mAwEtwWMUyR8Ng03dTxlBg8ww5iiWRhtkMZ41h5y5nM4STQC4fxLKZZagtmc84ziuJyJ9DMizw9BWJ7MYstM2WJiyJ1nuvxNHbNzJM5HuqKteCmmoJooqU2Ii2qbEY4flE9fi1oVzMUlSE3i6hctS3LlojbAlPNxS9PifyHZ7--OvuL0RVsDXth9HQ_eDyHHbytyxTb0JxPF-kFNGZicalc8hv2NN9W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Photoisomerization+of+Covalent+Organic+Framework+for+Enhanced+Photocatalytic+Hydrogen+Evolution&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Huang%2C+Xingye&rft.au=Guo%2C+Jia&rft.date=2024-11-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=42&rft.issue=21&rft.spage=2621&rft.epage=2626&rft_id=info:doi/10.1002%2Fcjoc.202400437&rft.externalDBID=10.1002%252Fcjoc.202400437&rft.externalDocID=CJOC202400437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon