Influence of geometric and operational variables on indirect evaporative cooling using cyclone as heat exchanger
[Display omitted] •Higher temperatures and lower relative humidity enhance thermal variation.•Longer cyclones and smaller inlet diameters increase thermal variation.•Convective coefficient rises with airflow rate, enhancing heat transfer efficiency.•Turbulent airflow in cyclones enhances convective...
Saved in:
Published in: | Applied thermal engineering Vol. 257; p. 124298 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-12-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | [Display omitted]
•Higher temperatures and lower relative humidity enhance thermal variation.•Longer cyclones and smaller inlet diameters increase thermal variation.•Convective coefficient rises with airflow rate, enhancing heat transfer efficiency.•Turbulent airflow in cyclones enhances convective heat transfer.•Longer cyclones achieve lower Euler numbers.
With the increasing environmental impacts of human activities and the demand for new air cooling alternatives, indirect evaporative cooling (IEC) emerges as a sustainable alternative. However, there is a gap in the literature regarding examining cyclone configurations in this context. Despite being good separator devices, cyclones can be used as heat exchangers, enhancing convective heat transfer through turbulence. This opens the possibility of developing improved and economically accessible geometries of IEC systems, especially beneficial for hot and arid regions, and communities with limited resources. This study aimed to investigate the performance of 25 geometric configurations of cyclones used as indirect evaporative heat exchangers. The researchers employed an experimental approach by subjecting cyclones covered with a wet cotton fabric to IEC tests under various geometric and operating conditions, followed by statistical analyses to identify relationships between the variables. The results showed significant thermal variation in the cyclones, with a considerable impact on all variables, particularly the cyclone’s total length, relative humidity, air temperature, and flow rate. The thermal efficiency of the cyclones varied widely, with total length and flow rate being the most significant factors. Additionally, an analysis of the Euler values revealed the importance of the cyclone geometry in selecting the one that reduces energy costs. Among the cyclones tested, the configuration with the optimal geometric design (Cyclone 8) achieved the highest thermal performance and lowest Euler number. The findings of this study could help developing more efficient and sustainable IEC systems, helping to reduce energy consumption and environmental impacts. |
---|---|
AbstractList | [Display omitted]
•Higher temperatures and lower relative humidity enhance thermal variation.•Longer cyclones and smaller inlet diameters increase thermal variation.•Convective coefficient rises with airflow rate, enhancing heat transfer efficiency.•Turbulent airflow in cyclones enhances convective heat transfer.•Longer cyclones achieve lower Euler numbers.
With the increasing environmental impacts of human activities and the demand for new air cooling alternatives, indirect evaporative cooling (IEC) emerges as a sustainable alternative. However, there is a gap in the literature regarding examining cyclone configurations in this context. Despite being good separator devices, cyclones can be used as heat exchangers, enhancing convective heat transfer through turbulence. This opens the possibility of developing improved and economically accessible geometries of IEC systems, especially beneficial for hot and arid regions, and communities with limited resources. This study aimed to investigate the performance of 25 geometric configurations of cyclones used as indirect evaporative heat exchangers. The researchers employed an experimental approach by subjecting cyclones covered with a wet cotton fabric to IEC tests under various geometric and operating conditions, followed by statistical analyses to identify relationships between the variables. The results showed significant thermal variation in the cyclones, with a considerable impact on all variables, particularly the cyclone’s total length, relative humidity, air temperature, and flow rate. The thermal efficiency of the cyclones varied widely, with total length and flow rate being the most significant factors. Additionally, an analysis of the Euler values revealed the importance of the cyclone geometry in selecting the one that reduces energy costs. Among the cyclones tested, the configuration with the optimal geometric design (Cyclone 8) achieved the highest thermal performance and lowest Euler number. The findings of this study could help developing more efficient and sustainable IEC systems, helping to reduce energy consumption and environmental impacts. |
ArticleNumber | 124298 |
Author | Dias, Daiane Ribeiro Gustavo Martins Vieira, Luiz Oliveira Silva, Danylo de |
Author_xml | – sequence: 1 givenname: Daiane Ribeiro surname: Dias fullname: Dias, Daiane Ribeiro – sequence: 2 givenname: Danylo de surname: Oliveira Silva fullname: Oliveira Silva, Danylo de email: danylo@ufu.br – sequence: 3 givenname: Luiz surname: Gustavo Martins Vieira fullname: Gustavo Martins Vieira, Luiz |
BookMark | eNqNkD9PwzAUxD0UiRb4Dh5YE_wvaSOxoIpCpUosMFuvzkvqyrUjO43otydRWdhY3i13p3u_BZn54JGQR85yznj5dMyh61x_wHgCh77NBRMq50KJajUjcy6LKlOS81uySOnIGBerpZqTbusbd0ZvkIaGthhO2EdrKPiahg4j9DZ4cHSAaGHvMNHgqfW1jWh6igN0YfIMSE0IzvqWntN0zcW4cSCFRA8Io_PbHMC3GO_JTQMu4cOv3pGvzevn-j3bfbxt1y-7zAjG-6xc1aWUyuxRFBxqMKI2KKoGlDRVhbiUwIuSq6apRhuTomGCmyXD0pQKCpB35Pnaa2JIKWKju2hPEC-aMz0R00f9l5ieiOkrsTG-ucZx3DhYjDoZO2G6fq7rYP9X9AMKk4Rv |
Cites_doi | 10.1016/j.energy.2023.128014 10.1016/j.ijrefrig.2019.05.029 10.1016/j.apenergy.2016.06.121 10.1016/j.energy.2020.119352 10.1016/j.heliyon.2022.e12508 10.1016/j.apenergy.2017.03.053 10.1016/j.cherd.2024.01.058 10.1016/j.energy.2014.11.086 10.1016/j.apt.2018.10.027 10.1016/j.enbuild.2021.111704 10.1016/j.apenergy.2022.118598 10.1002/ep.13624 10.1016/j.cherd.2019.03.018 10.1016/j.apenergy.2019.113390 10.1016/j.applthermaleng.2020.115200 10.1016/j.powtec.2018.12.054 10.1016/j.applthermaleng.2020.116379 10.1016/j.energy.2023.128636 10.1016/j.apenergy.2022.119212 10.1016/j.wasman.2019.04.043 10.1016/j.enconman.2023.117377 10.1016/j.ijheatmasstransfer.2018.11.082 10.1016/j.ijheatmasstransfer.2018.04.041 10.1016/j.applthermaleng.2020.115211 10.1016/j.enbuild.2023.112880 10.1016/j.enbuild.2015.10.004 10.1016/j.powtec.2020.12.036 10.1016/j.ijheatmasstransfer.2021.121299 10.1016/j.cej.2006.11.005 10.1016/j.enconman.2021.114514 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2024.124298 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2024_124298 S1359431124019665 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AAYXX ABXDB ACNNM ADMUD ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ M41 R2- |
ID | FETCH-LOGICAL-c201t-68d6334cbe251adac2dce29fa43c99ee73a15614ff9334032f021c70e6c64a5a3 |
ISSN | 1359-4311 |
IngestDate | Wed Nov 13 12:49:22 EST 2024 Sat Nov 16 15:58:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cyclone separator Cyclone-psychrometric cooling Sustainability Heat exchanger Heat transfer Mass transfer |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c201t-68d6334cbe251adac2dce29fa43c99ee73a15614ff9334032f021c70e6c64a5a3 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2024_124298 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_124298 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Yang, Luo (b0070) 2017; 194 Sun, Huang, Qu, Wang, Chen (b0035) 2020; 173 Chen, Lu, Liu, Yang (b0170) 2007; 129 vol. 203, pp. 333–345, Mar. 2024, doi: 10.1016/j.cherd.2024.01.058. Adam, Han, He, Amidpour (b0085) 2021; 176 Shahzad (b0125) 2021; 217 Shi, Min, Ma, Chen, Yang (b0040) 2022; 311 Pandelidis (b0130) 2021; 244 D.R. Dias, G. Ullmann, D. Oliveira Silva, and L. G. M. Vieira, “Thermal performance of a psychrometric cooling system using cyclone fluid dynamics,” Salvador, Ascendino, de Faria, de S. Barrozo, Vieira (b0145) 2021; 381 Jamil (b0010) Sep. 2023; 292 vol. 40, no. 4, 2021, doi: 10.1002/ep.13624. Sun, Sun, Peng, Liu, Yu (b0155) 2019; 145 Tripathi, Kumar (b0115) 2023; 78 Sun, Tang, Yang, Yan, Cui, Chu (b0020) 2023; 285 Zhou, Hu, Zhang, Wang, Lv (b0165) 2019; 344 Anisimov, Pandelidis, Danielewicz (b0095) 2015; 80 Pandelidis, Anisimov, Worek (b0090) 2015; 109 Fu, Hua, Yuan, Ling, Shi (b0175) 2019; 91 Chen, Yan, Luo, Yang (b0080) 2019; 251 D. Ribeiro Dias, G. Ullmann, D. de Oliveira Silva, and L. G. Martins Vieira, “Combining psychrometrics and fluid dynamics in a cyclone: A sustainable indirect evaporative cooling design,” Peçanha (b0150) 2014 Kim, Ham, Yoon, Jeong (b0100) 2017; 195 Shi, Min, Ma, Chen, Yang (b0120) 2022; 48 W. Y. Li, Y. C. Li, L. yue Zeng, and J. Lu, “Comparative study of vertical and horizontal indirect evaporative cooling heat recovery exchangers,” Ma, Shi, Yang (b0055) 2022; 318 Wang, Li, Wang, Wang, Tian, Sun (b0160) 2019; 30 Min, Chen, Yang (b0075) 2019; 131 Guilizzoni, Milani, Liberati, De Antonellis (b0025) 2019; 104 Ma, Shi, Yang (b0060) 2023; 76 You, Wang, Yang, Guo, Ma, Cheng (b0045) 2022; 257 Cui, Yang, Yan, Zhang, Wan, Chua (b0050) 2023; 278 Sofia, Putra, Kosasih (b0030) 2022; 8 Adam, Han, He, Chen (b0005) 2021; 185 Shi, Yang, Ma, Liu (b0065) 2023; 76 vol. 124, pp. 1245–1261, Sep. 2018, doi: 10.1016/j.ijheatmasstransfer.2018.04.041. Shi, Yang, Ma, Liu (b0015) 2023; 283 De Antonellis, Cignatta, Facchini, Liberati (b0110) 2020; 173 You (10.1016/j.applthermaleng.2024.124298_b0045) 2022; 257 Min (10.1016/j.applthermaleng.2024.124298_b0075) 2019; 131 Peçanha (10.1016/j.applthermaleng.2024.124298_b0150) 2014 10.1016/j.applthermaleng.2024.124298_b0135 Jamil (10.1016/j.applthermaleng.2024.124298_b0010) 2023; 292 Adam (10.1016/j.applthermaleng.2024.124298_b0005) 2021; 185 Tripathi (10.1016/j.applthermaleng.2024.124298_b0115) 2023; 78 Chen (10.1016/j.applthermaleng.2024.124298_b0070) 2017; 194 Shi (10.1016/j.applthermaleng.2024.124298_b0120) 2022; 48 Sun (10.1016/j.applthermaleng.2024.124298_b0155) 2019; 145 Sun (10.1016/j.applthermaleng.2024.124298_b0035) 2020; 173 Adam (10.1016/j.applthermaleng.2024.124298_b0085) 2021; 176 De Antonellis (10.1016/j.applthermaleng.2024.124298_b0110) 2020; 173 Wang (10.1016/j.applthermaleng.2024.124298_b0160) 2019; 30 Guilizzoni (10.1016/j.applthermaleng.2024.124298_b0025) 2019; 104 Anisimov (10.1016/j.applthermaleng.2024.124298_b0095) 2015; 80 Fu (10.1016/j.applthermaleng.2024.124298_b0175) 2019; 91 Ma (10.1016/j.applthermaleng.2024.124298_b0055) 2022; 318 Salvador (10.1016/j.applthermaleng.2024.124298_b0145) 2021; 381 Cui (10.1016/j.applthermaleng.2024.124298_b0050) 2023; 278 10.1016/j.applthermaleng.2024.124298_b0140 Shi (10.1016/j.applthermaleng.2024.124298_b0065) 2023; 76 Pandelidis (10.1016/j.applthermaleng.2024.124298_b0090) 2015; 109 Chen (10.1016/j.applthermaleng.2024.124298_b0170) 2007; 129 10.1016/j.applthermaleng.2024.124298_b0105 Sun (10.1016/j.applthermaleng.2024.124298_b0020) 2023; 285 Shahzad (10.1016/j.applthermaleng.2024.124298_b0125) 2021; 217 Shi (10.1016/j.applthermaleng.2024.124298_b0040) 2022; 311 Kim (10.1016/j.applthermaleng.2024.124298_b0100) 2017; 195 Chen (10.1016/j.applthermaleng.2024.124298_b0080) 2019; 251 Ma (10.1016/j.applthermaleng.2024.124298_b0060) 2023; 76 Sofia (10.1016/j.applthermaleng.2024.124298_b0030) 2022; 8 Shi (10.1016/j.applthermaleng.2024.124298_b0015) 2023; 283 Pandelidis (10.1016/j.applthermaleng.2024.124298_b0130) 2021; 244 Zhou (10.1016/j.applthermaleng.2024.124298_b0165) 2019; 344 |
References_xml | – volume: 285 year: 2023 ident: b0020 article-title: Cooling performance and optimization of a tubular indirect evaporative cooler based on response surface methodology publication-title: Energ. Buildings contributor: fullname: Chu – volume: 91 start-page: 54 year: 2019 end-page: 61 ident: b0175 article-title: Study on the light medium separation of waste plastics with hydrocyclones publication-title: Waste Manag. contributor: fullname: Shi – volume: 318 year: 2022 ident: b0055 article-title: Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization publication-title: Appl. Energy contributor: fullname: Yang – volume: 145 start-page: 141 year: 2019 end-page: 149 ident: b0155 article-title: A new static cyclonic classifier: Flow characteristics, performance evaluation and industrial applications publication-title: Chem. Eng. Res. Design contributor: fullname: Yu – volume: 129 start-page: 85 year: 2007 end-page: 90 ident: b0170 article-title: Effect of the bottom-contracted and edge-sloped vent-pipe on the cyclone separator performance publication-title: Chem. Eng. J. contributor: fullname: Yang – volume: 244 year: 2021 ident: b0130 article-title: Performance analysis of rotary indirect evaporative air coolers publication-title: Energy Convers Manag contributor: fullname: Pandelidis – volume: 109 start-page: 53 year: 2015 end-page: 64 ident: b0090 article-title: Performance study of counter-flow indirect evaporative air coolers publication-title: Energ. Buildings contributor: fullname: Worek – volume: 80 start-page: 452 year: 2015 end-page: 464 ident: b0095 article-title: Numerical study and optimization of the combined indirect evaporative air cooler for air-conditioning systems publication-title: Energy contributor: fullname: Danielewicz – volume: 48 year: 2022 ident: b0120 article-title: Performance evaluation of a novel plate-type porous indirect evaporative cooling system: An experimental study publication-title: J. Build. Eng. contributor: fullname: Yang – volume: 251 year: 2019 ident: b0080 article-title: A proportional–integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system publication-title: Appl. Energy contributor: fullname: Yang – volume: 292 year: Sep. 2023 ident: b0010 article-title: Energy-efficient indirect evaporative cooler design framework: An experimental and numerical study publication-title: Energy Convers Manag contributor: fullname: Jamil – year: 2014 ident: b0150 article-title: Sistemas particulados: Operações unitárias envolvendo partículas e fluidos contributor: fullname: Peçanha – volume: 30 start-page: 227 year: 2019 end-page: 239 ident: b0160 article-title: Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM publication-title: Adv. Powder Technol. contributor: fullname: Sun – volume: 131 start-page: 472 year: 2019 end-page: 486 ident: b0075 article-title: Numerical study on indirect evaporative coolers considering condensation: A thorough comparison between cross flow and counter flow publication-title: Int. J. Heat Mass Transf. contributor: fullname: Yang – volume: 173 year: 2020 ident: b0110 article-title: Effect of heat exchanger plates geometry on performance of an indirect evaporative cooling system publication-title: Appl. Therm. Eng. contributor: fullname: Liberati – volume: 217 year: 2021 ident: b0125 article-title: A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist publication-title: Energy contributor: fullname: Shahzad – volume: 344 start-page: 784 year: 2019 end-page: 796 ident: b0165 article-title: Numerical study on gas-solid flow characteristics of ultra-light particles in a cyclone separator publication-title: Powder Technol. contributor: fullname: Lv – volume: 185 year: 2021 ident: b0005 article-title: Numerical analysis of cross-flow plate type indirect evaporative cooler: Modeling and parametric analysis publication-title: Appl. Therm. Eng. contributor: fullname: Chen – volume: 311 year: 2022 ident: b0040 article-title: Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies publication-title: Appl. Energy contributor: fullname: Yang – volume: 8 start-page: Dec year: 2022 ident: b0030 article-title: Development of indirect evaporative cooler based on a finned heat pipe with a natural-fiber cooling pad publication-title: Heliyon contributor: fullname: Kosasih – volume: 257 year: 2022 ident: b0045 article-title: Study on heat transfer characteristics of indirect evaporative cooling system based on secondary side hydrophilic publication-title: Energ. Buildings contributor: fullname: Cheng – volume: 76 year: 2023 ident: b0060 article-title: Improving the performance of indirect evaporative cooler for energy recovery from the perspective of nozzle configuration: A CFD model analysis publication-title: J. Build. Eng. contributor: fullname: Yang – volume: 104 start-page: 367 year: 2019 end-page: 375 ident: b0025 article-title: Effect of plates coating on performance of an indirect evaporative cooling system publication-title: Int. J. Refrig contributor: fullname: De Antonellis – volume: 173 year: 2020 ident: b0035 article-title: Theoretical and experimental study on heat and mass transfer of a porous ceramic tube type indirect evaporative cooler publication-title: Appl. Therm. Eng. contributor: fullname: Chen – volume: 381 start-page: 611 year: 2021 end-page: 619 ident: b0145 article-title: Geometric optimization of filtering cylindrical hydrocyclones publication-title: Powder Technol. contributor: fullname: Vieira – volume: 76 year: 2023 ident: b0065 article-title: A novel indirect evaporative cooler with porous media under dual spraying modes: A comparative analysis from energy, exergy, and environmental perspectives publication-title: J. Build. Eng. contributor: fullname: Liu – volume: 195 start-page: 268 year: 2017 end-page: 277 ident: b0100 article-title: Cooling performance measurement of two cross-flow indirect evaporative coolers in general and regenerative operation modes publication-title: Appl. Energy contributor: fullname: Jeong – volume: 78 year: 2023 ident: b0115 article-title: Performance assessment of solar-driven indirect evaporative cooling with a novel wet channel: An experimental study publication-title: J. Build. Eng. contributor: fullname: Kumar – volume: 278 year: 2023 ident: b0050 article-title: Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler publication-title: Energy contributor: fullname: Chua – volume: 194 start-page: 440 year: 2017 end-page: 453 ident: b0070 article-title: Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation publication-title: Appl. Energy contributor: fullname: Luo – volume: 176 year: 2021 ident: b0085 article-title: Analysis of indirect evaporative cooler performance under various heat and mass exchanger dimensions and flow parameters publication-title: Int. J. Heat Mass Transf. contributor: fullname: Amidpour – volume: 283 year: 2023 ident: b0015 article-title: Performance prediction and optimization of cross-flow indirect evaporative cooler by regression model based on response surface methodology publication-title: Energy contributor: fullname: Liu – volume: 278 year: 2023 ident: 10.1016/j.applthermaleng.2024.124298_b0050 article-title: Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler publication-title: Energy doi: 10.1016/j.energy.2023.128014 contributor: fullname: Cui – volume: 104 start-page: 367 year: 2019 ident: 10.1016/j.applthermaleng.2024.124298_b0025 article-title: Effect of plates coating on performance of an indirect evaporative cooling system publication-title: Int. J. Refrig doi: 10.1016/j.ijrefrig.2019.05.029 contributor: fullname: Guilizzoni – volume: 194 start-page: 440 year: 2017 ident: 10.1016/j.applthermaleng.2024.124298_b0070 article-title: Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.06.121 contributor: fullname: Chen – volume: 217 year: 2021 ident: 10.1016/j.applthermaleng.2024.124298_b0125 article-title: A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist publication-title: Energy doi: 10.1016/j.energy.2020.119352 contributor: fullname: Shahzad – volume: 8 start-page: Dec issue: 12 year: 2022 ident: 10.1016/j.applthermaleng.2024.124298_b0030 article-title: Development of indirect evaporative cooler based on a finned heat pipe with a natural-fiber cooling pad publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12508 contributor: fullname: Sofia – volume: 195 start-page: 268 year: 2017 ident: 10.1016/j.applthermaleng.2024.124298_b0100 article-title: Cooling performance measurement of two cross-flow indirect evaporative coolers in general and regenerative operation modes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.053 contributor: fullname: Kim – ident: 10.1016/j.applthermaleng.2024.124298_b0140 doi: 10.1016/j.cherd.2024.01.058 – volume: 80 start-page: 452 year: 2015 ident: 10.1016/j.applthermaleng.2024.124298_b0095 article-title: Numerical study and optimization of the combined indirect evaporative air cooler for air-conditioning systems publication-title: Energy doi: 10.1016/j.energy.2014.11.086 contributor: fullname: Anisimov – volume: 30 start-page: 227 issue: 2 year: 2019 ident: 10.1016/j.applthermaleng.2024.124298_b0160 article-title: Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2018.10.027 contributor: fullname: Wang – volume: 76 year: 2023 ident: 10.1016/j.applthermaleng.2024.124298_b0060 article-title: Improving the performance of indirect evaporative cooler for energy recovery from the perspective of nozzle configuration: A CFD model analysis publication-title: J. Build. Eng. contributor: fullname: Ma – volume: 257 year: 2022 ident: 10.1016/j.applthermaleng.2024.124298_b0045 article-title: Study on heat transfer characteristics of indirect evaporative cooling system based on secondary side hydrophilic publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2021.111704 contributor: fullname: You – volume: 311 year: 2022 ident: 10.1016/j.applthermaleng.2024.124298_b0040 article-title: Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118598 contributor: fullname: Shi – ident: 10.1016/j.applthermaleng.2024.124298_b0135 doi: 10.1002/ep.13624 – year: 2014 ident: 10.1016/j.applthermaleng.2024.124298_b0150 contributor: fullname: Peçanha – volume: 145 start-page: 141 year: 2019 ident: 10.1016/j.applthermaleng.2024.124298_b0155 article-title: A new static cyclonic classifier: Flow characteristics, performance evaluation and industrial applications publication-title: Chem. Eng. Res. Design doi: 10.1016/j.cherd.2019.03.018 contributor: fullname: Sun – volume: 251 year: 2019 ident: 10.1016/j.applthermaleng.2024.124298_b0080 article-title: A proportional–integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113390 contributor: fullname: Chen – volume: 78 year: 2023 ident: 10.1016/j.applthermaleng.2024.124298_b0115 article-title: Performance assessment of solar-driven indirect evaporative cooling with a novel wet channel: An experimental study publication-title: J. Build. Eng. contributor: fullname: Tripathi – volume: 173 year: 2020 ident: 10.1016/j.applthermaleng.2024.124298_b0110 article-title: Effect of heat exchanger plates geometry on performance of an indirect evaporative cooling system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115200 contributor: fullname: De Antonellis – volume: 344 start-page: 784 year: 2019 ident: 10.1016/j.applthermaleng.2024.124298_b0165 article-title: Numerical study on gas-solid flow characteristics of ultra-light particles in a cyclone separator publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.12.054 contributor: fullname: Zhou – volume: 185 year: 2021 ident: 10.1016/j.applthermaleng.2024.124298_b0005 article-title: Numerical analysis of cross-flow plate type indirect evaporative cooler: Modeling and parametric analysis publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116379 contributor: fullname: Adam – volume: 283 year: 2023 ident: 10.1016/j.applthermaleng.2024.124298_b0015 article-title: Performance prediction and optimization of cross-flow indirect evaporative cooler by regression model based on response surface methodology publication-title: Energy doi: 10.1016/j.energy.2023.128636 contributor: fullname: Shi – volume: 318 year: 2022 ident: 10.1016/j.applthermaleng.2024.124298_b0055 article-title: Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119212 contributor: fullname: Ma – volume: 48 year: 2022 ident: 10.1016/j.applthermaleng.2024.124298_b0120 article-title: Performance evaluation of a novel plate-type porous indirect evaporative cooling system: An experimental study publication-title: J. Build. Eng. contributor: fullname: Shi – volume: 91 start-page: 54 year: 2019 ident: 10.1016/j.applthermaleng.2024.124298_b0175 article-title: Study on the light medium separation of waste plastics with hydrocyclones publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.04.043 contributor: fullname: Fu – volume: 292 year: 2023 ident: 10.1016/j.applthermaleng.2024.124298_b0010 article-title: Energy-efficient indirect evaporative cooler design framework: An experimental and numerical study publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2023.117377 contributor: fullname: Jamil – volume: 131 start-page: 472 year: 2019 ident: 10.1016/j.applthermaleng.2024.124298_b0075 article-title: Numerical study on indirect evaporative coolers considering condensation: A thorough comparison between cross flow and counter flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.082 contributor: fullname: Min – volume: 76 year: 2023 ident: 10.1016/j.applthermaleng.2024.124298_b0065 article-title: A novel indirect evaporative cooler with porous media under dual spraying modes: A comparative analysis from energy, exergy, and environmental perspectives publication-title: J. Build. Eng. contributor: fullname: Shi – ident: 10.1016/j.applthermaleng.2024.124298_b0105 doi: 10.1016/j.ijheatmasstransfer.2018.04.041 – volume: 173 year: 2020 ident: 10.1016/j.applthermaleng.2024.124298_b0035 article-title: Theoretical and experimental study on heat and mass transfer of a porous ceramic tube type indirect evaporative cooler publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115211 contributor: fullname: Sun – volume: 285 year: 2023 ident: 10.1016/j.applthermaleng.2024.124298_b0020 article-title: Cooling performance and optimization of a tubular indirect evaporative cooler based on response surface methodology publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2023.112880 contributor: fullname: Sun – volume: 109 start-page: 53 year: 2015 ident: 10.1016/j.applthermaleng.2024.124298_b0090 article-title: Performance study of counter-flow indirect evaporative air coolers publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.10.004 contributor: fullname: Pandelidis – volume: 381 start-page: 611 year: 2021 ident: 10.1016/j.applthermaleng.2024.124298_b0145 article-title: Geometric optimization of filtering cylindrical hydrocyclones publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.12.036 contributor: fullname: Salvador – volume: 176 year: 2021 ident: 10.1016/j.applthermaleng.2024.124298_b0085 article-title: Analysis of indirect evaporative cooler performance under various heat and mass exchanger dimensions and flow parameters publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121299 contributor: fullname: Adam – volume: 129 start-page: 85 issue: 1–3 year: 2007 ident: 10.1016/j.applthermaleng.2024.124298_b0170 article-title: Effect of the bottom-contracted and edge-sloped vent-pipe on the cyclone separator performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.11.005 contributor: fullname: Chen – volume: 244 year: 2021 ident: 10.1016/j.applthermaleng.2024.124298_b0130 article-title: Performance analysis of rotary indirect evaporative air coolers publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114514 contributor: fullname: Pandelidis |
SSID | ssj0012874 |
Score | 2.4868004 |
Snippet | [Display omitted]
•Higher temperatures and lower relative humidity enhance thermal variation.•Longer cyclones and smaller inlet diameters increase thermal... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 124298 |
SubjectTerms | Cyclone separator Cyclone-psychrometric cooling Heat exchanger Heat transfer Mass transfer Sustainability |
Title | Influence of geometric and operational variables on indirect evaporative cooling using cyclone as heat exchanger |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.124298 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSVkJwQDxFecmH3qKNNrazmz2higZRDhxIQb2tZr022iqNo6SJKL-embX3QQGpCHFZRVbiyc58Gn0ez4OxIxmbEsq4iMCCiZQpkwiyaRmJFLmyKJQSpg5dzNOP59OTmZoNBk1Phm7tv1oa19DWVDn7F9ZuN8UF_Iw2xydaHZ-3svtpM3WEaOBX4y5pZJbvyepWZt3E_nZ4Rqaqqfq2gO6tyfNR7--6rzGlE2nn6lL1ra_LvdYLh4QUNsQt8ZvfQslwn902lJZI5SUKMV2zw5YwV76C7AQQl2b4qSpMtXZdqBclV2sYzqvFDkIJ_PXC-SHmPlGIKr52buj7H2yGXyr6QR1e2Fbf-0EMoW4khLTVNV0qEzljOckiJDjjvrcWvp_1L57fByEuRnTvH94SX3JEwkbIYYSfdX2jt_acRJAE5DXoipLJHjsQ6LHQYR4cn87OP7QXUjQWoD67h790hx11qYJ_lvl7ttNjMGcP2P1w9ODHHjMP2cAsH7F7vYaUj9mqRQ93lrfo4Yge3kMPb9HD3ZI36OE99PCAHl6jhwf0cNhwQg9v0fOEfX43O3v7PgozOSKNVPEqSqZlIqXShUFiDCVoUWojMgtK6iwzJpUwpuay1qIWVSyFRRKp09gkOlEwAfmU7S9R4DPGC2nTpJhmBsaZUjFkRaxsKq2RE63AikM2aXSXr3zrlbzJSbzIf9Z5TjrPvc4P2ZtG0XmgkV4NOWLlVjs8_-cdXrC7Hcxfsv2r9da8Ynubcvs6IOsHS2OnOg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+geometric+and+operational+variables+on+indirect+evaporative+cooling+using+cyclone+as+heat+exchanger&rft.jtitle=Applied+thermal+engineering&rft.au=Dias%2C+Daiane+Ribeiro&rft.au=Oliveira+Silva%2C+Danylo+de&rft.au=Gustavo+Martins+Vieira%2C+Luiz&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=257&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.124298&rft.externalDocID=S1359431124019665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |