Preparation of Ni-Zn Ferrite Nanoparticles and Study of Their Properties for Optoelectronic Applications

Preparation conditions play a key role in tailoring the properties of ceramic materials, including ferrite, to suit efficient industrial and technological applications. This manuscript is concerned with correlating the structural, spectroscopic, optical, transport, and dielectric properties of nicke...

Full description

Saved in:
Bibliographic Details
Published in:Journal of phase equilibria and diffusion Vol. 45; no. 5; pp. 900 - 915
Main Authors: Kershi, R. M., Alsheri, A. M., Attiyah, R. M.
Format: Journal Article
Language:English
Published: New York Springer US 01-10-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Preparation conditions play a key role in tailoring the properties of ceramic materials, including ferrite, to suit efficient industrial and technological applications. This manuscript is concerned with correlating the structural, spectroscopic, optical, transport, and dielectric properties of nickel zinc ferrite nanoparticles (NZNs) to the sintering temperature as an effective preparation condition controlled through the coprecipitation technique. Techniques for studying the various features of the synthesized compounds include x-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and the LCR bridge. XRD data showed the as-prepared samples' single-phase inverse spinel structure and an increase in crystallinity with increasing sintering temperature. SEM images show the nanosized range with semi-spherical particles for all the NZN fabricated samples. Moreover, Raman spectroscopy results showed that the four distinct active modes (Eg, F2g(2), A1g(2), and A1g(1)) for the NZN compounds have the same lattice strain tendency. The direct and indirect optical energy gap values (2-3.82) eV of the synthesized compounds span a wide range in the visible and ultraviolet spectrum, making them candidates for optoelectronic applications. In general, sintering temperature plays an outstanding role in increasing the values of some features such as crystallite size, optical energy gap, and electrical conductivity, and correspondingly decreasing other features such as unit cell volume dissociation density, absorption bands, and dielectric parameters.
ISSN:1547-7037
1863-7345
1934-7243
DOI:10.1007/s11669-024-01150-7