A hexadecimal scrambling image encryption scheme based on improved four-dimensional chaotic system

This paper proposes an image encryption scheme based on an improved four-dimensional chaotic system. First, a 4D chaotic system is constructed by introducing new state variables based on the Chen chaotic system, and its chaotic behavior is verified by phase diagrams, bifurcation diagrams, Lyapunov e...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 80; no. 18; pp. 25853 - 25887
Main Authors: Geng, Shengtao, Zhang, Heng, Zhang, Xuncai
Format: Journal Article
Language:English
Published: New York Springer US 01-12-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes an image encryption scheme based on an improved four-dimensional chaotic system. First, a 4D chaotic system is constructed by introducing new state variables based on the Chen chaotic system, and its chaotic behavior is verified by phase diagrams, bifurcation diagrams, Lyapunov exponents, NIST tests, etc. Second, the initial chaotic key is generated using the hash function SHA-512 and plain image information. Parity scrambling is performed on the plain image using the chaotic sequence generated by the chaotic system. The image is then converted into a hexadecimal character matrix, divided into two planes according to the high and low bits of the characters and scrambled by generating two position index matrices using chaotic sequences. The two planes are then restored to a hexadecimal character matrix, which is further converted into the form of an image matrix. Finally, different combined operation diffusion formulas are selected for diffusion according to the chaotic sequence to obtain the encrypted image. Based on simulation experiments and security evaluations, the scheme effectively encrypts gray images and shows strong security against various types of attacks.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-024-06400-6