Reconstruction in One Dimension from Unlabeled Euclidean Lengths

Let G be a 3-connected ordered graph with n vertices and m edges. Let p be a randomly chosen mapping of these n vertices to the integer range { 1 , 2 , 3 , … , 2 b } for b ≥ m 2 . Let ℓ be the vector of m Euclidean lengths of G ’s edges under p . In this paper, we show that, with high probability ov...

Full description

Saved in:
Bibliographic Details
Published in:Combinatorica (Budapest. 1981) Vol. 44; no. 6; pp. 1325 - 1351
Main Authors: Connelly, Robert, Gortler, Steven J., Theran, Louis
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-12-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let G be a 3-connected ordered graph with n vertices and m edges. Let p be a randomly chosen mapping of these n vertices to the integer range { 1 , 2 , 3 , … , 2 b } for b ≥ m 2 . Let ℓ be the vector of m Euclidean lengths of G ’s edges under p . In this paper, we show that, with high probability over p , we can efficiently reconstruct both G and p from ℓ . This reconstruction problem is NP-HARD in the worst case, even if both G and ℓ are given. We also show that our results stand in the presence of small amounts of error in ℓ , and in the real setting, with sufficiently accurate length measurements. Our method combines lattice reduction, which has previously been used to solve random subset sum problems, with an algorithm of Seymour that can efficiently reconstruct an ordered graph given an independence oracle for its matroid.
AbstractList Let G be a 3-connected ordered graph with n vertices and m edges. Let p be a randomly chosen mapping of these n vertices to the integer range {1,2,3,…,2b} for b≥m2. Let ℓ be the vector of m Euclidean lengths of G’s edges under p. In this paper, we show that, with high probability over p, we can efficiently reconstruct both G and p from ℓ. This reconstruction problem is NP-HARD in the worst case, even if both G and ℓ are given. We also show that our results stand in the presence of small amounts of error in ℓ, and in the real setting, with sufficiently accurate length measurements. Our method combines lattice reduction, which has previously been used to solve random subset sum problems, with an algorithm of Seymour that can efficiently reconstruct an ordered graph given an independence oracle for its matroid.
Let G be a 3-connected ordered graph with n vertices and m edges. Let $$\textbf{p}$$ p be a randomly chosen mapping of these n vertices to the integer range $$\{1, 2,3, \ldots , 2^b\}$$ { 1 , 2 , 3 , … , 2 b } for $$b\ge m^2$$ b ≥ m 2 . Let $$\ell $$ ℓ be the vector of m Euclidean lengths of G ’s edges under $$\textbf{p}$$ p . In this paper, we show that, with high probability over $$\textbf{p}$$ p , we can efficiently reconstruct both G and $$\textbf{p}$$ p from $$\ell $$ ℓ . This reconstruction problem is NP-HARD in the worst case, even if both G and $$\ell $$ ℓ are given. We also show that our results stand in the presence of small amounts of error in $$\ell $$ ℓ , and in the real setting, with sufficiently accurate length measurements. Our method combines lattice reduction, which has previously been used to solve random subset sum problems, with an algorithm of Seymour that can efficiently reconstruct an ordered graph given an independence oracle for its matroid.
Let G be a 3-connected ordered graph with n vertices and m edges. Let p be a randomly chosen mapping of these n vertices to the integer range { 1 , 2 , 3 , … , 2 b } for b ≥ m 2 . Let ℓ be the vector of m Euclidean lengths of G ’s edges under p . In this paper, we show that, with high probability over p , we can efficiently reconstruct both G and p from ℓ . This reconstruction problem is NP-HARD in the worst case, even if both G and ℓ are given. We also show that our results stand in the presence of small amounts of error in ℓ , and in the real setting, with sufficiently accurate length measurements. Our method combines lattice reduction, which has previously been used to solve random subset sum problems, with an algorithm of Seymour that can efficiently reconstruct an ordered graph given an independence oracle for its matroid.
Author Connelly, Robert
Gortler, Steven J.
Theran, Louis
Author_xml – sequence: 1
  givenname: Robert
  surname: Connelly
  fullname: Connelly, Robert
  organization: Department of Mathematics, Cornell University
– sequence: 2
  givenname: Steven J.
  surname: Gortler
  fullname: Gortler, Steven J.
  organization: School of Engineering and Applied Sciences, Harvard University
– sequence: 3
  givenname: Louis
  surname: Theran
  fullname: Theran, Louis
  email: lst6@st-and.ac.uk
  organization: School of Mathematics and Statistics, University of St Andrews
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqOTpN1sbkqtf6BQEHsO2WS2btlma7IL9dubuoI3mcPA8N6bmd-EjHzrkZBrBrcMQN5FgJkSFPiMAjCm6PGMjNlMKJorxkdkDBwUVXkhLsgkxh0AFILNx-T-DW3rYxd629Wtz2qfrT1mj_UefTwNqtDus41vTIkNumzZ26Z2aHy2Qr_tPuIlOa9ME_Hqt0_J5mn5vnihq_Xz6-JhRS0H6KhEzqQwCkGaOZdcVcqy0lgnCyegysFIkOgUA1GU5dxWyMr0keXcpcsdE1NyM-QeQvvZY-z0ru2DTyu1YLxQuVCppoQPKhvaGANW-hDqvQlfmoE-kdIDKZ1I6R9S-phMYjDFJPZbDH_R_7i-AbLObU0
Cites_doi 10.1007/BF02579179
10.1007/s00454-023-00605-x
10.1145/1109557.1109641
10.1007/BF01457454
10.1016/S0092-8240(05)80259-9
10.1016/S0196-8858(03)00101-5
10.1007/s00454-004-1124-4
10.1007/11792086_18
10.1109/ACCESS.2019.2928130
10.1007/978-3-540-39763-2_9
10.1287/moor.5.3.321
10.1145/2455.2461
10.1109/TIT.2021.3113921
10.1007/978-3-642-55566-4_27
10.2307/2371182
10.2307/2371127
10.1093/acprof:oso/9780198566946.001.0001
10.1137/0215038
10.1038/nature04556
10.2307/2034435
10.1016/j.dam.2015.10.029
10.1137/0221008
10.1016/j.jctb.2004.11.002
10.1007/s10479-018-2989-6
10.1353/ajm.0.0132
10.1109/SFCS.1985.16
10.1090/dimacs/004/11
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00493-024-00119-x
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-6912
EndPage 1351
ExternalDocumentID 10_1007_s00493_024_00119_x
GroupedDBID -52
-5D
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.86
.DC
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEOY
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEARS
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c200t-7e2173a9e07a52729f9c1bacd78d30f60a707ed91038bb5cfe1b493c22d209d13
IEDL.DBID AEJHL
ISSN 0209-9683
IngestDate Sat Nov 16 16:51:54 EST 2024
Fri Nov 22 01:17:52 EST 2024
Sat Nov 16 01:15:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Graph realization problem
Rigidity theory
Distance geometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-7e2173a9e07a52729f9c1bacd78d30f60a707ed91038bb5cfe1b493c22d209d13
OpenAccessLink http://link.springer.com/10.1007/s00493-024-00119-x
PQID 3128963939
PQPubID 2043757
PageCount 27
ParticipantIDs proquest_journals_3128963939
crossref_primary_10_1007_s00493_024_00119_x
springer_journals_10_1007_s00493_024_00119_x
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Combinatorica (Budapest. 1981)
PublicationTitleAbbrev Combinatorica
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SkienaSSSundaramGA partial digest approach to restriction site mappingBull. Math. Biol.199456227529410.1016/S0092-8240(05)80259-9
CrippenGMHavelTFDistance Geometry and Molecular Conformation, Volume 15 of Chemometrics Series1988ChichesterResearch Studies Press, Ltd.
MoharBAlviYChartrandGOellermannORSchwenkAJThe Laplacian spectrum of graphsGraph Theory, Combinatorics, and Applications1991HobokenWiley871898
WhitneyHOn the abstract properties of linear dependenceAm. J. Math.1935573509533150709110.2307/2371182
JacksonBJordánTConnected rigidity matroids and unique realizations of graphsJ. Comb. Theory Ser. B2005941129213027810.1016/j.jctb.2004.11.002
LenstraAKLenstraHWJrLovászLFactoring polynomials with rational coefficientsMath. Ann.1982261451553468266410.1007/BF01457454
Zadik, I., Song, M.J., Wein, A.S., Bruna, J.: Lattice-based methods surpass sum-of-squares in clustering. In P.-L. Loh, M. Raginsky (eds) Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pp. 1247–1248. PMLR, 02–05 Jul 2022. arXiv:2112.03898
TutteWTAn algorithm for determining whether a given binary matroid is graphicProc. Am. Math. Soc.19601190591711717310.2307/2034435
WhitneyH2-Isomorphic graphsAm. J. Math.1933551–4245254150696110.2307/2371127
OxleyJMatroid Theory, volume 21 of Oxford Graduate Texts in Mathematics2011secondOxfordOxford University Press10.1093/acprof:oso/9780198566946.001.0001
Gortler, S.J., Theran.: Lattices without a big constant and with noise. (2022). arXiv:2204.12340
HendricksonBConditions for unique graph realizationsSIAM J. Comput.19922116584114881810.1137/0221008
Cieliebak, M., Eidenbenz, S., Penna, P..: Noisy data make the partial digest problem np-hard. In: International Workshop on Algorithms in Bioinformatics, pp. 111–123. Springer (2003)
GortlerSJHealyADThurstonDPCharacterizing generic global rigidityAm. J. Math.20101324897939266364410.1353/ajm.0.0132
BillingeSJDuxburyPMGonçalvesDSLavorCMucherinoARecent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructuresAnn. Oper. Res.2018271161203387108210.1007/s10479-018-2989-6
Saxe, J.B.: Embeddability of weighted graphs in k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-space is strongly NP-hard. In: Proceedings of the 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)
BixbyRECunninghamWHConverting linear programs to network problemsMath. Oper. Res.19805332135759484910.1287/moor.5.3.321
FriezeAMOn the Lagarias–Odlyzko algorithm for the subset sum problemSIAM J. Comput.198615253653983760210.1137/0215038
SongMJZadikIBrunaJOn the cryptographic hardness of learning single periodic neuronsAdv. Neural. Inf. Process. Syst.2021342960229615
Dattorro, J.: Convex optimization and Euclidean distance geometry. Online book. (2015). https://ccrma.stanford.edu/~dattorro/0976401304_v2015.04.11.pdf
LagariasJCOdlyzkoAMSolving low-density subset sum problemsJ. Assoc. Comput. Mach.198532122924683234110.1145/2455.2461
Lovasz, L.: Computing ears and branchings in parallel. In: 26th Annual Symposium on Foundations of Computer Science (SFCS 1985), pp. 464–467. (1985). https://doi.org/10.1109/SFCS.1985.16
SeymourPDRecognizing graphic matroidsCombinatorica198111757860241810.1007/BF02579179
Diakonikolas, I., Kane, D.: Non-gaussian component analysis via lattice basis reduction. In: Conference on Learning Theory, PMLR. pp. 4535–4547 (2022)
NguyenLTKimJShimBLow-rank matrix completion: a contemporary surveyIEEE Access20197942159423710.1109/ACCESS.2019.2928130
DuxburyPMGranlundLGujarathiSJuhasPBillingeSJThe unassigned distance geometry problemDiscret. Appl. Math.2016204117132347716710.1016/j.dam.2015.10.029
Andoni, A., Hsu, D., Shi, K., Sun, X.: Correspondence retrieval. In: Conference on Learning Theory, pp. 105–126. PMLR (2017)
ConnellyRGeneric global rigidityDiscrete Comput. Geom.2005334549563213229010.1007/s00454-004-1124-4
So, A.M.-C., Ye, Y.: A semidefinite programming approach to tensegrity theory and realizability of graphs. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. Society for Industrial and Applied Mathematics. pp. 766–775 (2006)
BoutinMKemperGOn reconstructing n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-point configurations from the distribution of distances or areasAdv. Appl. Math.2004324709735205384210.1016/S0196-8858(03)00101-5
Nguyen, P.Q., Stehlé, D.: LLL on the average. In: International Algorithmic Number Theory Symposium. Springer, pp. 238–256 (2006)
Connelly, R.: On generic global rigidity. In: Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci. Amer. Math. Soc., Providence, RI. pp. 147–155. (1991) https://doi.org/10.1090/dimacs/004/11
JuhásPCherbaDDuxburyPPunchWBillingeSAb initio determination of solid-state nanostructureNature2006440708465565810.1038/nature04556
GkioulekasIGortlerSJTheranLZicklerTTrilateration using unlabeled path or loop lengthsDiscret. Comput. Geom.2024712399441470031110.1007/s00454-023-00605-x
DiestelRGraph Theory, Volume 173 of Graduate Texts in Mathematics2017BerlinSpringer
GortlerSJTheranLThurstonDPKirbyRGeneric unlabeled global rigidityForum of Mathematics, Sigma2019CambridgeCambridge University Press
LemkeP SkienaSSSmithWDLemkePSkienaSSSmithWDReconstructing sets from interpoint distancesDiscrete and Computational Geometry2003BerlinSpringer59763110.1007/978-3-642-55566-4_27
GamarnikDKızıldağECZadikIInference in high-dimensional linear regression via lattice basis reduction and integer relation detectionIEEE Trans. Inf. Theory2021671281098139434608010.1109/TIT.2021.3113921
SJ Gortler (119_CR18) 2019
SS Skiena (119_CR32) 1994; 56
119_CR1
I Gkioulekas (119_CR15) 2024; 71
RE Bixby (119_CR3) 1980; 5
D Gamarnik (119_CR14) 2021; 67
P Juhás (119_CR21) 2006; 440
SJ Billinge (119_CR2) 2018; 271
PD Seymour (119_CR31) 1981; 1
119_CR25
PM Duxbury (119_CR12) 2016; 204
R Diestel (119_CR11) 2017
119_CR27
AM Frieze (119_CR13) 1986; 15
B Hendrickson (119_CR19) 1992; 21
AK Lenstra (119_CR24) 1982; 261
H Whitney (119_CR36) 1935; 57
GM Crippen (119_CR8) 1988
H Whitney (119_CR37) 1933; 55
LT Nguyen (119_CR28) 2019; 7
JC Lagarias (119_CR22) 1985; 32
SJ Gortler (119_CR16) 2010; 132
R Connelly (119_CR7) 2005; 33
B Jackson (119_CR20) 2005; 94
119_CR17
WT Tutte (119_CR35) 1960; 11
119_CR38
M Boutin (119_CR4) 2004; 32
MJ Song (119_CR34) 2021; 34
J Oxley (119_CR29) 2011
119_CR9
B Mohar (119_CR26) 1991
119_CR30
119_CR33
119_CR10
P Lemke (119_CR23) 2003
119_CR5
119_CR6
References_xml – volume: 1
  start-page: 75
  issue: 1
  year: 1981
  ident: 119_CR31
  publication-title: Combinatorica
  doi: 10.1007/BF02579179
  contributor:
    fullname: PD Seymour
– ident: 119_CR30
– volume: 71
  start-page: 399
  issue: 2
  year: 2024
  ident: 119_CR15
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/s00454-023-00605-x
  contributor:
    fullname: I Gkioulekas
– ident: 119_CR33
  doi: 10.1145/1109557.1109641
– volume: 261
  start-page: 515
  issue: 4
  year: 1982
  ident: 119_CR24
  publication-title: Math. Ann.
  doi: 10.1007/BF01457454
  contributor:
    fullname: AK Lenstra
– volume: 56
  start-page: 275
  issue: 2
  year: 1994
  ident: 119_CR32
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(05)80259-9
  contributor:
    fullname: SS Skiena
– volume: 32
  start-page: 709
  issue: 4
  year: 2004
  ident: 119_CR4
  publication-title: Adv. Appl. Math.
  doi: 10.1016/S0196-8858(03)00101-5
  contributor:
    fullname: M Boutin
– volume: 33
  start-page: 549
  issue: 4
  year: 2005
  ident: 119_CR7
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-004-1124-4
  contributor:
    fullname: R Connelly
– volume-title: Forum of Mathematics, Sigma
  year: 2019
  ident: 119_CR18
  contributor:
    fullname: SJ Gortler
– ident: 119_CR27
  doi: 10.1007/11792086_18
– volume: 7
  start-page: 94215
  year: 2019
  ident: 119_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928130
  contributor:
    fullname: LT Nguyen
– ident: 119_CR5
  doi: 10.1007/978-3-540-39763-2_9
– volume-title: Distance Geometry and Molecular Conformation, Volume 15 of Chemometrics Series
  year: 1988
  ident: 119_CR8
  contributor:
    fullname: GM Crippen
– volume: 5
  start-page: 321
  issue: 3
  year: 1980
  ident: 119_CR3
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.5.3.321
  contributor:
    fullname: RE Bixby
– volume: 32
  start-page: 229
  issue: 1
  year: 1985
  ident: 119_CR22
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/2455.2461
  contributor:
    fullname: JC Lagarias
– volume: 67
  start-page: 8109
  issue: 12
  year: 2021
  ident: 119_CR14
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2021.3113921
  contributor:
    fullname: D Gamarnik
– start-page: 597
  volume-title: Discrete and Computational Geometry
  year: 2003
  ident: 119_CR23
  doi: 10.1007/978-3-642-55566-4_27
  contributor:
    fullname: P Lemke
– volume: 57
  start-page: 509
  issue: 3
  year: 1935
  ident: 119_CR36
  publication-title: Am. J. Math.
  doi: 10.2307/2371182
  contributor:
    fullname: H Whitney
– ident: 119_CR10
– volume: 55
  start-page: 245
  issue: 1–4
  year: 1933
  ident: 119_CR37
  publication-title: Am. J. Math.
  doi: 10.2307/2371127
  contributor:
    fullname: H Whitney
– volume-title: Matroid Theory, volume 21 of Oxford Graduate Texts in Mathematics
  year: 2011
  ident: 119_CR29
  doi: 10.1093/acprof:oso/9780198566946.001.0001
  contributor:
    fullname: J Oxley
– volume: 15
  start-page: 536
  issue: 2
  year: 1986
  ident: 119_CR13
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215038
  contributor:
    fullname: AM Frieze
– volume: 34
  start-page: 29602
  year: 2021
  ident: 119_CR34
  publication-title: Adv. Neural. Inf. Process. Syst.
  contributor:
    fullname: MJ Song
– ident: 119_CR9
– volume: 440
  start-page: 655
  issue: 7084
  year: 2006
  ident: 119_CR21
  publication-title: Nature
  doi: 10.1038/nature04556
  contributor:
    fullname: P Juhás
– start-page: 871
  volume-title: Graph Theory, Combinatorics, and Applications
  year: 1991
  ident: 119_CR26
  contributor:
    fullname: B Mohar
– volume: 11
  start-page: 905
  year: 1960
  ident: 119_CR35
  publication-title: Proc. Am. Math. Soc.
  doi: 10.2307/2034435
  contributor:
    fullname: WT Tutte
– volume: 204
  start-page: 117
  year: 2016
  ident: 119_CR12
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2015.10.029
  contributor:
    fullname: PM Duxbury
– volume: 21
  start-page: 65
  issue: 1
  year: 1992
  ident: 119_CR19
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221008
  contributor:
    fullname: B Hendrickson
– volume: 94
  start-page: 1
  issue: 1
  year: 2005
  ident: 119_CR20
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2004.11.002
  contributor:
    fullname: B Jackson
– ident: 119_CR38
– volume: 271
  start-page: 161
  year: 2018
  ident: 119_CR2
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-018-2989-6
  contributor:
    fullname: SJ Billinge
– ident: 119_CR17
– ident: 119_CR1
– volume-title: Graph Theory, Volume 173 of Graduate Texts in Mathematics
  year: 2017
  ident: 119_CR11
  contributor:
    fullname: R Diestel
– volume: 132
  start-page: 897
  issue: 4
  year: 2010
  ident: 119_CR16
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.0.0132
  contributor:
    fullname: SJ Gortler
– ident: 119_CR25
  doi: 10.1109/SFCS.1985.16
– ident: 119_CR6
  doi: 10.1090/dimacs/004/11
SSID ssj0008315
Score 2.4143333
Snippet Let G be a 3-connected ordered graph with n vertices and m edges. Let p be a randomly chosen mapping of these n vertices to the integer range { 1 , 2 , 3 , … ,...
Let G be a 3-connected ordered graph with n vertices and m edges. Let $$\textbf{p}$$ p be a randomly chosen mapping of these n vertices to the integer range...
Let G be a 3-connected ordered graph with n vertices and m edges. Let p be a randomly chosen mapping of these n vertices to the integer range {1,2,3,…,2b} for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1325
SubjectTerms Algorithms
Apexes
Combinatorics
Error analysis
Euclidean geometry
Graph theory
Mathematics
Mathematics and Statistics
Original Paper
Reconstruction
Title Reconstruction in One Dimension from Unlabeled Euclidean Lengths
URI https://link.springer.com/article/10.1007/s00493-024-00119-x
https://www.proquest.com/docview/3128963939
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWDgjSgU5IENjJI4D3ujokEVKjBApXaK_ApUIIOUVuLnc06TVCAYYMqQxEo-n-87-3yfETplnlLcRDERTEQkFDQkImYR0bEAsleh9Kmrdx48JHdj1k-dTA5tli7sy0WdkSwddVPr5mJZl3IMSalTRiBwbAP3RGDc7V56Mxg2DphVBxcEnhOfZLSqlfm5la98tAwyv-VFS7q53vzXh26hjSq6xL2FOWyjFWN30PptI81a7KJLN-FcysbiqcX31uC-U_l3K2fYFZzgkQXrAEbSOJ2r16k2wuKhsU-z52IPja7Tx6sBqY5RIAqGwIwkBqYdVHDjJSIKIJjOufKlUDphmnp57InES4zmTipdykjlxpfwByoINCCofbqPWvbNmgOEObwkpQyNFH5oAsNVxGAaqkUuvVCqpIPOajCz94VaRtboIpe4ZIBLuY-OZx8d1K3xzqqRU2QUCBOcAqe8g85rgJe3f2_t8G-PH6G1wPVRuTOli1oAuzlGq4Wen1T25K7jyaT_CX42xmw
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADb0ShgAc2sJTEedgbFS0qoi0DrdROkV-BSsggpZX4-dhp0goEA8xJrPjz-R6-u88Al9STkukoxpzyCIechJjHNMIq5tbYy1D4xPU7d5-SwZi2O44mJ6x6YYpq9yolWWjqZbObc2ZdzjHEBVEZtp5j3bGdBzWot8aTSXupgWl5c0HgOfZJSspmmZ9H-WqQVl7mt8RoYW_udv73p7uwXfqXqLUQiD1Y02YftvpLctb8AG5cyLkijkVTgx6NRm3H8-_OzpBrOUEjY-XD2iSFOnP5OlWaG9TT5nn2kh_C6K4zvO3i8iIFLO0mmOFE28CDcKa9hEeBdaczJn3BpUqoIl4WezzxEq2YI0sXIpKZ9oWdgQwCZSFUPjmCmnkz-hgQsx8JIUItuB_qQDMZURuIKp4JLxQyacBVhWb6vuDLSJfMyAUuqcWlqKRj6UcDmhXgabl38pRYk2nVAiOsAdcVwKvHv4928rfXL2CjO-z30t794OEUNgO3XkWdShNqdgn0Gaznan5eCtcnf_HI7A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60BdGDb7FadQ_edDGPzWNvFptStVZBC97CvqIFWQtpwZ_vbJqkKHoQz0mW5NvZnZnMfN8idBo7UjIdhITHPCCU-5TwMA6ICjk4e0mF61u-c_8xGj7H3cTK5NQs_qLbvSpJzjkNVqXJTC8mKruoiW82sLX1R0oK0TICUWSTQiYDlt7sJDf9Qb0bx-UpBp5jlShjvyTO_DzKV-e0iDi_FUkL39Pb-P9bb6L1Mu7EnbmhbKElbbbR2l0t2prvoEubii4EZfHY4Hujcdfq_9t_athSUfDIgN2Ar1I4mcm3sdLc4IE2L9PXfBeNesnTVZ-UBywQCYtjSiINCYnPmXYiHngQZmdMuoJLFcXKd7LQ4ZETacWsiLoQgcy0K-ALpOcpgFO5_h5qmHej9xFm8JAQgmrBXao9zWQQQ4KqeCYcKmTUQmcVsulkrqOR1orJBS4p4FJ02LH0o4XaFfhpuaby1AdXCtsF81kLnVdgLy7_PtrB324_QSsP3V46uB7eHqJVz05X0b7SRg2YAX2ElnM1Oy7t7BPc7tFt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+in+One+Dimension+from+Unlabeled+Euclidean+Lengths&rft.jtitle=Combinatorica+%28Budapest.+1981%29&rft.au=Connelly%2C+Robert&rft.au=Gortler%2C+Steven+J.&rft.au=Theran%2C+Louis&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0209-9683&rft.eissn=1439-6912&rft.volume=44&rft.issue=6&rft.spage=1325&rft.epage=1351&rft_id=info:doi/10.1007%2Fs00493-024-00119-x&rft.externalDocID=10_1007_s00493_024_00119_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0209-9683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0209-9683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0209-9683&client=summon