Investigation of electrolyte parameters on the performance of gadolinium-doped ceria–based solid oxide fuel cell: an analytical study
An analytical study of the effect of gadolinium-doped ceria (GDC) electrolyte parameters on the output voltage, output power, open circuit no-load voltage, and leakage current is carried out for solid oxide fuel cell (SOFC). Conductivity due to both ions and electrons is considered for GDC electroly...
Saved in:
Published in: | Journal of solid state electrochemistry Vol. 28; no. 11; pp. 4247 - 4257 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-11-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An analytical study of the effect of gadolinium-doped ceria (GDC) electrolyte parameters on the output voltage, output power, open circuit no-load voltage, and leakage current is carried out for solid oxide fuel cell (SOFC). Conductivity due to both ions and electrons is considered for GDC electrolytes. The model incorporates various polarization losses such as activation overpotential, concentration overpotential, and ohmic potential losses in order to study the effect of electrolyte parameters on output voltage. The output voltage and, hence, the power density obtained from the model closely match the experimental reports, thus validating the model. Subsequently, the open circuit no-load voltage model and no-load leakage current are used to study the effect of electrolyte thickness and electronic conductivity on it during no-load conditions. During loaded condition, the model relating the electronic current with the ionic current is employed to analyze the effect of various SOFC parameters governing the electronic current density. This study will be instrumental in designing SOFC with low leakage current density and high output power in order to enhance the performance of SOFC. |
---|---|
ISSN: | 1432-8488 1433-0768 |
DOI: | 10.1007/s10008-024-06028-9 |