Analysis of the Results of Astroclimate Measurements in the Millimeter Wavelength Range Using Machine Learning Methods

This paper presents a method for estimating precipitable water vapor from radiometric data using machine learning methods. The results of a study of precipitated water vapor for the territory of Chirag (Dagestan), Terskol peak (Elbrus region), Badary observatory (Buryatia) and the Spitsbergen archip...

Full description

Saved in:
Bibliographic Details
Published in:Astrophysical bulletin Vol. 79; no. 2; pp. 340 - 349
Main Authors: Khabarova, T. A., Zemlyanukha, P. M., Dombek, E. M., Marukhno, A. S., Vdovin, V. F.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-06-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a method for estimating precipitable water vapor from radiometric data using machine learning methods. The results of a study of precipitated water vapor for the territory of Chirag (Dagestan), Terskol peak (Elbrus region), Badary observatory (Buryatia) and the Spitsbergen archipelago are presented. A comparative analysis of the assessment of precipitable water vapor for the territory of ‘‘Badary’’ was carried out using GNSS, MERRA-2, water vapor radiometer data and predicting values using machine learning methods based on data from the MIAP-2 microwave radiometer.
ISSN:1990-3413
1990-3421
DOI:10.1134/S1990341324700299