Comparative Study on Performance of Various Neural Network Algorithms in Construction Project Cost Prediction
Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The problem to be studied in this article is how to predict construction project costs accurately. The related factors affecting construction proje...
Saved in:
Published in: | International journal of mathematical, engineering and management sciences Vol. 9; no. 6; pp. 1291 - 1301 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Ram Arti Publishers
01-12-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The problem to be studied in this article is how to predict construction project costs accurately. The related factors affecting construction project costs are briefly introduced in this paper. A back-propagation neural network (BPNN) was proposed to predict construction engineering costs, and the AdaBoost algorithm was used to improve it. Then, simulation experiments were carried out. It was found that the Adaboost-BPNN algorithm converged to stability faster, and the mean square error was smaller (10-5) when it was stable. Compared with the support vector machine and traditional BPNN algorithms, the AdaBoost-BPNN algorithm had better goodness of fit (0.787) and provided more accurate prediction results for construction engineering costs (mean average error: 0.467, root-mean-square error: 1.118). The novelty of this article lies in utilizing AdaBoost to combine multiple weak predictors into a strong predictor, thereby enhancing the performance of the BPNN algorithm. The contribution lies in improving the predictive performance of the BPNN through the combination principle of AdaBoost, providing an effective reference for accurate cost prediction in construction engineering. |
---|---|
AbstractList | Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The problem to be studied in this article is how to predict construction project costs accurately. The related factors affecting construction project costs are briefly introduced in this paper. A back-propagation neural network (BPNN) was proposed to predict construction engineering costs, and the AdaBoost algorithm was used to improve it. Then, simulation experiments were carried out. It was found that the Adaboost-BPNN algorithm converged to stability faster, and the mean square error was smaller (10-5) when it was stable. Compared with the support vector machine and traditional BPNN algorithms, the AdaBoost-BPNN algorithm had better goodness of fit (0.787) and provided more accurate prediction results for construction engineering costs (mean average error: 0.467, root-mean-square error: 1.118). The novelty of this article lies in utilizing AdaBoost to combine multiple weak predictors into a strong predictor, thereby enhancing the performance of the BPNN algorithm. The contribution lies in improving the predictive performance of the BPNN through the combination principle of AdaBoost, providing an effective reference for accurate cost prediction in construction engineering. |
Author | Li, Haibo Zhong, Lihua Zhao, Li Liu, Xiaoyi |
Author_xml | – sequence: 1 givenname: Haibo surname: Li fullname: Li, Haibo organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China – sequence: 2 givenname: Li surname: Zhao fullname: Zhao, Li organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China – sequence: 3 givenname: Lihua surname: Zhong fullname: Zhong, Lihua organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China – sequence: 4 givenname: Xiaoyi surname: Liu fullname: Liu, Xiaoyi organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China |
BookMark | eNpNkclOwzAURS0EEuMfsPAPNCSOxyWqGIqYpAJby7GfwaWJke2C-HvSFiFW972zOJtziHaHOABCp01dta2U6mx2c3dxN69ITWilKl7VXO2gA0IZmwhB1e6_ex-d5Lyo65oI1bKGHKB-GvsPk0wJn4DnZeW-cRzwIyQfU28GCzh6_GJSiKuM72GVzHKc8hXTOz5fvsYUylufcRjwNA65pJUtYS1IcQG2jDCX8QEXNvwY7XmzzHDyu0fo-fLiaXo9uX24mk3Pbye2UbxMwFqqFGu8VMw3kvlaeGYdeMkFcUSAIZ4454UA6xgjzjrZCs470SrlVdceodnW66JZ6I8UepO-dTRBb0BMr9qkEuwStKKy84QZRomh0EmlgPCOtiCbzjHejC66ddkUc07g_3xNrTcF9LaAXhfQSnM9Fmh_AEatfjo |
Cites_doi | 10.1155/2020/6518147 10.1155/2021/4309495 10.1080/09613218.2023.2196388 10.1016/j.egyr.2020.11.047 10.1007/s42452-020-03497-1 10.1108/ci-05-2021-0096 10.1108/ecam-11-2020-0989 10.1088/1742-6596/1955/1/012101 10.1007/978-3-031-36246-0_20 10.1061/(asce)co.1943-7862.0001570 10.1007/s12205-021-1489-4 10.21686/2413-2829-2020-3-110-123 10.1016/j.epsr.2023.109959 10.2208/jscejipm.77.5_i_193 10.1057/s41599-023-01592-3 10.1088/1757-899x/768/6/062065 10.1007/s00500-022-07800-7 10.1088/1742-6596/1650/3/032162 10.1088/1755-1315/714/4/042009 10.1051/e3sconf/202021303018 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.33889/IJMEMS.2024.9.6.069 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2455-7749 |
EndPage | 1301 |
ExternalDocumentID | oai_doaj_org_article_948bf25a542a4eb899e26b43e81bd561 10_33889_IJMEMS_2024_9_6_069 |
GroupedDBID | 7WY 8FL AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BEZIV CCPQU CITATION DWQXO FRNLG GROUPED_DOAJ M0C M~E OK1 PIMPY PQBIZ PQBZA |
ID | FETCH-LOGICAL-c196t-ecc49951f895f185f07f5cdef8672d27ea2f2ddf77ecd552dcd83766b7399f9b3 |
IEDL.DBID | DOA |
ISSN | 2455-7749 |
IngestDate | Mon Oct 07 19:36:09 EDT 2024 Wed Oct 09 16:52:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c196t-ecc49951f895f185f07f5cdef8672d27ea2f2ddf77ecd552dcd83766b7399f9b3 |
OpenAccessLink | https://doaj.org/article/948bf25a542a4eb899e26b43e81bd561 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_948bf25a542a4eb899e26b43e81bd561 crossref_primary_10_33889_IJMEMS_2024_9_6_069 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-1 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of mathematical, engineering and management sciences |
PublicationYear | 2024 |
Publisher | Ram Arti Publishers |
Publisher_xml | – name: Ram Arti Publishers |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref0 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1155/2020/6518147 – ident: ref17 doi: 10.1155/2021/4309495 – ident: ref14 doi: 10.1080/09613218.2023.2196388 – ident: ref10 doi: 10.1016/j.egyr.2020.11.047 – ident: ref4 doi: 10.1007/s42452-020-03497-1 – ident: ref12 doi: 10.1108/ci-05-2021-0096 – ident: ref18 doi: 10.1108/ecam-11-2020-0989 – ident: ref19 doi: 10.1088/1742-6596/1955/1/012101 – ident: ref7 doi: 10.1007/978-3-031-36246-0_20 – ident: ref13 doi: 10.1061/(asce)co.1943-7862.0001570 – ident: ref3 doi: 10.1007/s12205-021-1489-4 – ident: ref5 doi: 10.21686/2413-2829-2020-3-110-123 – ident: ref8 doi: 10.1016/j.epsr.2023.109959 – ident: ref6 doi: 10.2208/jscejipm.77.5_i_193 – ident: ref9 doi: 10.1057/s41599-023-01592-3 – ident: ref16 doi: 10.1088/1757-899x/768/6/062065 – ident: ref1 doi: 10.1007/s00500-022-07800-7 – ident: ref11 doi: 10.1088/1742-6596/1650/3/032162 – ident: ref20 doi: 10.1088/1755-1315/714/4/042009 – ident: ref0 – ident: ref15 doi: 10.1051/e3sconf/202021303018 |
SSID | ssj0002793512 |
Score | 2.3270588 |
Snippet | Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1291 |
SubjectTerms | adaboost construction project cost prediction neural network |
Title | Comparative Study on Performance of Various Neural Network Algorithms in Construction Project Cost Prediction |
URI | https://doaj.org/article/948bf25a542a4eb899e26b43e81bd561 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsCAaK85IE1ber4OZbSqiC1qlRAbFYc2zwECVLLwL_nHKePjYUxp8iyvnN098V33yF0rQrie7YXunFkmlCXicRwkSU-p1YWwINMEXqHx3MxfZa3wyCTsx71FWrCojxwBK6rqDSesJxRklNngB44wg3NHORbljXEJ5VbZOq9vk5TGYSy2CsHLEyq7t39ZDiZAyMktKM6vJOGGuetWLQl2V_HltEB2m-SQtyPmzlEO648Qp-DjTA3DuV-P7gq8WxT6I8rj5-A6gJ3x0FjA1aYxqJu3P94qYD1v34u8FuJw1DOlUwsnsVfL2BcLOEh3NME-zF6HA0fBuOkGY6QFPDRLBOAHsgK63mpmIeg61PhWWGdl1wQS4TLiSfWeiFcYRkjtrDARTk3AlISr0x2glplVbpThB3AahVnGaeWGp4qQ4SEtEpY5qURqo2SFUz6K2pgaOAONaw6wqoDrFpprgHWNroJWK7fDQrWtQH8qhu_6r_8evYfi5yjvbCxWH5ygVqAtbtEuwv7fVWfl1-DecVj |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Study+on+Performance+of+Various+Neural+Network+Algorithms+in+Construction+Project+Cost+Prediction&rft.jtitle=International+journal+of+mathematical%2C+engineering+and+management+sciences&rft.au=Li%2C+Haibo&rft.au=Zhao%2C+Li&rft.au=Zhong%2C+Lihua&rft.au=Liu%2C+Xiaoyi&rft.date=2024-12-01&rft.issn=2455-7749&rft.eissn=2455-7749&rft.volume=9&rft.issue=6&rft.spage=1291&rft.epage=1301&rft_id=info:doi/10.33889%2FIJMEMS.2024.9.6.069&rft.externalDBID=n%2Fa&rft.externalDocID=10_33889_IJMEMS_2024_9_6_069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2455-7749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2455-7749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2455-7749&client=summon |