Comparative Study on Performance of Various Neural Network Algorithms in Construction Project Cost Prediction

Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The problem to be studied in this article is how to predict construction project costs accurately. The related factors affecting construction proje...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mathematical, engineering and management sciences Vol. 9; no. 6; pp. 1291 - 1301
Main Authors: Li, Haibo, Zhao, Li, Zhong, Lihua, Liu, Xiaoyi
Format: Journal Article
Language:English
Published: Ram Arti Publishers 01-12-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The problem to be studied in this article is how to predict construction project costs accurately. The related factors affecting construction project costs are briefly introduced in this paper. A back-propagation neural network (BPNN) was proposed to predict construction engineering costs, and the AdaBoost algorithm was used to improve it. Then, simulation experiments were carried out. It was found that the Adaboost-BPNN algorithm converged to stability faster, and the mean square error was smaller (10-5) when it was stable. Compared with the support vector machine and traditional BPNN algorithms, the AdaBoost-BPNN algorithm had better goodness of fit (0.787) and provided more accurate prediction results for construction engineering costs (mean average error: 0.467, root-mean-square error: 1.118). The novelty of this article lies in utilizing AdaBoost to combine multiple weak predictors into a strong predictor, thereby enhancing the performance of the BPNN algorithm. The contribution lies in improving the predictive performance of the BPNN through the combination principle of AdaBoost, providing an effective reference for accurate cost prediction in construction engineering.
AbstractList Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The problem to be studied in this article is how to predict construction project costs accurately. The related factors affecting construction project costs are briefly introduced in this paper. A back-propagation neural network (BPNN) was proposed to predict construction engineering costs, and the AdaBoost algorithm was used to improve it. Then, simulation experiments were carried out. It was found that the Adaboost-BPNN algorithm converged to stability faster, and the mean square error was smaller (10-5) when it was stable. Compared with the support vector machine and traditional BPNN algorithms, the AdaBoost-BPNN algorithm had better goodness of fit (0.787) and provided more accurate prediction results for construction engineering costs (mean average error: 0.467, root-mean-square error: 1.118). The novelty of this article lies in utilizing AdaBoost to combine multiple weak predictors into a strong predictor, thereby enhancing the performance of the BPNN algorithm. The contribution lies in improving the predictive performance of the BPNN through the combination principle of AdaBoost, providing an effective reference for accurate cost prediction in construction engineering.
Author Li, Haibo
Zhong, Lihua
Zhao, Li
Liu, Xiaoyi
Author_xml – sequence: 1
  givenname: Haibo
  surname: Li
  fullname: Li, Haibo
  organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China
– sequence: 2
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
  organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China
– sequence: 3
  givenname: Lihua
  surname: Zhong
  fullname: Zhong, Lihua
  organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China
– sequence: 4
  givenname: Xiaoyi
  surname: Liu
  fullname: Liu, Xiaoyi
  organization: Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075000, Hebei, China
BookMark eNpNkclOwzAURS0EEuMfsPAPNCSOxyWqGIqYpAJby7GfwaWJke2C-HvSFiFW972zOJtziHaHOABCp01dta2U6mx2c3dxN69ITWilKl7VXO2gA0IZmwhB1e6_ex-d5Lyo65oI1bKGHKB-GvsPk0wJn4DnZeW-cRzwIyQfU28GCzh6_GJSiKuM72GVzHKc8hXTOz5fvsYUylufcRjwNA65pJUtYS1IcQG2jDCX8QEXNvwY7XmzzHDyu0fo-fLiaXo9uX24mk3Pbye2UbxMwFqqFGu8VMw3kvlaeGYdeMkFcUSAIZ4454UA6xgjzjrZCs470SrlVdceodnW66JZ6I8UepO-dTRBb0BMr9qkEuwStKKy84QZRomh0EmlgPCOtiCbzjHejC66ddkUc07g_3xNrTcF9LaAXhfQSnM9Fmh_AEatfjo
Cites_doi 10.1155/2020/6518147
10.1155/2021/4309495
10.1080/09613218.2023.2196388
10.1016/j.egyr.2020.11.047
10.1007/s42452-020-03497-1
10.1108/ci-05-2021-0096
10.1108/ecam-11-2020-0989
10.1088/1742-6596/1955/1/012101
10.1007/978-3-031-36246-0_20
10.1061/(asce)co.1943-7862.0001570
10.1007/s12205-021-1489-4
10.21686/2413-2829-2020-3-110-123
10.1016/j.epsr.2023.109959
10.2208/jscejipm.77.5_i_193
10.1057/s41599-023-01592-3
10.1088/1757-899x/768/6/062065
10.1007/s00500-022-07800-7
10.1088/1742-6596/1650/3/032162
10.1088/1755-1315/714/4/042009
10.1051/e3sconf/202021303018
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.33889/IJMEMS.2024.9.6.069
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2455-7749
EndPage 1301
ExternalDocumentID oai_doaj_org_article_948bf25a542a4eb899e26b43e81bd561
10_33889_IJMEMS_2024_9_6_069
GroupedDBID 7WY
8FL
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BEZIV
CCPQU
CITATION
DWQXO
FRNLG
GROUPED_DOAJ
M0C
M~E
OK1
PIMPY
PQBIZ
PQBZA
ID FETCH-LOGICAL-c196t-ecc49951f895f185f07f5cdef8672d27ea2f2ddf77ecd552dcd83766b7399f9b3
IEDL.DBID DOA
ISSN 2455-7749
IngestDate Mon Oct 07 19:36:09 EDT 2024
Wed Oct 09 16:52:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c196t-ecc49951f895f185f07f5cdef8672d27ea2f2ddf77ecd552dcd83766b7399f9b3
OpenAccessLink https://doaj.org/article/948bf25a542a4eb899e26b43e81bd561
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_948bf25a542a4eb899e26b43e81bd561
crossref_primary_10_33889_IJMEMS_2024_9_6_069
PublicationCentury 2000
PublicationDate 2024-12-1
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-1
  day: 01
PublicationDecade 2020
PublicationTitle International journal of mathematical, engineering and management sciences
PublicationYear 2024
Publisher Ram Arti Publishers
Publisher_xml – name: Ram Arti Publishers
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref0
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1155/2020/6518147
– ident: ref17
  doi: 10.1155/2021/4309495
– ident: ref14
  doi: 10.1080/09613218.2023.2196388
– ident: ref10
  doi: 10.1016/j.egyr.2020.11.047
– ident: ref4
  doi: 10.1007/s42452-020-03497-1
– ident: ref12
  doi: 10.1108/ci-05-2021-0096
– ident: ref18
  doi: 10.1108/ecam-11-2020-0989
– ident: ref19
  doi: 10.1088/1742-6596/1955/1/012101
– ident: ref7
  doi: 10.1007/978-3-031-36246-0_20
– ident: ref13
  doi: 10.1061/(asce)co.1943-7862.0001570
– ident: ref3
  doi: 10.1007/s12205-021-1489-4
– ident: ref5
  doi: 10.21686/2413-2829-2020-3-110-123
– ident: ref8
  doi: 10.1016/j.epsr.2023.109959
– ident: ref6
  doi: 10.2208/jscejipm.77.5_i_193
– ident: ref9
  doi: 10.1057/s41599-023-01592-3
– ident: ref16
  doi: 10.1088/1757-899x/768/6/062065
– ident: ref1
  doi: 10.1007/s00500-022-07800-7
– ident: ref11
  doi: 10.1088/1742-6596/1650/3/032162
– ident: ref20
  doi: 10.1088/1755-1315/714/4/042009
– ident: ref0
– ident: ref15
  doi: 10.1051/e3sconf/202021303018
SSID ssj0002793512
Score 2.3270588
Snippet Making accurate predictions of the construction cost is essential for ensuring the smooth implementation of projects and guaranteeing economic benefits. The...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 1291
SubjectTerms adaboost
construction project
cost prediction
neural network
Title Comparative Study on Performance of Various Neural Network Algorithms in Construction Project Cost Prediction
URI https://doaj.org/article/948bf25a542a4eb899e26b43e81bd561
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsCAaK85IE1ber4OZbSqiC1qlRAbFYc2zwECVLLwL_nHKePjYUxp8iyvnN098V33yF0rQrie7YXunFkmlCXicRwkSU-p1YWwINMEXqHx3MxfZa3wyCTsx71FWrCojxwBK6rqDSesJxRklNngB44wg3NHORbljXEJ5VbZOq9vk5TGYSy2CsHLEyq7t39ZDiZAyMktKM6vJOGGuetWLQl2V_HltEB2m-SQtyPmzlEO648Qp-DjTA3DuV-P7gq8WxT6I8rj5-A6gJ3x0FjA1aYxqJu3P94qYD1v34u8FuJw1DOlUwsnsVfL2BcLOEh3NME-zF6HA0fBuOkGY6QFPDRLBOAHsgK63mpmIeg61PhWWGdl1wQS4TLiSfWeiFcYRkjtrDARTk3AlISr0x2glplVbpThB3AahVnGaeWGp4qQ4SEtEpY5qURqo2SFUz6K2pgaOAONaw6wqoDrFpprgHWNroJWK7fDQrWtQH8qhu_6r_8evYfi5yjvbCxWH5ygVqAtbtEuwv7fVWfl1-DecVj
link.rule.ids 315,782,786,866,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Study+on+Performance+of+Various+Neural+Network+Algorithms+in+Construction+Project+Cost+Prediction&rft.jtitle=International+journal+of+mathematical%2C+engineering+and+management+sciences&rft.au=Li%2C+Haibo&rft.au=Zhao%2C+Li&rft.au=Zhong%2C+Lihua&rft.au=Liu%2C+Xiaoyi&rft.date=2024-12-01&rft.issn=2455-7749&rft.eissn=2455-7749&rft.volume=9&rft.issue=6&rft.spage=1291&rft.epage=1301&rft_id=info:doi/10.33889%2FIJMEMS.2024.9.6.069&rft.externalDBID=n%2Fa&rft.externalDocID=10_33889_IJMEMS_2024_9_6_069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2455-7749&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2455-7749&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2455-7749&client=summon