A novel CNN architecture for robust structural damage identification via strain measurements and its validation via full-scale experiments

•A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the structure.•Measured strain time histories were converted to image data type.•Robustness was validated using full scale experiments on a laboratory structure.•...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation Vol. 239; p. 115393
Main Authors: Duran, Burak, Emory, Dominic, Eftekhar Azam, Yashar, Linzell, Daniel G.
Format: Journal Article
Language:English
Published: Elsevier Ltd 15-01-2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the structure.•Measured strain time histories were converted to image data type.•Robustness was validated using full scale experiments on a laboratory structure.•Invisible damage due to a full-scale crash test was accurately detected by as few as four sensors and low sampling rates.•Over 300 live load tests were conducted before and after inducing three damage levels on the structure. In this study, an innovative two-dimensional Convolutional Neural Network (2D CNN) architecture is proposed and investigated for the classification of bridge damage. Employing unique strain time-history data transformed into grayscale images, the approach seamlessly combines feature extraction and classification, allowing for the precise identification and categorization of structural damage. The method’s effectiveness was validated through field experiments on a full-scale bridge mock-up sample subjected to several controlled damage states under nonstationary, commercial vehicle loads. A wide range of realistic damage conditions, from minor to severe structural damage states, was included in the experimental scenarios together with inherent operational uncertainties. The robustness of the 2D CNN model was rigorously tested against fluctuating loads and introduced noise. Demonstrating remarkable accuracy, the 2D CNN successfully classified different damage states with over 95% accuracy, effectively identifying a damage state that was visually undetectable. Furthermore, the architecture proved to be highly versatile, effectively handling variations in the number of sensors. uncertainties included in the experimental data, and elevated levels of measurement noise.
AbstractList •A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the structure.•Measured strain time histories were converted to image data type.•Robustness was validated using full scale experiments on a laboratory structure.•Invisible damage due to a full-scale crash test was accurately detected by as few as four sensors and low sampling rates.•Over 300 live load tests were conducted before and after inducing three damage levels on the structure. In this study, an innovative two-dimensional Convolutional Neural Network (2D CNN) architecture is proposed and investigated for the classification of bridge damage. Employing unique strain time-history data transformed into grayscale images, the approach seamlessly combines feature extraction and classification, allowing for the precise identification and categorization of structural damage. The method’s effectiveness was validated through field experiments on a full-scale bridge mock-up sample subjected to several controlled damage states under nonstationary, commercial vehicle loads. A wide range of realistic damage conditions, from minor to severe structural damage states, was included in the experimental scenarios together with inherent operational uncertainties. The robustness of the 2D CNN model was rigorously tested against fluctuating loads and introduced noise. Demonstrating remarkable accuracy, the 2D CNN successfully classified different damage states with over 95% accuracy, effectively identifying a damage state that was visually undetectable. Furthermore, the architecture proved to be highly versatile, effectively handling variations in the number of sensors. uncertainties included in the experimental data, and elevated levels of measurement noise.
ArticleNumber 115393
Author Duran, Burak
Linzell, Daniel G.
Emory, Dominic
Eftekhar Azam, Yashar
Author_xml – sequence: 1
  givenname: Burak
  orcidid: 0000-0003-0352-2456
  surname: Duran
  fullname: Duran, Burak
  organization: Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA
– sequence: 2
  givenname: Dominic
  surname: Emory
  fullname: Emory, Dominic
  organization: Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA
– sequence: 3
  givenname: Yashar
  surname: Eftekhar Azam
  fullname: Eftekhar Azam, Yashar
  email: saeed.eftekharazam@unh.edu
  organization: Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA
– sequence: 4
  givenname: Daniel G.
  surname: Linzell
  fullname: Linzell, Daniel G.
  organization: Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
BookMark eNqNkE1OwzAQhb0oEm3hDuYACXacn3pZRfxJVdnA2prYY3CVOpWdRHAFTk1KkeiS1Uij9968-RZk5juPhNxwlnLGy9tdukeIQ8A9-j7NWJannBdCihmZs6wUSZbl_JIsYtwxxkohyzn5WlPfjdjSerulEPS761H3Uwa1XaCha4bY09iH4biElhrYwxtSZ6YTzjoNves8HR0cReA8PasQKXhD3TRHaJ35k9qhbZOooUWKHwcM7kd9RS4stBGvf-eSvN7fvdSPyeb54alebxLNZdEnUludI8eygpzlKymaorHMrgxAw5nRVSFEAbZiUORClzlaWVTSGCiaClYliCWRp1wduhgDWnWYGkD4VJypI0i1U2dfqCNIdQI5eeuTF6eCo8OgonboNRoXJm7KdO4fKd-tMYtk
Cites_doi 10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.90
10.1007/s41062-023-01217-3
10.3390/app12178689
10.1016/j.jsv.2016.10.043
10.3390/s22145172
10.1016/j.engstruct.2022.115282
10.1111/mice.12409
10.1109/JPROC.2020.3004555
10.4028/www.scientific.net/KEM.245-246.35
10.1155/2023/7986061
10.3390/infrastructures7060084
10.3390/buildings12122130
10.3389/fbuil.2019.00116
10.1016/j.engstruct.2021.113250
10.1016/j.jsv.2005.03.016
10.1109/CVPR.2009.5206848
10.1007/s13349-021-00530-8
10.3390/buildings13030650
10.1016/j.engstruct.2022.115306
10.1186/s40537-021-00444-8
10.3390/app11062610
10.3390/s20102778
10.1016/j.jsv.2019.05.027
10.1007/s12205-019-0437-z
10.1007/978-3-319-54858-6_33
10.1186/s40069-022-00557-1
10.1016/j.eswa.2020.113634
10.1177/1475921717721137
10.1007/s13349-023-00701-9
10.1109/HORA52670.2021.9461277
10.1016/j.ymssp.2019.106380
10.1016/j.aci.2018.08.006
10.1007/0-387-25465-X_9
10.3390/app10144720
10.1061/(ASCE)BE.1943-5592.0001979
10.1007/978-3-642-34041-3_27
10.1177/1475921717750047
10.1016/j.engstruct.2020.110520
10.1186/s43251-022-00078-7
10.1007/978-3-031-15758-5_80
10.1177/1475921718804132
10.1111/mice.12425
10.1111/mice.12313
10.1016/j.apacoust.2020.107402
10.1016/j.engstruct.2022.114016
10.1007/978-3-030-72192-3_6
10.1038/s41598-019-47765-6
10.3390/s19112572
10.1177/1475921718757405
10.1007/978-3-030-47638-0_16
10.1111/mice.12387
10.1007/s13349-021-00488-7
10.1016/j.measurement.2022.111747
10.1038/s41598-021-90923-y
10.1177/1475921720924601
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2024.115393
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2024_115393
S0263224124012788
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AAYXX
ABFNM
ABXDB
ACNNM
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY7
M41
R2-
SET
WUQ
XPP
ID FETCH-LOGICAL-c195t-9cfc4e1e67a404893b5bf0f8daab10dc75335af70a543c64ef9579dda5b7a86a3
ISSN 0263-2241
IngestDate Wed Oct 23 14:22:51 EDT 2024
Sat Oct 19 15:54:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords damage detection
Strain time-history
Supervised learning
Bridge health monitoring
Convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c195t-9cfc4e1e67a404893b5bf0f8daab10dc75335af70a543c64ef9579dda5b7a86a3
ORCID 0000-0003-0352-2456
ParticipantIDs crossref_primary_10_1016_j_measurement_2024_115393
elsevier_sciencedirect_doi_10_1016_j_measurement_2024_115393
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Nie, Ma (b0235) 2017; 32
Vagnoli, Remenyte-Prescott, Andrews (b0305) Jul. 2018; 17
Mao, Wang, Spencer (b0185) Jul. 2021; 20
Svendsen, Frøseth, Øiseth, Rønnquist (b0110) Feb. 2022; 12
G. Krastev, V. Voinohovska, Application of hierarchical cluster analysis in the machine learning, in: 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Jun. 2021, pp. 1–3. doi: 10.1109/HORA52670.2021.9461277.
Duran, Azam (b0245) 2023; 2023
K. Simonyan , A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv, Apr. 10, 2015. doi: 10.48550/arXiv.1409.1556.
Katam, Pasupuleti, Kalapatapu (b0055) Aug. 2023; 8
Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (b0135) Feb. 2017; 388
M.P. Limongelli et al., Vibration response-based damage detection,” in: Structural Health Monitoring Damage Detection Systems for Aerospace, M. G. R. Sause and E. Jasiūnienė, Eds., in Springer Aerospace Technology. , Cham: Springer International Publishing, 2021, pp. 133–173. doi: 10.1007/978-3-030-72192-3_6.
He, Huang, Liu, Zhang, Liu (b0240) Dec. 2022; 12
Azimi, Eslamlou, Pekcan (b0050) Jan. 2020; 20
E. Akintunde, S. Eftekhar Azam, A. Rageh, D. G. Linzell, Unsupervised machine learning for robust bridge damage detection: full-scale experimental validation, Engineering Structures 249 (2021) 113250, doi: 10.1016/j.engstruct.2021.113250.
M. Abadi
A. Diab, T. Nestorović, Damage index implementation for
Ni, Wang, Zhang (b0030) Jun. 2020; 212
Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, in: The handbook of brain theory and neural networks, vol. 10, in 3361, vol. 10. , 1995.
Maeda, Sekimoto, Seto, Kashiyama, Omata (b0270) Dec. 2018; 33
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. arXiv, Dec. 10, 2015. doi: 10.48550/arXiv.1512.03385.
J. Won, J.-W. Park, S. Jang, K. Jin, Y. Kim, Automated structural damage identification using data normalization and 1-dimensional convolutional neural network, Appl. Sci. 11(6), Art. no. 6, Jan. 2021, doi: 10.3390/app11062610.
Fitzgerald (b0070) Jan. 2019; 19
Ni, Zhou, Ko (b0085) Feb. 2006; 290
Khodabandehlou, Pekcan, Fadali (b0200) 2019; 26
Wolniak (b0100) Oct. 2023; 13
Yu, Wang, Gu, Li (b0220) Jan. 2019; 18
Ghahremani, Enshaeian, Rizzo (b0040) 2022; 22
Goi, Kim (b0095) Aug. 2023; 2023
Figueiredo, Omori Yano, da Silva, Moldovan, Adrian Bud (b0275) Jan. 2023; 28
Owen, Haritos (b0065) 2003; 245–246
N.S. Gulgec, M. Takáč, S.N. Pakzad, Structural damage detection using convolutional neural networks, in: Model Validation and Uncertainty Quantification, Volume 3, R. Barthorpe, R. Platz, I. Lopez, B. Moaveni, and C. Papadimitriou, Eds., in Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer International Publishing, 2017, pp. 331–337. doi: 10.1007/978-3-319-54858-6_33.
Zhuang (b0355) Jan. 2021; 109
Y. Zhang, Support Vector Machine Classification Algorithm and Its Application, in: Information Computing and Applications, C. Liu, L. Wang, and A. Yang, Eds., in Communications in Computer and Information Science. Berlin, Heidelberg: Springer, 2012, pp. 179–186. doi: 10.1007/978-3-642-34041-3_27.
Alzubaidi (b0315) Mar. 2021; 8
A. Dilsiz et al., StEER-EERI: 2023 Mw 7.8 Kahramanmaras, Türkiye Earthquake Sequence Joint Preliminary Virtual Reconnaissance Report (PVRR), Mar. 2023. doi: 10.17603/Ds2-7ry2-Gv66.
Mousavi, Ettefagh, Sadeghi, Razavi (b0360) Nov. 2020; 168
Chamangard, Ghodrati Amiri, Darvishan, Rastin (b0140) 2022; Aug. 2022
Y. Zhu et al., Converting tabular data into images for deep learning with convolutional neural networks, Sci Rep, vol. 11, no. 1, Art. no. 1, May 2021, doi: 10.1038/s41598-021-90923-y.
U. Michelucci, An Introduction to Autoencoders. arXiv, Jan. 11, 2022. doi: 10.48550/arXiv.2201.03898.
Teng, Teng, Zhang, Chen, Cui (b0225) Jan. 2020; 10
C. Szegedy et al., Going deeper with convolutions. arXiv, Sep. 16, 2014. doi: 10.48550/arXiv.1409.4842.
D.P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980.
Yan, Jin, Teng, Chen, Bassir (b0290) Jan. 2022; 12
Mashayekhi, Santini-Bell, Eftekhar Azam (b0035) Sep. 2021; 11
Tharwat (b0150) Jan. 2020; 17
A. Sharma, E. Vans, D. Shigemizu, K. A. Boroevich, T. Tsunoda, “DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture, Sci Rep, vol. 9, no. 1, Art. no. 1, Aug. 2019, doi: 10.1038/s41598-019-47765-6.
H. Seon Park, J. Hwan An, Y. Jun Park, B. Kwan Oh, Convolutional neural network-based safety evaluation method for structures with dynamic responses, Expert Syst. Appl. 158 (2020) 113634, doi: 10.1016/j.eswa.2020.113634.
O. Markogiannaki, Climate Change and Natural Hazard Risk Assessment Framework for Coastal Cable-Stayed Bridges, Front. Built Environ. 5 (2019) Accessed: Oct. 03, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fbuil.2019.00116.
De Angelis, Pecce (b0115) Jan. 2023; 275
Bao, Tang, Li, Zhang (b0255) Mar. 2019; 18
V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines, In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814, 2010.
Liu, Yang, Li (b0265) Sep. 2019; 457
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.
“Suppressing Influence of Measurement Noise on Vibration-Based Damage Detection Involving Higher-Order Derivatives - Hao Xu, Li Cheng, Zhongqing Su, 2013.” Accessed: Sep. 18, 2023. [Online]. Available: https://journals.sagepub.com/doi/abs/10.1260/1369-4332.16.1.233.
Feng, Zhang, Wang, Li, Wang, Yan (b0230) Oct. 2019; 23
Ye, Jin, Yun (b0250) 2019; 24
Liang (b0280) 2019; 34
Dai, Cui, Cheng (b0045) Apr. 2023; 28
structural health monitoring, in: Recent Trends in Wave Mechanics and Vibrations, Z. Dimitrovová, P. Biswas, R. Gonçalves, and T. Silva, Eds., in Mechanisms and Machine Science. Cham: Springer International Publishing, 2023, pp. 783–791. doi: 10.1007/978-3-031-15758-5_80.
P. Seventekidis, D. Giagopoulos, A. Arailopoulos, O. Markogiannaki, Damage identification of structures through machine learning techniques with updated finite element models and experimental validations, in: Model Validation and Uncertainty Quantification, Volume 3, Z. Mao, Ed., in Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer International Publishing, 2020, pp. 143–154. doi: 10.1007/978-3-030-47638-0_16.
F. Huseynov, C. Kim, E.J. OBrien, J.M.W. Brownjohn, D. Hester, K. C. Chang, Bridge damage detection using rotation measurements – Experimental validation, Mech. Syst. Signal Processing 135 (2020) 106380, doi: 10.1016/j.ymssp.2019.106380.
L. Rokach, O. Maimon, Decision Trees, in: Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds., Boston, MA: Springer US, 2005, pp. 165–192. doi: 10.1007/0-387-25465-X_9.
Yan, Teng, Luo, Bassir, Chen (b0285) 2022; 12
Noori Hoshyar, Rashidi, Yu, Samali (b0020) 2023; 15
Li, Wen, Pan, Chen, Yang (b0105) Nov. 2023
Cawley (b0130) Sep. 2018; 17
J. Shlens, A Tutorial on Principal Component Analysis, arXiv, Apr. 03, 2014. doi: 10.48550/arXiv.1404.1100.
N.K. Kitson, A.C. Constantinou, Z. Guo, Y. Liu, K. Chobtham, A survey of Bayesian Network structure learning. arXiv, Oct. 25, 2022. doi: 10.48550/arXiv.2109.11415.
“{TensorFlow}: A System for {Large-Scale} Machine Learning,” presented at the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265–283. Accessed: Oct. 26, 2022. [Online]. Available: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.
Zhang (b0260) 2019; 34
Teng, Chen, Chen, Cheng, Bassir (b0125) Oct. 2022; 202
Zhang, Wang, Li, Xu (b0190) Dec. 2022; 3
Chen (b0015) Feb. 2023; 276
Hajializadeh (b0210) 2022; 7
Paral, Kr, Roy, Samanta (b0215) Feb. 2021; 34
Moradi, Duran, Eftekhar Azam, Mofid (b0025) 2023; 13
Fernandez-Navamuel, Zamora-Sánchez, Omella, David, Garcia-Sanchez, Magalhães (b0205) Apr. 2022; 257
Saidin, Jamadin, Abdul Kudus, Mohd Amin, Anuar (b0090) 2022; 16
Fitzgerald (10.1016/j.measurement.2024.115393_b0070) 2019; 19
Duran (10.1016/j.measurement.2024.115393_b0245) 2023; 2023
Chamangard (10.1016/j.measurement.2024.115393_b0140) 2022; Aug. 2022
10.1016/j.measurement.2024.115393_b0080
Tharwat (10.1016/j.measurement.2024.115393_b0150) 2020; 17
Yan (10.1016/j.measurement.2024.115393_b0290) 2022; 12
Goi (10.1016/j.measurement.2024.115393_b0095) 2023; 2023
Azimi (10.1016/j.measurement.2024.115393_b0050) 2020; 20
10.1016/j.measurement.2024.115393_b0120
10.1016/j.measurement.2024.115393_b0165
Zhang (10.1016/j.measurement.2024.115393_b0260) 2019; 34
10.1016/j.measurement.2024.115393_b0160
De Angelis (10.1016/j.measurement.2024.115393_b0115) 2023; 275
Teng (10.1016/j.measurement.2024.115393_b0225) 2020; 10
Noori Hoshyar (10.1016/j.measurement.2024.115393_b0020) 2023; 15
Feng (10.1016/j.measurement.2024.115393_b0230) 2019; 23
10.1016/j.measurement.2024.115393_b0005
Fernandez-Navamuel (10.1016/j.measurement.2024.115393_b0205) 2022; 257
10.1016/j.measurement.2024.115393_b0325
Chen (10.1016/j.measurement.2024.115393_b0015) 2023; 276
Liang (10.1016/j.measurement.2024.115393_b0280) 2019; 34
Paral (10.1016/j.measurement.2024.115393_b0215) 2021; 34
10.1016/j.measurement.2024.115393_b0320
10.1016/j.measurement.2024.115393_b0365
Teng (10.1016/j.measurement.2024.115393_b0125) 2022; 202
Lin (10.1016/j.measurement.2024.115393_b0235) 2017; 32
Katam (10.1016/j.measurement.2024.115393_b0055) 2023; 8
Vagnoli (10.1016/j.measurement.2024.115393_b0305) 2018; 17
Ni (10.1016/j.measurement.2024.115393_b0030) 2020; 212
10.1016/j.measurement.2024.115393_b0010
10.1016/j.measurement.2024.115393_b0175
10.1016/j.measurement.2024.115393_b0330
10.1016/j.measurement.2024.115393_b0295
10.1016/j.measurement.2024.115393_b0370
10.1016/j.measurement.2024.115393_b0170
Bao (10.1016/j.measurement.2024.115393_b0255) 2019; 18
10.1016/j.measurement.2024.115393_b0335
Abdeljaber (10.1016/j.measurement.2024.115393_b0135) 2017; 388
10.1016/j.measurement.2024.115393_b0375
He (10.1016/j.measurement.2024.115393_b0240) 2022; 12
Ni (10.1016/j.measurement.2024.115393_b0085) 2006; 290
Owen (10.1016/j.measurement.2024.115393_b0065) 2003; 245–246
Saidin (10.1016/j.measurement.2024.115393_b0090) 2022; 16
Maeda (10.1016/j.measurement.2024.115393_b0270) 2018; 33
10.1016/j.measurement.2024.115393_b0340
Yu (10.1016/j.measurement.2024.115393_b0220) 2019; 18
10.1016/j.measurement.2024.115393_b0180
Hajializadeh (10.1016/j.measurement.2024.115393_b0210) 2022; 7
10.1016/j.measurement.2024.115393_b0060
Liu (10.1016/j.measurement.2024.115393_b0265) 2019; 457
Yan (10.1016/j.measurement.2024.115393_b0285) 2022; 12
Dai (10.1016/j.measurement.2024.115393_b0045) 2023; 28
10.1016/j.measurement.2024.115393_b0300
10.1016/j.measurement.2024.115393_b0345
Mao (10.1016/j.measurement.2024.115393_b0185) 2021; 20
Li (10.1016/j.measurement.2024.115393_b0105) 2023
10.1016/j.measurement.2024.115393_b0145
Svendsen (10.1016/j.measurement.2024.115393_b0110) 2022; 12
Ghahremani (10.1016/j.measurement.2024.115393_b0040) 2022; 22
Alzubaidi (10.1016/j.measurement.2024.115393_b0315) 2021; 8
Wolniak (10.1016/j.measurement.2024.115393_b0100) 2023; 13
Khodabandehlou (10.1016/j.measurement.2024.115393_b0200) 2019; 26
10.1016/j.measurement.2024.115393_b0195
Zhuang (10.1016/j.measurement.2024.115393_b0355) 2021; 109
10.1016/j.measurement.2024.115393_b0075
10.1016/j.measurement.2024.115393_b0350
Mousavi (10.1016/j.measurement.2024.115393_b0360) 2020; 168
Moradi (10.1016/j.measurement.2024.115393_b0025) 2023; 13
Mashayekhi (10.1016/j.measurement.2024.115393_b0035) 2021; 11
Zhang (10.1016/j.measurement.2024.115393_b0190) 2022; 3
Ye (10.1016/j.measurement.2024.115393_b0250) 2019; 24
Figueiredo (10.1016/j.measurement.2024.115393_b0275) 2023; 28
10.1016/j.measurement.2024.115393_b0155
Cawley (10.1016/j.measurement.2024.115393_b0130) 2018; 17
10.1016/j.measurement.2024.115393_b0310
References_xml – volume: 34
  start-page: 415
  year: 2019
  end-page: 430
  ident: b0280
  article-title: Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization
  publication-title: Comput. Aided Civ. Inf. Eng.
  contributor:
    fullname: Liang
– volume: 16
  start-page: 69
  year: 2022
  ident: b0090
  article-title: An overview: the application of vibration-based techniques in bridge structural health monitoring
  publication-title: Int. J. Concr. Struct. Mater.
  contributor:
    fullname: Anuar
– volume: 245–246
  start-page: 35
  year: 2003
  end-page: 42
  ident: b0065
  article-title: Damage detection in large-scale laboratory bridge models
  publication-title: Key Eng. Mater.
  contributor:
    fullname: Haritos
– volume: 23
  start-page: 4493
  year: Oct. 2019
  end-page: 4502
  ident: b0230
  article-title: Structural damage detection using deep convolutional neural network and transfer learning
  publication-title: KSCE J Civ Eng
  contributor:
    fullname: Yan
– volume: 12
  year: Dec. 2022
  ident: b0240
  article-title: A novel structural damage identification method using a hybrid deep learning framework
  publication-title: Buildings
  contributor:
    fullname: Liu
– volume: 7
  year: 2022
  ident: b0210
  article-title: Deep-learning-based drive-by damage detection system for railway bridges
  publication-title: Infrastructures
  contributor:
    fullname: Hajializadeh
– volume: 275
  year: Jan. 2023
  ident: b0115
  article-title: Model assessment of a bridge by load and dynamic tests
  publication-title: Eng. Struct.
  contributor:
    fullname: Pecce
– volume: 3
  start-page: 22
  year: Dec. 2022
  ident: b0190
  article-title: The application of deep learning in bridge health monitoring: a literature review
  publication-title: Adv. Bridge Eng.
  contributor:
    fullname: Xu
– volume: 17
  start-page: 971
  year: Jul. 2018
  end-page: 1007
  ident: b0305
  article-title: Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Andrews
– volume: 2023
  year: 2023
  ident: b0245
  article-title: Exploring the potential of transfer learning applications for structural damage classification
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Azam
– volume: 276
  year: Feb. 2023
  ident: b0015
  article-title: Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images
  publication-title: Eng. Struct.
  contributor:
    fullname: Chen
– volume: 22
  year: 2022
  ident: b0040
  article-title: Bridge health monitoring using strain data and high-fidelity finite element analysis
  publication-title: Sensors
  contributor:
    fullname: Rizzo
– volume: 12
  year: 2022
  ident: b0285
  article-title: Bridge modal parameter identification from UAV measurement based on empirical mode decomposition and Fourier transform
  publication-title: Appl. Sci.
  contributor:
    fullname: Chen
– volume: 13
  year: 2023
  ident: b0025
  article-title: Novel physics-informed artificial neural network architectures for system and input identification of structural dynamics PDEs
  publication-title: Buildings
  contributor:
    fullname: Mofid
– volume: Aug. 2022
  start-page: e3635116
  year: 2022
  ident: b0140
  article-title: Transfer learning for CNN-based damage detection in civil structures with insufficient data
  publication-title: Shock Vib.
  contributor:
    fullname: Rastin
– volume: 19
  year: Jan. 2019
  ident: b0070
  article-title: Scour damage detection and structural health monitoring of a laboratory-scaled bridge using a vibration energy harvesting device
  publication-title: Sensors
  contributor:
    fullname: Fitzgerald
– volume: 18
  start-page: 143
  year: Jan. 2019
  end-page: 163
  ident: b0220
  article-title: A novel deep learning-based method for damage identification of smart building structures
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Li
– volume: 257
  year: Apr. 2022
  ident: b0205
  article-title: Supervised deep learning with finite element simulations for damage identification in bridges
  publication-title: Eng. Struct.
  contributor:
    fullname: Magalhães
– volume: 26
  start-page: e2308
  year: 2019
  ident: b0200
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Struct. Control Health Monit.
  contributor:
    fullname: Fadali
– volume: 34
  start-page: 213
  year: 2019
  end-page: 229
  ident: b0260
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network
  publication-title: Comput. Aided Civ. Inf. Eng.
  contributor:
    fullname: Zhang
– volume: 212
  year: Jun. 2020
  ident: b0030
  article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data
  publication-title: Eng. Struct.
  contributor:
    fullname: Zhang
– year: Nov. 2023
  ident: b0105
  article-title: Experimental study on the damage identification of bridge expansion joints
  publication-title: J Civil Struct Health Monit
  contributor:
    fullname: Yang
– volume: 12
  start-page: 101
  year: Feb. 2022
  end-page: 115
  ident: b0110
  article-title: A data-based structural health monitoring approach for damage detection in steel bridges using experimental data
  publication-title: J Civil Struct Health Monit
  contributor:
    fullname: Rønnquist
– volume: 17
  start-page: 1225
  year: Sep. 2018
  end-page: 1244
  ident: b0130
  article-title: Structural health monitoring: closing the gap between research and industrial deployment
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Cawley
– volume: 11
  start-page: 931
  year: Sep. 2021
  end-page: 947
  ident: b0035
  article-title: Fatigue crack detection in welded structural components of steel bridges using artificial neural network
  publication-title: J Civil Struct Health Monit
  contributor:
    fullname: Eftekhar Azam
– volume: 20
  year: Jan. 2020
  ident: b0050
  article-title: Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review
  publication-title: Sensors
  contributor:
    fullname: Pekcan
– volume: 18
  start-page: 401
  year: Mar. 2019
  end-page: 421
  ident: b0255
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 1127
  year: Dec. 2018
  end-page: 1141
  ident: b0270
  article-title: Road damage detection using deep neural networks with images captured through a smartphone
  publication-title: Computer Aided Civil Eng
  contributor:
    fullname: Omata
– volume: 12
  year: Jan. 2022
  ident: b0290
  article-title: Measurement of bridge vibration by UAVs combined with CNN and KLT optical-flow method
  publication-title: Appl. Sci.
  contributor:
    fullname: Bassir
– volume: 28
  year: Apr. 2023
  ident: b0045
  article-title: Structural-health-monitoring-oriented finite element model for a specially shaped steel arch bridge and its application
  publication-title: Math. Computat. Appl.
  contributor:
    fullname: Cheng
– volume: 10
  year: Jan. 2020
  ident: b0225
  article-title: Structural damage detection based on real-time vibration signal and convolutional neural network
  publication-title: Appl. Sci.
  contributor:
    fullname: Cui
– volume: 290
  start-page: 242
  year: Feb. 2006
  end-page: 263
  ident: b0085
  article-title: Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks
  publication-title: J. Sound Vib.
  contributor:
    fullname: Ko
– volume: 13
  start-page: 1185
  year: Oct. 2023
  end-page: 1206
  ident: b0100
  article-title: Validation of an FE model updating procedure for damage assessment using a modular laboratory experiment with a reversible damage mechanism
  publication-title: J Civil Struct Health Monit
  contributor:
    fullname: Wolniak
– volume: 20
  start-page: 1609
  year: Jul. 2021
  end-page: 1626
  ident: b0185
  article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Spencer
– volume: 168
  year: Nov. 2020
  ident: b0360
  article-title: Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state
  publication-title: Appl. Acoust.
  contributor:
    fullname: Razavi
– volume: 8
  start-page: 53
  year: Mar. 2021
  ident: b0315
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J Big Data
  contributor:
    fullname: Alzubaidi
– volume: 17
  start-page: 222
  year: Jan. 2020
  end-page: 249
  ident: b0150
  article-title: Independent component analysis: an introduction
  publication-title: Appl. Comput. Informat.
  contributor:
    fullname: Tharwat
– volume: 388
  start-page: 154
  year: Feb. 2017
  end-page: 170
  ident: b0135
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  contributor:
    fullname: Inman
– volume: 34
  year: Feb. 2021
  ident: b0215
  article-title: A deep learning-based approach for condition assessment of semi-rigid joint of steel frame
  publication-title: J. Build. Eng.
  contributor:
    fullname: Samanta
– volume: 8
  start-page: 248
  year: Aug. 2023
  ident: b0055
  article-title: A review on structural health monitoring: past to present
  publication-title: Innov. Infrastruct. Solut.
  contributor:
    fullname: Kalapatapu
– volume: 202
  year: Oct. 2022
  ident: b0125
  article-title: Structural damage detection based on convolutional neural networks and population of bridges
  publication-title: Measurement
  contributor:
    fullname: Bassir
– volume: 109
  start-page: 43
  year: Jan. 2021
  end-page: 76
  ident: b0355
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  contributor:
    fullname: Zhuang
– volume: 15
  year: 2023
  ident: b0020
  article-title: Proposed machine learning techniques for bridge structural health monitoring: a laboratory study
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Samali
– volume: 32
  start-page: 1025
  year: 2017
  end-page: 1046
  ident: b0235
  article-title: Structural damage detection with automatic feature-extraction through deep learning
  publication-title: Comput. Aided Civ. Inf. Eng.
  contributor:
    fullname: Ma
– volume: 2023
  start-page: 1
  year: Aug. 2023
  end-page: 20
  ident: b0095
  article-title: Bridge damage detection using ambient loads by bayesian hypothesis testing for a parametric subspace of an autoregressive model
  publication-title: Struct. Control Health Monit.
  contributor:
    fullname: Kim
– volume: 457
  start-page: 51
  year: Sep. 2019
  end-page: 66
  ident: b0265
  article-title: VibroNet: Recurrent neural networks with multi-target learning for image-based vibration frequency measurement
  publication-title: J. Sound Vib.
  contributor:
    fullname: Li
– volume: 28
  start-page: 04022134
  year: Jan. 2023
  ident: b0275
  article-title: Transfer learning to enhance the damage detection performance in bridges when using numerical models
  publication-title: J. Bridg. Eng.
  contributor:
    fullname: Adrian Bud
– volume: 24
  start-page: 567
  year: 2019
  end-page: 585
  ident: b0250
  article-title: A review on deep learning-based structural health monitoring of civil infrastructures
  publication-title: Smart Struct. Syst.
  contributor:
    fullname: Yun
– ident: 10.1016/j.measurement.2024.115393_b0345
  doi: 10.1109/CVPR.2015.7298594
– ident: 10.1016/j.measurement.2024.115393_b0340
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.measurement.2024.115393_b0365
– volume: 8
  start-page: 248
  issue: 9
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0055
  article-title: A review on structural health monitoring: past to present
  publication-title: Innov. Infrastruct. Solut.
  doi: 10.1007/s41062-023-01217-3
  contributor:
    fullname: Katam
– ident: 10.1016/j.measurement.2024.115393_b0120
– volume: 26
  start-page: e2308
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0200
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Struct. Control Health Monit.
  contributor:
    fullname: Khodabandehlou
– volume: 12
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0285
  article-title: Bridge modal parameter identification from UAV measurement based on empirical mode decomposition and Fourier transform
  publication-title: Appl. Sci.
  doi: 10.3390/app12178689
  contributor:
    fullname: Yan
– volume: 388
  start-page: 154
  year: 2017
  ident: 10.1016/j.measurement.2024.115393_b0135
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.043
  contributor:
    fullname: Abdeljaber
– volume: 22
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0040
  article-title: Bridge health monitoring using strain data and high-fidelity finite element analysis
  publication-title: Sensors
  doi: 10.3390/s22145172
  contributor:
    fullname: Ghahremani
– volume: 275
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0115
  article-title: Model assessment of a bridge by load and dynamic tests
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115282
  contributor:
    fullname: De Angelis
– volume: 34
  start-page: 213
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0260
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network
  publication-title: Comput. Aided Civ. Inf. Eng.
  doi: 10.1111/mice.12409
  contributor:
    fullname: Zhang
– volume: 109
  start-page: 43
  issue: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115393_b0355
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
  contributor:
    fullname: Zhuang
– volume: 245–246
  start-page: 35
  year: 2003
  ident: 10.1016/j.measurement.2024.115393_b0065
  article-title: Damage detection in large-scale laboratory bridge models
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.245-246.35
  contributor:
    fullname: Owen
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0095
  article-title: Bridge damage detection using ambient loads by bayesian hypothesis testing for a parametric subspace of an autoregressive model
  publication-title: Struct. Control Health Monit.
  doi: 10.1155/2023/7986061
  contributor:
    fullname: Goi
– volume: 15
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0020
  article-title: Proposed machine learning techniques for bridge structural health monitoring: a laboratory study
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Noori Hoshyar
– volume: 7
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0210
  article-title: Deep-learning-based drive-by damage detection system for railway bridges
  publication-title: Infrastructures
  doi: 10.3390/infrastructures7060084
  contributor:
    fullname: Hajializadeh
– ident: 10.1016/j.measurement.2024.115393_b0005
– volume: 12
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0240
  article-title: A novel structural damage identification method using a hybrid deep learning framework
  publication-title: Buildings
  doi: 10.3390/buildings12122130
  contributor:
    fullname: He
– ident: 10.1016/j.measurement.2024.115393_b0010
  doi: 10.3389/fbuil.2019.00116
– ident: 10.1016/j.measurement.2024.115393_b0320
  doi: 10.1016/j.engstruct.2021.113250
– ident: 10.1016/j.measurement.2024.115393_b0370
– volume: 290
  start-page: 242
  issue: 1
  year: 2006
  ident: 10.1016/j.measurement.2024.115393_b0085
  article-title: Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.03.016
  contributor:
    fullname: Ni
– ident: 10.1016/j.measurement.2024.115393_b0350
  doi: 10.1109/CVPR.2009.5206848
– volume: 12
  start-page: 101
  issue: 1
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0110
  article-title: A data-based structural health monitoring approach for damage detection in steel bridges using experimental data
  publication-title: J Civil Struct Health Monit
  doi: 10.1007/s13349-021-00530-8
  contributor:
    fullname: Svendsen
– volume: 13
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0025
  article-title: Novel physics-informed artificial neural network architectures for system and input identification of structural dynamics PDEs
  publication-title: Buildings
  doi: 10.3390/buildings13030650
  contributor:
    fullname: Moradi
– volume: 276
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0015
  article-title: Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115306
  contributor:
    fullname: Chen
– volume: 8
  start-page: 53
  issue: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115393_b0315
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00444-8
  contributor:
    fullname: Alzubaidi
– ident: 10.1016/j.measurement.2024.115393_b0300
  doi: 10.3390/app11062610
– ident: 10.1016/j.measurement.2024.115393_b0165
– volume: 20
  year: 2020
  ident: 10.1016/j.measurement.2024.115393_b0050
  article-title: Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review
  publication-title: Sensors
  doi: 10.3390/s20102778
  contributor:
    fullname: Azimi
– ident: 10.1016/j.measurement.2024.115393_b0335
– volume: 457
  start-page: 51
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0265
  article-title: VibroNet: Recurrent neural networks with multi-target learning for image-based vibration frequency measurement
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.05.027
  contributor:
    fullname: Liu
– volume: 23
  start-page: 4493
  issue: 10
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0230
  article-title: Structural damage detection using deep convolutional neural network and transfer learning
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-0437-z
  contributor:
    fullname: Feng
– ident: 10.1016/j.measurement.2024.115393_b0295
  doi: 10.1007/978-3-319-54858-6_33
– volume: 16
  start-page: 69
  issue: 1
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0090
  article-title: An overview: the application of vibration-based techniques in bridge structural health monitoring
  publication-title: Int. J. Concr. Struct. Mater.
  doi: 10.1186/s40069-022-00557-1
  contributor:
    fullname: Saidin
– year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0105
  article-title: Experimental study on the damage identification of bridge expansion joints
  publication-title: J Civil Struct Health Monit
  contributor:
    fullname: Li
– ident: 10.1016/j.measurement.2024.115393_b0310
  doi: 10.1016/j.eswa.2020.113634
– volume: 17
  start-page: 971
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2024.115393_b0305
  article-title: Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921717721137
  contributor:
    fullname: Vagnoli
– ident: 10.1016/j.measurement.2024.115393_b0180
– volume: 34
  year: 2021
  ident: 10.1016/j.measurement.2024.115393_b0215
  article-title: A deep learning-based approach for condition assessment of semi-rigid joint of steel frame
  publication-title: J. Build. Eng.
  contributor:
    fullname: Paral
– volume: 13
  start-page: 1185
  issue: 6
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0100
  article-title: Validation of an FE model updating procedure for damage assessment using a modular laboratory experiment with a reversible damage mechanism
  publication-title: J Civil Struct Health Monit
  doi: 10.1007/s13349-023-00701-9
  contributor:
    fullname: Wolniak
– ident: 10.1016/j.measurement.2024.115393_b0160
  doi: 10.1109/HORA52670.2021.9461277
– ident: 10.1016/j.measurement.2024.115393_b0145
– ident: 10.1016/j.measurement.2024.115393_b0080
  doi: 10.1016/j.ymssp.2019.106380
– volume: 17
  start-page: 222
  issue: 2
  year: 2020
  ident: 10.1016/j.measurement.2024.115393_b0150
  article-title: Independent component analysis: an introduction
  publication-title: Appl. Comput. Informat.
  doi: 10.1016/j.aci.2018.08.006
  contributor:
    fullname: Tharwat
– ident: 10.1016/j.measurement.2024.115393_b0175
  doi: 10.1007/0-387-25465-X_9
– volume: 10
  year: 2020
  ident: 10.1016/j.measurement.2024.115393_b0225
  article-title: Structural damage detection based on real-time vibration signal and convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app10144720
  contributor:
    fullname: Teng
– volume: 28
  start-page: 04022134
  issue: 1
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0275
  article-title: Transfer learning to enhance the damage detection performance in bridges when using numerical models
  publication-title: J. Bridg. Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001979
  contributor:
    fullname: Figueiredo
– ident: 10.1016/j.measurement.2024.115393_b0170
  doi: 10.1007/978-3-642-34041-3_27
– volume: 17
  start-page: 1225
  issue: 5
  year: 2018
  ident: 10.1016/j.measurement.2024.115393_b0130
  article-title: Structural health monitoring: closing the gap between research and industrial deployment
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921717750047
  contributor:
    fullname: Cawley
– volume: 12
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0290
  article-title: Measurement of bridge vibration by UAVs combined with CNN and KLT optical-flow method
  publication-title: Appl. Sci.
  contributor:
    fullname: Yan
– volume: 212
  year: 2020
  ident: 10.1016/j.measurement.2024.115393_b0030
  article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110520
  contributor:
    fullname: Ni
– volume: 3
  start-page: 22
  issue: 1
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0190
  article-title: The application of deep learning in bridge health monitoring: a literature review
  publication-title: Adv. Bridge Eng.
  doi: 10.1186/s43251-022-00078-7
  contributor:
    fullname: Zhang
– ident: 10.1016/j.measurement.2024.115393_b0060
  doi: 10.1007/978-3-031-15758-5_80
– volume: Aug. 2022
  start-page: e3635116
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0140
  article-title: Transfer learning for CNN-based damage detection in civil structures with insufficient data
  publication-title: Shock Vib.
  contributor:
    fullname: Chamangard
– volume: 18
  start-page: 143
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0220
  article-title: A novel deep learning-based method for damage identification of smart building structures
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718804132
  contributor:
    fullname: Yu
– volume: 34
  start-page: 415
  issue: 5
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0280
  article-title: Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization
  publication-title: Comput. Aided Civ. Inf. Eng.
  doi: 10.1111/mice.12425
  contributor:
    fullname: Liang
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  ident: 10.1016/j.measurement.2024.115393_b0235
  article-title: Structural damage detection with automatic feature-extraction through deep learning
  publication-title: Comput. Aided Civ. Inf. Eng.
  doi: 10.1111/mice.12313
  contributor:
    fullname: Lin
– volume: 168
  year: 2020
  ident: 10.1016/j.measurement.2024.115393_b0360
  article-title: Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107402
  contributor:
    fullname: Mousavi
– volume: 257
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0205
  article-title: Supervised deep learning with finite element simulations for damage identification in bridges
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114016
  contributor:
    fullname: Fernandez-Navamuel
– volume: 24
  start-page: 567
  issue: 5
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0250
  article-title: A review on deep learning-based structural health monitoring of civil infrastructures
  publication-title: Smart Struct. Syst.
  contributor:
    fullname: Ye
– volume: 28
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0045
  article-title: Structural-health-monitoring-oriented finite element model for a specially shaped steel arch bridge and its application
  publication-title: Math. Computat. Appl.
  contributor:
    fullname: Dai
– ident: 10.1016/j.measurement.2024.115393_b0155
  doi: 10.1007/978-3-030-72192-3_6
– ident: 10.1016/j.measurement.2024.115393_b0325
  doi: 10.1038/s41598-019-47765-6
– volume: 19
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0070
  article-title: Scour damage detection and structural health monitoring of a laboratory-scaled bridge using a vibration energy harvesting device
  publication-title: Sensors
  doi: 10.3390/s19112572
  contributor:
    fullname: Fitzgerald
– volume: 18
  start-page: 401
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2024.115393_b0255
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718757405
  contributor:
    fullname: Bao
– ident: 10.1016/j.measurement.2024.115393_b0075
  doi: 10.1007/978-3-030-47638-0_16
– ident: 10.1016/j.measurement.2024.115393_b0195
– volume: 33
  start-page: 1127
  issue: 12
  year: 2018
  ident: 10.1016/j.measurement.2024.115393_b0270
  article-title: Road damage detection using deep neural networks with images captured through a smartphone
  publication-title: Computer Aided Civil Eng
  doi: 10.1111/mice.12387
  contributor:
    fullname: Maeda
– ident: 10.1016/j.measurement.2024.115393_b0375
– volume: 11
  start-page: 931
  issue: 4
  year: 2021
  ident: 10.1016/j.measurement.2024.115393_b0035
  article-title: Fatigue crack detection in welded structural components of steel bridges using artificial neural network
  publication-title: J Civil Struct Health Monit
  doi: 10.1007/s13349-021-00488-7
  contributor:
    fullname: Mashayekhi
– volume: 202
  year: 2022
  ident: 10.1016/j.measurement.2024.115393_b0125
  article-title: Structural damage detection based on convolutional neural networks and population of bridges
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111747
  contributor:
    fullname: Teng
– ident: 10.1016/j.measurement.2024.115393_b0330
  doi: 10.1038/s41598-021-90923-y
– volume: 20
  start-page: 1609
  issue: 4
  year: 2021
  ident: 10.1016/j.measurement.2024.115393_b0185
  article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720924601
  contributor:
    fullname: Mao
– volume: 2023
  year: 2023
  ident: 10.1016/j.measurement.2024.115393_b0245
  article-title: Exploring the potential of transfer learning applications for structural damage classification
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Duran
SSID ssj0006396
Score 2.4413493
Snippet •A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 115393
SubjectTerms Bridge health monitoring
Convolutional neural network
damage detection
Strain time-history
Supervised learning
Title A novel CNN architecture for robust structural damage identification via strain measurements and its validation via full-scale experiments
URI https://dx.doi.org/10.1016/j.measurement.2024.115393
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9UwFA53G4o-DJ2K0ykRfCu99EfSpuBL2eqm4H3ZhPlU0iRld3pbWe_2sD_Bv9qTpm0ydaiILyWENE17PtKTk-98Qei1qCnRKwdYpqa1TxJS-ZzVmR9FjDOqeFqFOlH46DhdnLKDghSz2ajhauv-q6WhDmytM2f_wtpTp1ABZbA5XMHqcP0ju-de016pL97-YuHd2CXQfMKLtrrs1p4Rje0FNyRfadbOUg6sIYOHqyXXjfiy8VY2iNhNOw0w4KW0TXUM3-_A2so5MaBz_d4Ptpc-COEIVlj65hiXdBv3GYlaHdQlDBzA0M0x81CYUo2KVTtwAlotmCKm-nqtPp_xCy-_Nuj_xLszPpGSYTV-PWy-mHx773DuxkIiTTv0TTaoCdCNSTqWEdX12rKxrz0Vd9KPjITSTz8QE8s4nzsfdw5PIvBrobE5y_EHfe5j3b_uHnyjMEoZ20BbEcx6MOlu5e-K0_eTYwDOYGJCfmY8d9ErSze85YG_dpccF-jkAdoe1i44N6B7iGaq2UH3HUXLHXSnZxSL7hH6luMeiBiAiF0gYgAiNkDEFojYABHfBCIGdGEDROwCEQMQMQARWyD2TS0QsQPEx-jj2-Jk_8gfDv7wRZjRtZ-JWhAVqiTlJNDqSBWt6qBmkvMqDKSAJXZMeZ0GnJJYJETVerNZSk6rlLOEx0_QZtM26inCYSSYokqmMZOEBqRimaA6jKcSItKM7aJo_L7lV6PvUo7Ex_PSebNSG6U0RtlFb0ZLlIOjahzQEmD0-9uf_dvtz9E9i_09tAmWUi_QRicvXw6I-w6Efscg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+CNN+architecture+for+robust+structural+damage+identification+via+strain+measurements+and+its+validation+via+full-scale+experiments&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Duran%2C+Burak&rft.au=Emory%2C+Dominic&rft.au=Eftekhar+Azam%2C+Yashar&rft.au=Linzell%2C+Daniel+G.&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=239&rft_id=info:doi/10.1016%2Fj.measurement.2024.115393&rft.externalDocID=S0263224124012788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon