A novel CNN architecture for robust structural damage identification via strain measurements and its validation via full-scale experiments
•A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the structure.•Measured strain time histories were converted to image data type.•Robustness was validated using full scale experiments on a laboratory structure.•...
Saved in:
Published in: | Measurement : journal of the International Measurement Confederation Vol. 239; p. 115393 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
15-01-2025
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the structure.•Measured strain time histories were converted to image data type.•Robustness was validated using full scale experiments on a laboratory structure.•Invisible damage due to a full-scale crash test was accurately detected by as few as four sensors and low sampling rates.•Over 300 live load tests were conducted before and after inducing three damage levels on the structure.
In this study, an innovative two-dimensional Convolutional Neural Network (2D CNN) architecture is proposed and investigated for the classification of bridge damage. Employing unique strain time-history data transformed into grayscale images, the approach seamlessly combines feature extraction and classification, allowing for the precise identification and categorization of structural damage. The method’s effectiveness was validated through field experiments on a full-scale bridge mock-up sample subjected to several controlled damage states under nonstationary, commercial vehicle loads. A wide range of realistic damage conditions, from minor to severe structural damage states, was included in the experimental scenarios together with inherent operational uncertainties. The robustness of the 2D CNN model was rigorously tested against fluctuating loads and introduced noise. Demonstrating remarkable accuracy, the 2D CNN successfully classified different damage states with over 95% accuracy, effectively identifying a damage state that was visually undetectable. Furthermore, the architecture proved to be highly versatile, effectively handling variations in the number of sensors. uncertainties included in the experimental data, and elevated levels of measurement noise. |
---|---|
AbstractList | •A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the structure.•Measured strain time histories were converted to image data type.•Robustness was validated using full scale experiments on a laboratory structure.•Invisible damage due to a full-scale crash test was accurately detected by as few as four sensors and low sampling rates.•Over 300 live load tests were conducted before and after inducing three damage levels on the structure.
In this study, an innovative two-dimensional Convolutional Neural Network (2D CNN) architecture is proposed and investigated for the classification of bridge damage. Employing unique strain time-history data transformed into grayscale images, the approach seamlessly combines feature extraction and classification, allowing for the precise identification and categorization of structural damage. The method’s effectiveness was validated through field experiments on a full-scale bridge mock-up sample subjected to several controlled damage states under nonstationary, commercial vehicle loads. A wide range of realistic damage conditions, from minor to severe structural damage states, was included in the experimental scenarios together with inherent operational uncertainties. The robustness of the 2D CNN model was rigorously tested against fluctuating loads and introduced noise. Demonstrating remarkable accuracy, the 2D CNN successfully classified different damage states with over 95% accuracy, effectively identifying a damage state that was visually undetectable. Furthermore, the architecture proved to be highly versatile, effectively handling variations in the number of sensors. uncertainties included in the experimental data, and elevated levels of measurement noise. |
ArticleNumber | 115393 |
Author | Duran, Burak Linzell, Daniel G. Emory, Dominic Eftekhar Azam, Yashar |
Author_xml | – sequence: 1 givenname: Burak orcidid: 0000-0003-0352-2456 surname: Duran fullname: Duran, Burak organization: Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA – sequence: 2 givenname: Dominic surname: Emory fullname: Emory, Dominic organization: Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA – sequence: 3 givenname: Yashar surname: Eftekhar Azam fullname: Eftekhar Azam, Yashar email: saeed.eftekharazam@unh.edu organization: Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, USA – sequence: 4 givenname: Daniel G. surname: Linzell fullname: Linzell, Daniel G. organization: Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA |
BookMark | eNqNkE1OwzAQhb0oEm3hDuYACXacn3pZRfxJVdnA2prYY3CVOpWdRHAFTk1KkeiS1Uij9968-RZk5juPhNxwlnLGy9tdukeIQ8A9-j7NWJannBdCihmZs6wUSZbl_JIsYtwxxkohyzn5WlPfjdjSerulEPS761H3Uwa1XaCha4bY09iH4biElhrYwxtSZ6YTzjoNves8HR0cReA8PasQKXhD3TRHaJ35k9qhbZOooUWKHwcM7kd9RS4stBGvf-eSvN7fvdSPyeb54alebxLNZdEnUludI8eygpzlKymaorHMrgxAw5nRVSFEAbZiUORClzlaWVTSGCiaClYliCWRp1wduhgDWnWYGkD4VJypI0i1U2dfqCNIdQI5eeuTF6eCo8OgonboNRoXJm7KdO4fKd-tMYtk |
Cites_doi | 10.1109/CVPR.2015.7298594 10.1109/CVPR.2016.90 10.1007/s41062-023-01217-3 10.3390/app12178689 10.1016/j.jsv.2016.10.043 10.3390/s22145172 10.1016/j.engstruct.2022.115282 10.1111/mice.12409 10.1109/JPROC.2020.3004555 10.4028/www.scientific.net/KEM.245-246.35 10.1155/2023/7986061 10.3390/infrastructures7060084 10.3390/buildings12122130 10.3389/fbuil.2019.00116 10.1016/j.engstruct.2021.113250 10.1016/j.jsv.2005.03.016 10.1109/CVPR.2009.5206848 10.1007/s13349-021-00530-8 10.3390/buildings13030650 10.1016/j.engstruct.2022.115306 10.1186/s40537-021-00444-8 10.3390/app11062610 10.3390/s20102778 10.1016/j.jsv.2019.05.027 10.1007/s12205-019-0437-z 10.1007/978-3-319-54858-6_33 10.1186/s40069-022-00557-1 10.1016/j.eswa.2020.113634 10.1177/1475921717721137 10.1007/s13349-023-00701-9 10.1109/HORA52670.2021.9461277 10.1016/j.ymssp.2019.106380 10.1016/j.aci.2018.08.006 10.1007/0-387-25465-X_9 10.3390/app10144720 10.1061/(ASCE)BE.1943-5592.0001979 10.1007/978-3-642-34041-3_27 10.1177/1475921717750047 10.1016/j.engstruct.2020.110520 10.1186/s43251-022-00078-7 10.1007/978-3-031-15758-5_80 10.1177/1475921718804132 10.1111/mice.12425 10.1111/mice.12313 10.1016/j.apacoust.2020.107402 10.1016/j.engstruct.2022.114016 10.1007/978-3-030-72192-3_6 10.1038/s41598-019-47765-6 10.3390/s19112572 10.1177/1475921718757405 10.1007/978-3-030-47638-0_16 10.1111/mice.12387 10.1007/s13349-021-00488-7 10.1016/j.measurement.2022.111747 10.1038/s41598-021-90923-y 10.1177/1475921720924601 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2024.115393 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_measurement_2024_115393 S0263224124012788 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFRF ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M AAYXX ABFNM ABXDB ACNNM ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ LY7 M41 R2- SET WUQ XPP |
ID | FETCH-LOGICAL-c195t-9cfc4e1e67a404893b5bf0f8daab10dc75335af70a543c64ef9579dda5b7a86a3 |
ISSN | 0263-2241 |
IngestDate | Wed Oct 23 14:22:51 EDT 2024 Sat Oct 19 15:54:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | damage detection Strain time-history Supervised learning Bridge health monitoring Convolutional neural network |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c195t-9cfc4e1e67a404893b5bf0f8daab10dc75335af70a543c64ef9579dda5b7a86a3 |
ORCID | 0000-0003-0352-2456 |
ParticipantIDs | crossref_primary_10_1016_j_measurement_2024_115393 elsevier_sciencedirect_doi_10_1016_j_measurement_2024_115393 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-15 |
PublicationDateYYYYMMDD | 2025-01-15 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lin, Nie, Ma (b0235) 2017; 32 Vagnoli, Remenyte-Prescott, Andrews (b0305) Jul. 2018; 17 Mao, Wang, Spencer (b0185) Jul. 2021; 20 Svendsen, Frøseth, Øiseth, Rønnquist (b0110) Feb. 2022; 12 G. Krastev, V. Voinohovska, Application of hierarchical cluster analysis in the machine learning, in: 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Jun. 2021, pp. 1–3. doi: 10.1109/HORA52670.2021.9461277. Duran, Azam (b0245) 2023; 2023 K. Simonyan , A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv, Apr. 10, 2015. doi: 10.48550/arXiv.1409.1556. Katam, Pasupuleti, Kalapatapu (b0055) Aug. 2023; 8 Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (b0135) Feb. 2017; 388 M.P. Limongelli et al., Vibration response-based damage detection,” in: Structural Health Monitoring Damage Detection Systems for Aerospace, M. G. R. Sause and E. Jasiūnienė, Eds., in Springer Aerospace Technology. , Cham: Springer International Publishing, 2021, pp. 133–173. doi: 10.1007/978-3-030-72192-3_6. He, Huang, Liu, Zhang, Liu (b0240) Dec. 2022; 12 Azimi, Eslamlou, Pekcan (b0050) Jan. 2020; 20 E. Akintunde, S. Eftekhar Azam, A. Rageh, D. G. Linzell, Unsupervised machine learning for robust bridge damage detection: full-scale experimental validation, Engineering Structures 249 (2021) 113250, doi: 10.1016/j.engstruct.2021.113250. M. Abadi A. Diab, T. Nestorović, Damage index implementation for Ni, Wang, Zhang (b0030) Jun. 2020; 212 Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, in: The handbook of brain theory and neural networks, vol. 10, in 3361, vol. 10. , 1995. Maeda, Sekimoto, Seto, Kashiyama, Omata (b0270) Dec. 2018; 33 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. arXiv, Dec. 10, 2015. doi: 10.48550/arXiv.1512.03385. J. Won, J.-W. Park, S. Jang, K. Jin, Y. Kim, Automated structural damage identification using data normalization and 1-dimensional convolutional neural network, Appl. Sci. 11(6), Art. no. 6, Jan. 2021, doi: 10.3390/app11062610. Fitzgerald (b0070) Jan. 2019; 19 Ni, Zhou, Ko (b0085) Feb. 2006; 290 Khodabandehlou, Pekcan, Fadali (b0200) 2019; 26 Wolniak (b0100) Oct. 2023; 13 Yu, Wang, Gu, Li (b0220) Jan. 2019; 18 Ghahremani, Enshaeian, Rizzo (b0040) 2022; 22 Goi, Kim (b0095) Aug. 2023; 2023 Figueiredo, Omori Yano, da Silva, Moldovan, Adrian Bud (b0275) Jan. 2023; 28 Owen, Haritos (b0065) 2003; 245–246 N.S. Gulgec, M. Takáč, S.N. Pakzad, Structural damage detection using convolutional neural networks, in: Model Validation and Uncertainty Quantification, Volume 3, R. Barthorpe, R. Platz, I. Lopez, B. Moaveni, and C. Papadimitriou, Eds., in Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer International Publishing, 2017, pp. 331–337. doi: 10.1007/978-3-319-54858-6_33. Zhuang (b0355) Jan. 2021; 109 Y. Zhang, Support Vector Machine Classification Algorithm and Its Application, in: Information Computing and Applications, C. Liu, L. Wang, and A. Yang, Eds., in Communications in Computer and Information Science. Berlin, Heidelberg: Springer, 2012, pp. 179–186. doi: 10.1007/978-3-642-34041-3_27. Alzubaidi (b0315) Mar. 2021; 8 A. Dilsiz et al., StEER-EERI: 2023 Mw 7.8 Kahramanmaras, Türkiye Earthquake Sequence Joint Preliminary Virtual Reconnaissance Report (PVRR), Mar. 2023. doi: 10.17603/Ds2-7ry2-Gv66. Mousavi, Ettefagh, Sadeghi, Razavi (b0360) Nov. 2020; 168 Chamangard, Ghodrati Amiri, Darvishan, Rastin (b0140) 2022; Aug. 2022 Y. Zhu et al., Converting tabular data into images for deep learning with convolutional neural networks, Sci Rep, vol. 11, no. 1, Art. no. 1, May 2021, doi: 10.1038/s41598-021-90923-y. U. Michelucci, An Introduction to Autoencoders. arXiv, Jan. 11, 2022. doi: 10.48550/arXiv.2201.03898. Teng, Teng, Zhang, Chen, Cui (b0225) Jan. 2020; 10 C. Szegedy et al., Going deeper with convolutions. arXiv, Sep. 16, 2014. doi: 10.48550/arXiv.1409.4842. D.P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980. Yan, Jin, Teng, Chen, Bassir (b0290) Jan. 2022; 12 Mashayekhi, Santini-Bell, Eftekhar Azam (b0035) Sep. 2021; 11 Tharwat (b0150) Jan. 2020; 17 A. Sharma, E. Vans, D. Shigemizu, K. A. Boroevich, T. Tsunoda, “DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture, Sci Rep, vol. 9, no. 1, Art. no. 1, Aug. 2019, doi: 10.1038/s41598-019-47765-6. H. Seon Park, J. Hwan An, Y. Jun Park, B. Kwan Oh, Convolutional neural network-based safety evaluation method for structures with dynamic responses, Expert Syst. Appl. 158 (2020) 113634, doi: 10.1016/j.eswa.2020.113634. O. Markogiannaki, Climate Change and Natural Hazard Risk Assessment Framework for Coastal Cable-Stayed Bridges, Front. Built Environ. 5 (2019) Accessed: Oct. 03, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fbuil.2019.00116. De Angelis, Pecce (b0115) Jan. 2023; 275 Bao, Tang, Li, Zhang (b0255) Mar. 2019; 18 V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines, In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814, 2010. Liu, Yang, Li (b0265) Sep. 2019; 457 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848. “Suppressing Influence of Measurement Noise on Vibration-Based Damage Detection Involving Higher-Order Derivatives - Hao Xu, Li Cheng, Zhongqing Su, 2013.” Accessed: Sep. 18, 2023. [Online]. Available: https://journals.sagepub.com/doi/abs/10.1260/1369-4332.16.1.233. Feng, Zhang, Wang, Li, Wang, Yan (b0230) Oct. 2019; 23 Ye, Jin, Yun (b0250) 2019; 24 Liang (b0280) 2019; 34 Dai, Cui, Cheng (b0045) Apr. 2023; 28 structural health monitoring, in: Recent Trends in Wave Mechanics and Vibrations, Z. Dimitrovová, P. Biswas, R. Gonçalves, and T. Silva, Eds., in Mechanisms and Machine Science. Cham: Springer International Publishing, 2023, pp. 783–791. doi: 10.1007/978-3-031-15758-5_80. P. Seventekidis, D. Giagopoulos, A. Arailopoulos, O. Markogiannaki, Damage identification of structures through machine learning techniques with updated finite element models and experimental validations, in: Model Validation and Uncertainty Quantification, Volume 3, Z. Mao, Ed., in Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer International Publishing, 2020, pp. 143–154. doi: 10.1007/978-3-030-47638-0_16. F. Huseynov, C. Kim, E.J. OBrien, J.M.W. Brownjohn, D. Hester, K. C. Chang, Bridge damage detection using rotation measurements – Experimental validation, Mech. Syst. Signal Processing 135 (2020) 106380, doi: 10.1016/j.ymssp.2019.106380. L. Rokach, O. Maimon, Decision Trees, in: Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds., Boston, MA: Springer US, 2005, pp. 165–192. doi: 10.1007/0-387-25465-X_9. Yan, Teng, Luo, Bassir, Chen (b0285) 2022; 12 Noori Hoshyar, Rashidi, Yu, Samali (b0020) 2023; 15 Li, Wen, Pan, Chen, Yang (b0105) Nov. 2023 Cawley (b0130) Sep. 2018; 17 J. Shlens, A Tutorial on Principal Component Analysis, arXiv, Apr. 03, 2014. doi: 10.48550/arXiv.1404.1100. N.K. Kitson, A.C. Constantinou, Z. Guo, Y. Liu, K. Chobtham, A survey of Bayesian Network structure learning. arXiv, Oct. 25, 2022. doi: 10.48550/arXiv.2109.11415. “{TensorFlow}: A System for {Large-Scale} Machine Learning,” presented at the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265–283. Accessed: Oct. 26, 2022. [Online]. Available: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi. Zhang (b0260) 2019; 34 Teng, Chen, Chen, Cheng, Bassir (b0125) Oct. 2022; 202 Zhang, Wang, Li, Xu (b0190) Dec. 2022; 3 Chen (b0015) Feb. 2023; 276 Hajializadeh (b0210) 2022; 7 Paral, Kr, Roy, Samanta (b0215) Feb. 2021; 34 Moradi, Duran, Eftekhar Azam, Mofid (b0025) 2023; 13 Fernandez-Navamuel, Zamora-Sánchez, Omella, David, Garcia-Sanchez, Magalhães (b0205) Apr. 2022; 257 Saidin, Jamadin, Abdul Kudus, Mohd Amin, Anuar (b0090) 2022; 16 Fitzgerald (10.1016/j.measurement.2024.115393_b0070) 2019; 19 Duran (10.1016/j.measurement.2024.115393_b0245) 2023; 2023 Chamangard (10.1016/j.measurement.2024.115393_b0140) 2022; Aug. 2022 10.1016/j.measurement.2024.115393_b0080 Tharwat (10.1016/j.measurement.2024.115393_b0150) 2020; 17 Yan (10.1016/j.measurement.2024.115393_b0290) 2022; 12 Goi (10.1016/j.measurement.2024.115393_b0095) 2023; 2023 Azimi (10.1016/j.measurement.2024.115393_b0050) 2020; 20 10.1016/j.measurement.2024.115393_b0120 10.1016/j.measurement.2024.115393_b0165 Zhang (10.1016/j.measurement.2024.115393_b0260) 2019; 34 10.1016/j.measurement.2024.115393_b0160 De Angelis (10.1016/j.measurement.2024.115393_b0115) 2023; 275 Teng (10.1016/j.measurement.2024.115393_b0225) 2020; 10 Noori Hoshyar (10.1016/j.measurement.2024.115393_b0020) 2023; 15 Feng (10.1016/j.measurement.2024.115393_b0230) 2019; 23 10.1016/j.measurement.2024.115393_b0005 Fernandez-Navamuel (10.1016/j.measurement.2024.115393_b0205) 2022; 257 10.1016/j.measurement.2024.115393_b0325 Chen (10.1016/j.measurement.2024.115393_b0015) 2023; 276 Liang (10.1016/j.measurement.2024.115393_b0280) 2019; 34 Paral (10.1016/j.measurement.2024.115393_b0215) 2021; 34 10.1016/j.measurement.2024.115393_b0320 10.1016/j.measurement.2024.115393_b0365 Teng (10.1016/j.measurement.2024.115393_b0125) 2022; 202 Lin (10.1016/j.measurement.2024.115393_b0235) 2017; 32 Katam (10.1016/j.measurement.2024.115393_b0055) 2023; 8 Vagnoli (10.1016/j.measurement.2024.115393_b0305) 2018; 17 Ni (10.1016/j.measurement.2024.115393_b0030) 2020; 212 10.1016/j.measurement.2024.115393_b0010 10.1016/j.measurement.2024.115393_b0175 10.1016/j.measurement.2024.115393_b0330 10.1016/j.measurement.2024.115393_b0295 10.1016/j.measurement.2024.115393_b0370 10.1016/j.measurement.2024.115393_b0170 Bao (10.1016/j.measurement.2024.115393_b0255) 2019; 18 10.1016/j.measurement.2024.115393_b0335 Abdeljaber (10.1016/j.measurement.2024.115393_b0135) 2017; 388 10.1016/j.measurement.2024.115393_b0375 He (10.1016/j.measurement.2024.115393_b0240) 2022; 12 Ni (10.1016/j.measurement.2024.115393_b0085) 2006; 290 Owen (10.1016/j.measurement.2024.115393_b0065) 2003; 245–246 Saidin (10.1016/j.measurement.2024.115393_b0090) 2022; 16 Maeda (10.1016/j.measurement.2024.115393_b0270) 2018; 33 10.1016/j.measurement.2024.115393_b0340 Yu (10.1016/j.measurement.2024.115393_b0220) 2019; 18 10.1016/j.measurement.2024.115393_b0180 Hajializadeh (10.1016/j.measurement.2024.115393_b0210) 2022; 7 10.1016/j.measurement.2024.115393_b0060 Liu (10.1016/j.measurement.2024.115393_b0265) 2019; 457 Yan (10.1016/j.measurement.2024.115393_b0285) 2022; 12 Dai (10.1016/j.measurement.2024.115393_b0045) 2023; 28 10.1016/j.measurement.2024.115393_b0300 10.1016/j.measurement.2024.115393_b0345 Mao (10.1016/j.measurement.2024.115393_b0185) 2021; 20 Li (10.1016/j.measurement.2024.115393_b0105) 2023 10.1016/j.measurement.2024.115393_b0145 Svendsen (10.1016/j.measurement.2024.115393_b0110) 2022; 12 Ghahremani (10.1016/j.measurement.2024.115393_b0040) 2022; 22 Alzubaidi (10.1016/j.measurement.2024.115393_b0315) 2021; 8 Wolniak (10.1016/j.measurement.2024.115393_b0100) 2023; 13 Khodabandehlou (10.1016/j.measurement.2024.115393_b0200) 2019; 26 10.1016/j.measurement.2024.115393_b0195 Zhuang (10.1016/j.measurement.2024.115393_b0355) 2021; 109 10.1016/j.measurement.2024.115393_b0075 10.1016/j.measurement.2024.115393_b0350 Mousavi (10.1016/j.measurement.2024.115393_b0360) 2020; 168 Moradi (10.1016/j.measurement.2024.115393_b0025) 2023; 13 Mashayekhi (10.1016/j.measurement.2024.115393_b0035) 2021; 11 Zhang (10.1016/j.measurement.2024.115393_b0190) 2022; 3 Ye (10.1016/j.measurement.2024.115393_b0250) 2019; 24 Figueiredo (10.1016/j.measurement.2024.115393_b0275) 2023; 28 10.1016/j.measurement.2024.115393_b0155 Cawley (10.1016/j.measurement.2024.115393_b0130) 2018; 17 10.1016/j.measurement.2024.115393_b0310 |
References_xml | – volume: 34 start-page: 415 year: 2019 end-page: 430 ident: b0280 article-title: Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization publication-title: Comput. Aided Civ. Inf. Eng. contributor: fullname: Liang – volume: 16 start-page: 69 year: 2022 ident: b0090 article-title: An overview: the application of vibration-based techniques in bridge structural health monitoring publication-title: Int. J. Concr. Struct. Mater. contributor: fullname: Anuar – volume: 245–246 start-page: 35 year: 2003 end-page: 42 ident: b0065 article-title: Damage detection in large-scale laboratory bridge models publication-title: Key Eng. Mater. contributor: fullname: Haritos – volume: 23 start-page: 4493 year: Oct. 2019 end-page: 4502 ident: b0230 article-title: Structural damage detection using deep convolutional neural network and transfer learning publication-title: KSCE J Civ Eng contributor: fullname: Yan – volume: 12 year: Dec. 2022 ident: b0240 article-title: A novel structural damage identification method using a hybrid deep learning framework publication-title: Buildings contributor: fullname: Liu – volume: 7 year: 2022 ident: b0210 article-title: Deep-learning-based drive-by damage detection system for railway bridges publication-title: Infrastructures contributor: fullname: Hajializadeh – volume: 275 year: Jan. 2023 ident: b0115 article-title: Model assessment of a bridge by load and dynamic tests publication-title: Eng. Struct. contributor: fullname: Pecce – volume: 3 start-page: 22 year: Dec. 2022 ident: b0190 article-title: The application of deep learning in bridge health monitoring: a literature review publication-title: Adv. Bridge Eng. contributor: fullname: Xu – volume: 17 start-page: 971 year: Jul. 2018 end-page: 1007 ident: b0305 article-title: Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges publication-title: Struct. Health Monit. contributor: fullname: Andrews – volume: 2023 year: 2023 ident: b0245 article-title: Exploring the potential of transfer learning applications for structural damage classification publication-title: Struct. Health Monit. contributor: fullname: Azam – volume: 276 year: Feb. 2023 ident: b0015 article-title: Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images publication-title: Eng. Struct. contributor: fullname: Chen – volume: 22 year: 2022 ident: b0040 article-title: Bridge health monitoring using strain data and high-fidelity finite element analysis publication-title: Sensors contributor: fullname: Rizzo – volume: 12 year: 2022 ident: b0285 article-title: Bridge modal parameter identification from UAV measurement based on empirical mode decomposition and Fourier transform publication-title: Appl. Sci. contributor: fullname: Chen – volume: 13 year: 2023 ident: b0025 article-title: Novel physics-informed artificial neural network architectures for system and input identification of structural dynamics PDEs publication-title: Buildings contributor: fullname: Mofid – volume: Aug. 2022 start-page: e3635116 year: 2022 ident: b0140 article-title: Transfer learning for CNN-based damage detection in civil structures with insufficient data publication-title: Shock Vib. contributor: fullname: Rastin – volume: 19 year: Jan. 2019 ident: b0070 article-title: Scour damage detection and structural health monitoring of a laboratory-scaled bridge using a vibration energy harvesting device publication-title: Sensors contributor: fullname: Fitzgerald – volume: 18 start-page: 143 year: Jan. 2019 end-page: 163 ident: b0220 article-title: A novel deep learning-based method for damage identification of smart building structures publication-title: Struct. Health Monit. contributor: fullname: Li – volume: 257 year: Apr. 2022 ident: b0205 article-title: Supervised deep learning with finite element simulations for damage identification in bridges publication-title: Eng. Struct. contributor: fullname: Magalhães – volume: 26 start-page: e2308 year: 2019 ident: b0200 article-title: Vibration-based structural condition assessment using convolution neural networks publication-title: Struct. Control Health Monit. contributor: fullname: Fadali – volume: 34 start-page: 213 year: 2019 end-page: 229 ident: b0260 article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network publication-title: Comput. Aided Civ. Inf. Eng. contributor: fullname: Zhang – volume: 212 year: Jun. 2020 ident: b0030 article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data publication-title: Eng. Struct. contributor: fullname: Zhang – year: Nov. 2023 ident: b0105 article-title: Experimental study on the damage identification of bridge expansion joints publication-title: J Civil Struct Health Monit contributor: fullname: Yang – volume: 12 start-page: 101 year: Feb. 2022 end-page: 115 ident: b0110 article-title: A data-based structural health monitoring approach for damage detection in steel bridges using experimental data publication-title: J Civil Struct Health Monit contributor: fullname: Rønnquist – volume: 17 start-page: 1225 year: Sep. 2018 end-page: 1244 ident: b0130 article-title: Structural health monitoring: closing the gap between research and industrial deployment publication-title: Struct. Health Monit. contributor: fullname: Cawley – volume: 11 start-page: 931 year: Sep. 2021 end-page: 947 ident: b0035 article-title: Fatigue crack detection in welded structural components of steel bridges using artificial neural network publication-title: J Civil Struct Health Monit contributor: fullname: Eftekhar Azam – volume: 20 year: Jan. 2020 ident: b0050 article-title: Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review publication-title: Sensors contributor: fullname: Pekcan – volume: 18 start-page: 401 year: Mar. 2019 end-page: 421 ident: b0255 article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring publication-title: Struct. Health Monit. contributor: fullname: Zhang – volume: 33 start-page: 1127 year: Dec. 2018 end-page: 1141 ident: b0270 article-title: Road damage detection using deep neural networks with images captured through a smartphone publication-title: Computer Aided Civil Eng contributor: fullname: Omata – volume: 12 year: Jan. 2022 ident: b0290 article-title: Measurement of bridge vibration by UAVs combined with CNN and KLT optical-flow method publication-title: Appl. Sci. contributor: fullname: Bassir – volume: 28 year: Apr. 2023 ident: b0045 article-title: Structural-health-monitoring-oriented finite element model for a specially shaped steel arch bridge and its application publication-title: Math. Computat. Appl. contributor: fullname: Cheng – volume: 10 year: Jan. 2020 ident: b0225 article-title: Structural damage detection based on real-time vibration signal and convolutional neural network publication-title: Appl. Sci. contributor: fullname: Cui – volume: 290 start-page: 242 year: Feb. 2006 end-page: 263 ident: b0085 article-title: Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks publication-title: J. Sound Vib. contributor: fullname: Ko – volume: 13 start-page: 1185 year: Oct. 2023 end-page: 1206 ident: b0100 article-title: Validation of an FE model updating procedure for damage assessment using a modular laboratory experiment with a reversible damage mechanism publication-title: J Civil Struct Health Monit contributor: fullname: Wolniak – volume: 20 start-page: 1609 year: Jul. 2021 end-page: 1626 ident: b0185 article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders publication-title: Struct. Health Monit. contributor: fullname: Spencer – volume: 168 year: Nov. 2020 ident: b0360 article-title: Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state publication-title: Appl. Acoust. contributor: fullname: Razavi – volume: 8 start-page: 53 year: Mar. 2021 ident: b0315 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: J Big Data contributor: fullname: Alzubaidi – volume: 17 start-page: 222 year: Jan. 2020 end-page: 249 ident: b0150 article-title: Independent component analysis: an introduction publication-title: Appl. Comput. Informat. contributor: fullname: Tharwat – volume: 388 start-page: 154 year: Feb. 2017 end-page: 170 ident: b0135 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. contributor: fullname: Inman – volume: 34 year: Feb. 2021 ident: b0215 article-title: A deep learning-based approach for condition assessment of semi-rigid joint of steel frame publication-title: J. Build. Eng. contributor: fullname: Samanta – volume: 8 start-page: 248 year: Aug. 2023 ident: b0055 article-title: A review on structural health monitoring: past to present publication-title: Innov. Infrastruct. Solut. contributor: fullname: Kalapatapu – volume: 202 year: Oct. 2022 ident: b0125 article-title: Structural damage detection based on convolutional neural networks and population of bridges publication-title: Measurement contributor: fullname: Bassir – volume: 109 start-page: 43 year: Jan. 2021 end-page: 76 ident: b0355 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE contributor: fullname: Zhuang – volume: 15 year: 2023 ident: b0020 article-title: Proposed machine learning techniques for bridge structural health monitoring: a laboratory study publication-title: Remote Sens. (Basel) contributor: fullname: Samali – volume: 32 start-page: 1025 year: 2017 end-page: 1046 ident: b0235 article-title: Structural damage detection with automatic feature-extraction through deep learning publication-title: Comput. Aided Civ. Inf. Eng. contributor: fullname: Ma – volume: 2023 start-page: 1 year: Aug. 2023 end-page: 20 ident: b0095 article-title: Bridge damage detection using ambient loads by bayesian hypothesis testing for a parametric subspace of an autoregressive model publication-title: Struct. Control Health Monit. contributor: fullname: Kim – volume: 457 start-page: 51 year: Sep. 2019 end-page: 66 ident: b0265 article-title: VibroNet: Recurrent neural networks with multi-target learning for image-based vibration frequency measurement publication-title: J. Sound Vib. contributor: fullname: Li – volume: 28 start-page: 04022134 year: Jan. 2023 ident: b0275 article-title: Transfer learning to enhance the damage detection performance in bridges when using numerical models publication-title: J. Bridg. Eng. contributor: fullname: Adrian Bud – volume: 24 start-page: 567 year: 2019 end-page: 585 ident: b0250 article-title: A review on deep learning-based structural health monitoring of civil infrastructures publication-title: Smart Struct. Syst. contributor: fullname: Yun – ident: 10.1016/j.measurement.2024.115393_b0345 doi: 10.1109/CVPR.2015.7298594 – ident: 10.1016/j.measurement.2024.115393_b0340 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.measurement.2024.115393_b0365 – volume: 8 start-page: 248 issue: 9 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0055 article-title: A review on structural health monitoring: past to present publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-023-01217-3 contributor: fullname: Katam – ident: 10.1016/j.measurement.2024.115393_b0120 – volume: 26 start-page: e2308 issue: 2 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0200 article-title: Vibration-based structural condition assessment using convolution neural networks publication-title: Struct. Control Health Monit. contributor: fullname: Khodabandehlou – volume: 12 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0285 article-title: Bridge modal parameter identification from UAV measurement based on empirical mode decomposition and Fourier transform publication-title: Appl. Sci. doi: 10.3390/app12178689 contributor: fullname: Yan – volume: 388 start-page: 154 year: 2017 ident: 10.1016/j.measurement.2024.115393_b0135 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.043 contributor: fullname: Abdeljaber – volume: 22 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0040 article-title: Bridge health monitoring using strain data and high-fidelity finite element analysis publication-title: Sensors doi: 10.3390/s22145172 contributor: fullname: Ghahremani – volume: 275 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0115 article-title: Model assessment of a bridge by load and dynamic tests publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115282 contributor: fullname: De Angelis – volume: 34 start-page: 213 issue: 3 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0260 article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network publication-title: Comput. Aided Civ. Inf. Eng. doi: 10.1111/mice.12409 contributor: fullname: Zhang – volume: 109 start-page: 43 issue: 1 year: 2021 ident: 10.1016/j.measurement.2024.115393_b0355 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 contributor: fullname: Zhuang – volume: 245–246 start-page: 35 year: 2003 ident: 10.1016/j.measurement.2024.115393_b0065 article-title: Damage detection in large-scale laboratory bridge models publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.245-246.35 contributor: fullname: Owen – volume: 2023 start-page: 1 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0095 article-title: Bridge damage detection using ambient loads by bayesian hypothesis testing for a parametric subspace of an autoregressive model publication-title: Struct. Control Health Monit. doi: 10.1155/2023/7986061 contributor: fullname: Goi – volume: 15 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0020 article-title: Proposed machine learning techniques for bridge structural health monitoring: a laboratory study publication-title: Remote Sens. (Basel) contributor: fullname: Noori Hoshyar – volume: 7 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0210 article-title: Deep-learning-based drive-by damage detection system for railway bridges publication-title: Infrastructures doi: 10.3390/infrastructures7060084 contributor: fullname: Hajializadeh – ident: 10.1016/j.measurement.2024.115393_b0005 – volume: 12 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0240 article-title: A novel structural damage identification method using a hybrid deep learning framework publication-title: Buildings doi: 10.3390/buildings12122130 contributor: fullname: He – ident: 10.1016/j.measurement.2024.115393_b0010 doi: 10.3389/fbuil.2019.00116 – ident: 10.1016/j.measurement.2024.115393_b0320 doi: 10.1016/j.engstruct.2021.113250 – ident: 10.1016/j.measurement.2024.115393_b0370 – volume: 290 start-page: 242 issue: 1 year: 2006 ident: 10.1016/j.measurement.2024.115393_b0085 article-title: Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.03.016 contributor: fullname: Ni – ident: 10.1016/j.measurement.2024.115393_b0350 doi: 10.1109/CVPR.2009.5206848 – volume: 12 start-page: 101 issue: 1 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0110 article-title: A data-based structural health monitoring approach for damage detection in steel bridges using experimental data publication-title: J Civil Struct Health Monit doi: 10.1007/s13349-021-00530-8 contributor: fullname: Svendsen – volume: 13 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0025 article-title: Novel physics-informed artificial neural network architectures for system and input identification of structural dynamics PDEs publication-title: Buildings doi: 10.3390/buildings13030650 contributor: fullname: Moradi – volume: 276 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0015 article-title: Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115306 contributor: fullname: Chen – volume: 8 start-page: 53 issue: 1 year: 2021 ident: 10.1016/j.measurement.2024.115393_b0315 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: J Big Data doi: 10.1186/s40537-021-00444-8 contributor: fullname: Alzubaidi – ident: 10.1016/j.measurement.2024.115393_b0300 doi: 10.3390/app11062610 – ident: 10.1016/j.measurement.2024.115393_b0165 – volume: 20 year: 2020 ident: 10.1016/j.measurement.2024.115393_b0050 article-title: Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review publication-title: Sensors doi: 10.3390/s20102778 contributor: fullname: Azimi – ident: 10.1016/j.measurement.2024.115393_b0335 – volume: 457 start-page: 51 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0265 article-title: VibroNet: Recurrent neural networks with multi-target learning for image-based vibration frequency measurement publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.05.027 contributor: fullname: Liu – volume: 23 start-page: 4493 issue: 10 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0230 article-title: Structural damage detection using deep convolutional neural network and transfer learning publication-title: KSCE J Civ Eng doi: 10.1007/s12205-019-0437-z contributor: fullname: Feng – ident: 10.1016/j.measurement.2024.115393_b0295 doi: 10.1007/978-3-319-54858-6_33 – volume: 16 start-page: 69 issue: 1 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0090 article-title: An overview: the application of vibration-based techniques in bridge structural health monitoring publication-title: Int. J. Concr. Struct. Mater. doi: 10.1186/s40069-022-00557-1 contributor: fullname: Saidin – year: 2023 ident: 10.1016/j.measurement.2024.115393_b0105 article-title: Experimental study on the damage identification of bridge expansion joints publication-title: J Civil Struct Health Monit contributor: fullname: Li – ident: 10.1016/j.measurement.2024.115393_b0310 doi: 10.1016/j.eswa.2020.113634 – volume: 17 start-page: 971 issue: 4 year: 2018 ident: 10.1016/j.measurement.2024.115393_b0305 article-title: Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges publication-title: Struct. Health Monit. doi: 10.1177/1475921717721137 contributor: fullname: Vagnoli – ident: 10.1016/j.measurement.2024.115393_b0180 – volume: 34 year: 2021 ident: 10.1016/j.measurement.2024.115393_b0215 article-title: A deep learning-based approach for condition assessment of semi-rigid joint of steel frame publication-title: J. Build. Eng. contributor: fullname: Paral – volume: 13 start-page: 1185 issue: 6 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0100 article-title: Validation of an FE model updating procedure for damage assessment using a modular laboratory experiment with a reversible damage mechanism publication-title: J Civil Struct Health Monit doi: 10.1007/s13349-023-00701-9 contributor: fullname: Wolniak – ident: 10.1016/j.measurement.2024.115393_b0160 doi: 10.1109/HORA52670.2021.9461277 – ident: 10.1016/j.measurement.2024.115393_b0145 – ident: 10.1016/j.measurement.2024.115393_b0080 doi: 10.1016/j.ymssp.2019.106380 – volume: 17 start-page: 222 issue: 2 year: 2020 ident: 10.1016/j.measurement.2024.115393_b0150 article-title: Independent component analysis: an introduction publication-title: Appl. Comput. Informat. doi: 10.1016/j.aci.2018.08.006 contributor: fullname: Tharwat – ident: 10.1016/j.measurement.2024.115393_b0175 doi: 10.1007/0-387-25465-X_9 – volume: 10 year: 2020 ident: 10.1016/j.measurement.2024.115393_b0225 article-title: Structural damage detection based on real-time vibration signal and convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app10144720 contributor: fullname: Teng – volume: 28 start-page: 04022134 issue: 1 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0275 article-title: Transfer learning to enhance the damage detection performance in bridges when using numerical models publication-title: J. Bridg. Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001979 contributor: fullname: Figueiredo – ident: 10.1016/j.measurement.2024.115393_b0170 doi: 10.1007/978-3-642-34041-3_27 – volume: 17 start-page: 1225 issue: 5 year: 2018 ident: 10.1016/j.measurement.2024.115393_b0130 article-title: Structural health monitoring: closing the gap between research and industrial deployment publication-title: Struct. Health Monit. doi: 10.1177/1475921717750047 contributor: fullname: Cawley – volume: 12 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0290 article-title: Measurement of bridge vibration by UAVs combined with CNN and KLT optical-flow method publication-title: Appl. Sci. contributor: fullname: Yan – volume: 212 year: 2020 ident: 10.1016/j.measurement.2024.115393_b0030 article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110520 contributor: fullname: Ni – volume: 3 start-page: 22 issue: 1 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0190 article-title: The application of deep learning in bridge health monitoring: a literature review publication-title: Adv. Bridge Eng. doi: 10.1186/s43251-022-00078-7 contributor: fullname: Zhang – ident: 10.1016/j.measurement.2024.115393_b0060 doi: 10.1007/978-3-031-15758-5_80 – volume: Aug. 2022 start-page: e3635116 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0140 article-title: Transfer learning for CNN-based damage detection in civil structures with insufficient data publication-title: Shock Vib. contributor: fullname: Chamangard – volume: 18 start-page: 143 issue: 1 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0220 article-title: A novel deep learning-based method for damage identification of smart building structures publication-title: Struct. Health Monit. doi: 10.1177/1475921718804132 contributor: fullname: Yu – volume: 34 start-page: 415 issue: 5 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0280 article-title: Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization publication-title: Comput. Aided Civ. Inf. Eng. doi: 10.1111/mice.12425 contributor: fullname: Liang – volume: 32 start-page: 1025 issue: 12 year: 2017 ident: 10.1016/j.measurement.2024.115393_b0235 article-title: Structural damage detection with automatic feature-extraction through deep learning publication-title: Comput. Aided Civ. Inf. Eng. doi: 10.1111/mice.12313 contributor: fullname: Lin – volume: 168 year: 2020 ident: 10.1016/j.measurement.2024.115393_b0360 article-title: Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107402 contributor: fullname: Mousavi – volume: 257 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0205 article-title: Supervised deep learning with finite element simulations for damage identification in bridges publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114016 contributor: fullname: Fernandez-Navamuel – volume: 24 start-page: 567 issue: 5 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0250 article-title: A review on deep learning-based structural health monitoring of civil infrastructures publication-title: Smart Struct. Syst. contributor: fullname: Ye – volume: 28 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0045 article-title: Structural-health-monitoring-oriented finite element model for a specially shaped steel arch bridge and its application publication-title: Math. Computat. Appl. contributor: fullname: Dai – ident: 10.1016/j.measurement.2024.115393_b0155 doi: 10.1007/978-3-030-72192-3_6 – ident: 10.1016/j.measurement.2024.115393_b0325 doi: 10.1038/s41598-019-47765-6 – volume: 19 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0070 article-title: Scour damage detection and structural health monitoring of a laboratory-scaled bridge using a vibration energy harvesting device publication-title: Sensors doi: 10.3390/s19112572 contributor: fullname: Fitzgerald – volume: 18 start-page: 401 issue: 2 year: 2019 ident: 10.1016/j.measurement.2024.115393_b0255 article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring publication-title: Struct. Health Monit. doi: 10.1177/1475921718757405 contributor: fullname: Bao – ident: 10.1016/j.measurement.2024.115393_b0075 doi: 10.1007/978-3-030-47638-0_16 – ident: 10.1016/j.measurement.2024.115393_b0195 – volume: 33 start-page: 1127 issue: 12 year: 2018 ident: 10.1016/j.measurement.2024.115393_b0270 article-title: Road damage detection using deep neural networks with images captured through a smartphone publication-title: Computer Aided Civil Eng doi: 10.1111/mice.12387 contributor: fullname: Maeda – ident: 10.1016/j.measurement.2024.115393_b0375 – volume: 11 start-page: 931 issue: 4 year: 2021 ident: 10.1016/j.measurement.2024.115393_b0035 article-title: Fatigue crack detection in welded structural components of steel bridges using artificial neural network publication-title: J Civil Struct Health Monit doi: 10.1007/s13349-021-00488-7 contributor: fullname: Mashayekhi – volume: 202 year: 2022 ident: 10.1016/j.measurement.2024.115393_b0125 article-title: Structural damage detection based on convolutional neural networks and population of bridges publication-title: Measurement doi: 10.1016/j.measurement.2022.111747 contributor: fullname: Teng – ident: 10.1016/j.measurement.2024.115393_b0330 doi: 10.1038/s41598-021-90923-y – volume: 20 start-page: 1609 issue: 4 year: 2021 ident: 10.1016/j.measurement.2024.115393_b0185 article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders publication-title: Struct. Health Monit. doi: 10.1177/1475921720924601 contributor: fullname: Mao – volume: 2023 year: 2023 ident: 10.1016/j.measurement.2024.115393_b0245 article-title: Exploring the potential of transfer learning applications for structural damage classification publication-title: Struct. Health Monit. contributor: fullname: Duran |
SSID | ssj0006396 |
Score | 2.4413493 |
Snippet | •A novel and robust CNN architecture for structural damage identification framework.•This method works without measuring applied loads to the... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 115393 |
SubjectTerms | Bridge health monitoring Convolutional neural network damage detection Strain time-history Supervised learning |
Title | A novel CNN architecture for robust structural damage identification via strain measurements and its validation via full-scale experiments |
URI | https://dx.doi.org/10.1016/j.measurement.2024.115393 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9UwFA53G4o-DJ2K0ykRfCu99EfSpuBL2eqm4H3ZhPlU0iRld3pbWe_2sD_Bv9qTpm0ydaiILyWENE17PtKTk-98Qei1qCnRKwdYpqa1TxJS-ZzVmR9FjDOqeFqFOlH46DhdnLKDghSz2ajhauv-q6WhDmytM2f_wtpTp1ABZbA5XMHqcP0ju-de016pL97-YuHd2CXQfMKLtrrs1p4Rje0FNyRfadbOUg6sIYOHqyXXjfiy8VY2iNhNOw0w4KW0TXUM3-_A2so5MaBz_d4Ptpc-COEIVlj65hiXdBv3GYlaHdQlDBzA0M0x81CYUo2KVTtwAlotmCKm-nqtPp_xCy-_Nuj_xLszPpGSYTV-PWy-mHx773DuxkIiTTv0TTaoCdCNSTqWEdX12rKxrz0Vd9KPjITSTz8QE8s4nzsfdw5PIvBrobE5y_EHfe5j3b_uHnyjMEoZ20BbEcx6MOlu5e-K0_eTYwDOYGJCfmY8d9ErSze85YG_dpccF-jkAdoe1i44N6B7iGaq2UH3HUXLHXSnZxSL7hH6luMeiBiAiF0gYgAiNkDEFojYABHfBCIGdGEDROwCEQMQMQARWyD2TS0QsQPEx-jj2-Jk_8gfDv7wRZjRtZ-JWhAVqiTlJNDqSBWt6qBmkvMqDKSAJXZMeZ0GnJJYJETVerNZSk6rlLOEx0_QZtM26inCYSSYokqmMZOEBqRimaA6jKcSItKM7aJo_L7lV6PvUo7Ex_PSebNSG6U0RtlFb0ZLlIOjahzQEmD0-9uf_dvtz9E9i_09tAmWUi_QRicvXw6I-w6Efscg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+CNN+architecture+for+robust+structural+damage+identification+via+strain+measurements+and+its+validation+via+full-scale+experiments&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Duran%2C+Burak&rft.au=Emory%2C+Dominic&rft.au=Eftekhar+Azam%2C+Yashar&rft.au=Linzell%2C+Daniel+G.&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=239&rft_id=info:doi/10.1016%2Fj.measurement.2024.115393&rft.externalDocID=S0263224124012788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |