Thermal dynamics aspect identification of loop heat pipe with capillary tube wick using nonlinear autoregressive exogenous neural network

The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identi...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology Vol. 56; no. 12; pp. 5145 - 5153
Main Authors: Setyo Pambudi, Yoyok Dwi, Giarno, Hatmoko, Sumantri, Antariksawan, Anhar Riza, Kusuma, Mukhsinun Hadi
Format: Journal Article
Language:English
Published: Elsevier B.V 01-12-2024
Elsevier
한국원자력학회
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identification of LHP with capillary tube wick was carried out on the MATLAB platform. The experiment data obtained is used to identify the neural network of LHP with capillary tube wick. The temperature of the water as an evaporator heat source was varied at 60, 70, 80, and 90 °C. The LHP was charged with demineralized water with a filling ratio of 100 %. The air as a coolant in condenser section was blown at velocity of 2.5 m/s. The LHP was vacuumed with an initial pressure of 2690 Pa. The result confirmed that NARX based on the neural network model can predict the temperature of the condenser section with a given input set under the steady-state and transient conditions. The coefficient of determination is higher than 0.998 and Mean Square Error (MSE) is below 0.0082. The result obtained shows that the NARX neural network model can predict thermal dynamics phenomena in LHP quickly and precisely.
AbstractList The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identification of LHP with capillary tube wick was carried out on the MATLAB platform. The experiment data obtained is used to identify the neural network of LHP with capillary tube wick. The temperature of the water as an evaporator heat source was varied at 60, 70, 80, and 90 °C. The LHP was charged with demineralized water with a filling ratio of 100 %. The air as a coolant in condenser section was blown at velocity of 2.5 m/s. The LHP was vacuumed with an initial pressure of 2690 Pa. The result confirmed that NARX based on the neural network model can predict the temperature of the condenser section with a given input set under the steady-state and transient conditions. The coefficient of determination is higher than 0.998 and Mean Square Error (MSE) is below 0.0082. The result obtained shows that the NARX neural network model can predict thermal dynamics phenomena in LHP quickly and precisely.
The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identification of LHP with capillary tube wick was carried out on the MATLAB platform. The experiment data obtained is used to identify the neural network of LHP with capillary tube wick. The temperature of the water as an evaporator heat source was varied at 60, 70, 80, and 90 ◦C. The LHP was charged with demineralized water with a filling ratio of 100 %. The air as a coolant in condenser section was blown at velocity of 2.5 m/s. The LHP was vacuumed with an initial pressure of 2690 Pa. The result confirmed that NARX based on the neural network model can predict the temperature of the condenser section with a given input set under the steady-state and transient conditions. The coefficient of determination is higher than 0.998 and Mean Square Error (MSE) is below 0.0082. The result obtained shows that the NARX neural network model can predict thermal dynamics phenomena in LHP quickly and precisely. KCI Citation Count: 0
Author Giarno
Setyo Pambudi, Yoyok Dwi
Hatmoko, Sumantri
Kusuma, Mukhsinun Hadi
Antariksawan, Anhar Riza
Author_xml – sequence: 1
  givenname: Yoyok Dwi
  orcidid: 0009-0006-2628-7187
  surname: Setyo Pambudi
  fullname: Setyo Pambudi, Yoyok Dwi
  organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia
– sequence: 2
  surname: Giarno
  fullname: Giarno
  organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia
– sequence: 3
  givenname: Sumantri
  surname: Hatmoko
  fullname: Hatmoko, Sumantri
  organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia
– sequence: 4
  givenname: Anhar Riza
  surname: Antariksawan
  fullname: Antariksawan, Anhar Riza
  organization: Research Center for Science and Accelerator Technology, National Research and Innovation Agency, Babarsari, Yogyakarta, 55281, Indonesia
– sequence: 5
  givenname: Mukhsinun Hadi
  orcidid: 0000-0003-1226-5711
  surname: Kusuma
  fullname: Kusuma, Mukhsinun Hadi
  email: mhad001@brin.go.id
  organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003137656$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UU2L2zAQFWULzW77A3rTuWBXsiRLpqdl6UdgobCk0JuQ5ZGjxJGM5OzHT-i_rpKUHvc0zDDvzZv3rtFViAEQ-khJTQltP-_qAEvdkIbXRNakad6gVdMwXjGhfl-hFZVMVUIy9g5d57wjpOVckhX6s9lCOpgJDy_BHLzN2OQZ7IL9AGHxzluz-BhwdHiKccZbMAue_Qz4yS9bbM3sp8mkF7wc-9PM7vEx-zDiom_yAUzC5rjEBGOCnP0jYHiOI4R4zDjAMZXLRfhTTPv36K0zU4YP_-oN-vXt6-buR3X_8_v67va-srQTrOIdk9CCkIIyStUwOOjZwI1yUjnKWyedNLa0YDtleqKMFbztlKWOCVAdu0GfLrwhOb23Xkfjz3WMep_07cNmrWmxR7SKleX1ZXmIZqfn5A_l1zPiPIhp1CYt3k6gmRPMOgGulT2ntOspZ4ITCQMTVihbuOiFy6aYcwL3n48SfQpR73TxQp9C1ETqEmLBfLlgoDjy6CHpbD0EC4NPJaWiwr-C_gswc6nt
Cites_doi 10.1016/j.applthermaleng.2017.05.205
10.1016/j.rser.2015.12.350
10.1016/j.egypro.2013.07.210
10.1016/j.anucene.2020.107324
10.1016/B978-0-444-63234-0.50171-8
10.1016/j.applthermaleng.2020.116403
10.3390/en11030620
10.1016/j.measurement.2019.01.037
10.1016/j.applthermaleng.2024.122395
10.1016/j.neucom.2016.06.014
10.13182/NT13-121
10.1016/j.net.2016.10.008
10.1016/j.ijthermalsci.2017.12.033
10.1177/1468087414529420
10.1007/s10973-017-6217-4
10.1016/S0167-7012(00)00201-3
10.1016/j.pnucene.2019.01.004
10.1016/j.apenergy.2014.05.046
10.1155/2016/1065790
10.1016/j.nucengdes.2013.03.005
10.1016/j.anucene.2020.107412
10.1016/j.conengprac.2015.02.005
10.1016/j.applthermaleng.2019.113761
ContentType Journal Article
Copyright 2024 Korean Nuclear Society
Copyright_xml – notice: 2024 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2024.07.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
Korean Citation Index (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 5153
ExternalDocumentID oai_kci_go_kr_ARTI_10645683
oai_doaj_org_article_3f53cf5ef67b4119b1435407ed35c58c
10_1016_j_net_2024_07_022
S1738573324003371
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c1953-4937e6e57513118ddfeb3d4a8f78f146f7f7aca8fec98ab08ac54698c1f35e893
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Sun Nov 24 03:22:30 EST 2024
Mon Nov 18 19:23:13 EST 2024
Wed Nov 20 13:36:40 EST 2024
Sat Nov 16 15:57:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Thermal dynamics
Neural network
Passive cooling system
Nonlinear autoregressive exogenous
Loop heat pipe
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1953-4937e6e57513118ddfeb3d4a8f78f146f7f7aca8fec98ab08ac54698c1f35e893
ORCID 0009-0006-2628-7187
0000-0003-1226-5711
OpenAccessLink https://doaj.org/article/3f53cf5ef67b4119b1435407ed35c58c
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10645683
doaj_primary_oai_doaj_org_article_3f53cf5ef67b4119b1435407ed35c58c
crossref_primary_10_1016_j_net_2024_07_022
elsevier_sciencedirect_doi_10_1016_j_net_2024_07_022
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
2024-12
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Pambudi, Wahab, Kusumoputro (bib20) 2016; 2016
Jaber, Bicker (bib26) 2016; 58
Rana, Rawat, Bijalwan, Bahuguna (bib24) 2018
Kusuma, Putra, Antariksawan, Koestoer, Widodo, Ismarwanti, Verlambang (bib9) 2018; 126
Alcan, Unel, Aran, Yilmaz, Gurel, Koprubasi (bib19) 2019; 137
Zhang, Wu (bib27) 2018; 71
Wang, Yan, Meng, Chen (bib13) 2019; 157
Zhao, Dong, Zheng, Ma, Chen (bib5) 2017; 125
d'Ambrosio, Finesso, Fu, Mittica, Spessa (bib14) 2014; 130
Basheer, Hajmeer (bib23) 2000; 43
Gurney (bib29) 2018
Changdong, Wenying, Jiang, Wei, Ting, Cheng, Hong (bib12) 2019; 113
Wang, Wen, Wu, Yang, Zhao, Wang (bib28) 2024; 236
Benatzky, Stadlbauer, Formentin, Schilling, Alberer (bib16) 2014; 15
Boussaada, Curea, Remaci, Camblong, Mrabet Bellaaj (bib18) 2018; 11
Recker, Kerimoglu, Harwardt, Tkacheva, Marquardt (bib21) 2013
Prieto, Prieto, Ortigosa, Ros, Pelayo, Ortega, Rojas (bib22) 2016; 214
Yu, Park, Kim, Kang, Cho, Choi (bib3) 2013; 259
Mueller, Tsvetkov (bib8) 2020; 141
Yin, Hu, Chi, Li, Nan, Wang (bib11) 2021; 184
Wang (bib1) 2013; 39
Kusuma, Haryanto, Hatmoko, Pambudi, ButarButar, Putra, Wahanani, Kiono, Rozi, Ariantara (bib32) 2024
Nam, Park, Kim (bib6) 2015; 189
Kusuma, Putra, Antariksawan, Imawan (bib10) 2017; 49
Liu, Zhang, Liang, Tang, Wang, Tian, Zhang, Qiu, Su (bib7) 2020; 142
Vakili, Karami, Delfani, Khosrojerdi, Kalhor (bib25) 2017; 129
Han, Wang, Zheng, Xu, Chen (bib17) 2016; 59
He, Yan, Wang (bib31) 2024; 241
(bib2) 2009
Quérel, Grondin, Letellier (bib15) 2015; 40
Antariksawan, Widodo, Juarsa, Haryanto, Kusuma, Putra (bib4) 2018
Rana (10.1016/j.net.2024.07.022_bib24) 2018
He (10.1016/j.net.2024.07.022_bib31) 2024; 241
Yu (10.1016/j.net.2024.07.022_bib3) 2013; 259
Prieto (10.1016/j.net.2024.07.022_bib22) 2016; 214
Antariksawan (10.1016/j.net.2024.07.022_bib4) 2018
Kusuma (10.1016/j.net.2024.07.022_bib9) 2018; 126
Wang (10.1016/j.net.2024.07.022_bib28) 2024; 236
Boussaada (10.1016/j.net.2024.07.022_bib18) 2018; 11
Quérel (10.1016/j.net.2024.07.022_bib15) 2015; 40
Mueller (10.1016/j.net.2024.07.022_bib8) 2020; 141
Benatzky (10.1016/j.net.2024.07.022_bib16) 2014; 15
d'Ambrosio (10.1016/j.net.2024.07.022_bib14) 2014; 130
Zhang (10.1016/j.net.2024.07.022_bib27) 2018; 71
Vakili (10.1016/j.net.2024.07.022_bib25) 2017; 129
Changdong (10.1016/j.net.2024.07.022_bib12) 2019; 113
Kusuma (10.1016/j.net.2024.07.022_bib32) 2024
Basheer (10.1016/j.net.2024.07.022_bib23) 2000; 43
Jaber (10.1016/j.net.2024.07.022_bib26) 2016; 58
Liu (10.1016/j.net.2024.07.022_bib7) 2020; 142
Zhao (10.1016/j.net.2024.07.022_bib5) 2017; 125
(10.1016/j.net.2024.07.022_bib2) 2009
Yin (10.1016/j.net.2024.07.022_bib11) 2021; 184
Wang (10.1016/j.net.2024.07.022_bib13) 2019; 157
Recker (10.1016/j.net.2024.07.022_bib21) 2013
Kusuma (10.1016/j.net.2024.07.022_bib10) 2017; 49
Alcan (10.1016/j.net.2024.07.022_bib19) 2019; 137
Gurney (10.1016/j.net.2024.07.022_bib29) 2018
Nam (10.1016/j.net.2024.07.022_bib6) 2015; 189
Wang (10.1016/j.net.2024.07.022_bib1) 2013; 39
Pambudi (10.1016/j.net.2024.07.022_bib20) 2016; 2016
Han (10.1016/j.net.2024.07.022_bib17) 2016; 59
References_xml – volume: 49
  start-page: 476
  year: 2017
  end-page: 483
  ident: bib10
  article-title: Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool
  publication-title: Nucl. Eng. Technol.
  contributor:
    fullname: Imawan
– volume: 184
  year: 2021
  ident: bib11
  article-title: Experimental investigation of two-phase thermosyphon loop for passive containment cooling
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Wang
– start-page: 1624
  year: 2009
  ident: bib2
  publication-title: Water Cooled Nuclear Power Plants
– volume: 259
  start-page: 205
  year: 2013
  end-page: 220
  ident: bib3
  article-title: Systematic analysis of a station blackout scenario for APR1400 with test facility ATLAS and MARS code from scaling viewpoint
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: Choi
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib20
  article-title: Particle swarm optimization-based direct inverse control for controlling the power level of the Indonesian multipurpose reactor
  publication-title: Sci. Technol. Nucl. Install.
  contributor:
    fullname: Kusumoputro
– year: 2018
  ident: bib29
  article-title: An Introduction to Neural Networks
  contributor:
    fullname: Gurney
– volume: 241
  year: 2024
  ident: bib31
  article-title: Study on heat transfer characteristics of a dual-evaporator ultra-thin loop heat pipe for laptop cooling
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Wang
– year: 2018
  ident: bib4
  article-title: Numerical study on natural circulation characteristics in FASSIP-02 experimental facility using RELAP5 code
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  contributor:
    fullname: Putra
– volume: 189
  start-page: 278
  year: 2015
  end-page: 293
  ident: bib6
  article-title: Conceptual design of passive containment cooling system for APR-1400 using multipod heat pipe
  publication-title: Nucl. Technol.
  contributor:
    fullname: Kim
– volume: 141
  year: 2020
  ident: bib8
  article-title: Novel design integration for advanced nuclear heat-pipe systems
  publication-title: Ann. Nucl. Energy
  contributor:
    fullname: Tsvetkov
– volume: 40
  start-page: 27
  year: 2015
  end-page: 44
  ident: bib15
  article-title: Semi-physical mean-value NOx model for diesel engine control
  publication-title: Control Eng. Pract.
  contributor:
    fullname: Letellier
– volume: 125
  start-page: 1015
  year: 2017
  end-page: 1024
  ident: bib5
  article-title: Numerical simulation on heat transfer process in the reactor cavity of modular high temperature gas-cooled reactor
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Chen
– volume: 142
  year: 2020
  ident: bib7
  article-title: Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor
  publication-title: Ann. Nucl. Energy
  contributor:
    fullname: Su
– volume: 137
  start-page: 71
  year: 2019
  end-page: 81
  ident: bib19
  article-title: Predicting NOx emissions in diesel engines via sigmoid NARX models using a new experiment design for combustion identification
  publication-title: Measurement
  contributor:
    fullname: Koprubasi
– volume: 214
  start-page: 242
  year: 2016
  end-page: 268
  ident: bib22
  article-title: Neural networks: an overview of early research, current frameworks and new challenges
  publication-title: Neurocomputing
  contributor:
    fullname: Rojas
– volume: 58
  start-page: 179
  year: 2016
  end-page: 186
  ident: bib26
  article-title: Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network, Insight-Non-Destructive Test
  publication-title: Cond. Monit.
  contributor:
    fullname: Bicker
– volume: 126
  start-page: 162
  year: 2018
  end-page: 171
  ident: bib9
  article-title: Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Verlambang
– volume: 130
  start-page: 265
  year: 2014
  end-page: 279
  ident: bib14
  article-title: A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines
  publication-title: Appl. Energy
  contributor:
    fullname: Spessa
– start-page: 1021
  year: 2013
  end-page: 1026
  ident: bib21
  article-title: On the integration of model identification and process optimization
  publication-title: Comput. Aided Chem. Eng.
  contributor:
    fullname: Marquardt
– volume: 15
  start-page: 934
  year: 2014
  end-page: 943
  ident: bib16
  article-title: Indicated pressure-based data-driven diesel engine NOx modeling
  publication-title: Int. J. Engine Res.
  contributor:
    fullname: Alberer
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: bib23
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
  contributor:
    fullname: Hajmeer
– volume: 71
  start-page: 1075
  year: 2018
  end-page: 1080
  ident: bib27
  article-title: Prediction of heat transfer characteristics of nanofluids in heat pipes based on artificial neural network model
  publication-title: Chem. Eng. Trans.
  contributor:
    fullname: Wu
– volume: 236
  year: 2024
  ident: bib28
  article-title: A novel neural network and sensitivity analysis method for predicting the thermal resistance of heat pipes with nanofluids
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Wang
– volume: 129
  start-page: 629
  year: 2017
  end-page: 637
  ident: bib25
  article-title: Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions
  publication-title: J. Therm. Anal. Calorim.
  contributor:
    fullname: Kalhor
– volume: 59
  start-page: 692
  year: 2016
  end-page: 709
  ident: bib17
  article-title: Review of the development of pulsating heat pipe for heat dissipation
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Chen
– volume: 39
  start-page: 240
  year: 2013
  end-page: 247
  ident: bib1
  article-title: Preliminary study for the passive containment cooling system analysis of the advanced PWR
  publication-title: Energy Proc.
  contributor:
    fullname: Wang
– volume: 113
  start-page: 206
  year: 2019
  end-page: 214
  ident: bib12
  article-title: Experimental and computational analysis of a passive containment cooling system with closed-loop heat pipe technology
  publication-title: Prog. Nucl. Energy
  contributor:
    fullname: Hong
– year: 2024
  ident: bib32
  article-title: Experimental investigation of thermal characteristics on a new loop pipe model for passive cooling system
  publication-title: Therm. Sci. Eng. Prog.
  contributor:
    fullname: Ariantara
– volume: 157
  year: 2019
  ident: bib13
  article-title: A general method to predict the performance of closed pulsating heat pipe by artificial neural network
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Chen
– volume: 11
  start-page: 620
  year: 2018
  ident: bib18
  article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation
  publication-title: Energies
  contributor:
    fullname: Mrabet Bellaaj
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib24
  article-title: Application of multi layer (perceptron) artificial neural network in the diagnosis system: a systematic review
  publication-title: 2018 Int. Conf. Res. Intell. Comput. Eng.
  contributor:
    fullname: Bahuguna
– volume: 125
  start-page: 1015
  year: 2017
  ident: 10.1016/j.net.2024.07.022_bib5
  article-title: Numerical simulation on heat transfer process in the reactor cavity of modular high temperature gas-cooled reactor
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.205
  contributor:
    fullname: Zhao
– volume: 59
  start-page: 692
  year: 2016
  ident: 10.1016/j.net.2024.07.022_bib17
  article-title: Review of the development of pulsating heat pipe for heat dissipation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.350
  contributor:
    fullname: Han
– volume: 39
  start-page: 240
  year: 2013
  ident: 10.1016/j.net.2024.07.022_bib1
  article-title: Preliminary study for the passive containment cooling system analysis of the advanced PWR
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2013.07.210
  contributor:
    fullname: Wang
– year: 2018
  ident: 10.1016/j.net.2024.07.022_bib29
  contributor:
    fullname: Gurney
– start-page: 1624
  year: 2009
  ident: 10.1016/j.net.2024.07.022_bib2
– volume: 141
  year: 2020
  ident: 10.1016/j.net.2024.07.022_bib8
  article-title: Novel design integration for advanced nuclear heat-pipe systems
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107324
  contributor:
    fullname: Mueller
– start-page: 1
  year: 2018
  ident: 10.1016/j.net.2024.07.022_bib24
  article-title: Application of multi layer (perceptron) artificial neural network in the diagnosis system: a systematic review
  contributor:
    fullname: Rana
– start-page: 1021
  year: 2013
  ident: 10.1016/j.net.2024.07.022_bib21
  article-title: On the integration of model identification and process optimization
  doi: 10.1016/B978-0-444-63234-0.50171-8
  contributor:
    fullname: Recker
– volume: 71
  start-page: 1075
  year: 2018
  ident: 10.1016/j.net.2024.07.022_bib27
  article-title: Prediction of heat transfer characteristics of nanofluids in heat pipes based on artificial neural network model
  publication-title: Chem. Eng. Trans.
  contributor:
    fullname: Zhang
– year: 2024
  ident: 10.1016/j.net.2024.07.022_bib32
  article-title: Experimental investigation of thermal characteristics on a new loop pipe model for passive cooling system
  publication-title: Therm. Sci. Eng. Prog.
  contributor:
    fullname: Kusuma
– volume: 184
  year: 2021
  ident: 10.1016/j.net.2024.07.022_bib11
  article-title: Experimental investigation of two-phase thermosyphon loop for passive containment cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116403
  contributor:
    fullname: Yin
– volume: 11
  start-page: 620
  year: 2018
  ident: 10.1016/j.net.2024.07.022_bib18
  article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation
  publication-title: Energies
  doi: 10.3390/en11030620
  contributor:
    fullname: Boussaada
– volume: 137
  start-page: 71
  year: 2019
  ident: 10.1016/j.net.2024.07.022_bib19
  article-title: Predicting NOx emissions in diesel engines via sigmoid NARX models using a new experiment design for combustion identification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.037
  contributor:
    fullname: Alcan
– volume: 241
  year: 2024
  ident: 10.1016/j.net.2024.07.022_bib31
  article-title: Study on heat transfer characteristics of a dual-evaporator ultra-thin loop heat pipe for laptop cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.122395
  contributor:
    fullname: He
– volume: 214
  start-page: 242
  year: 2016
  ident: 10.1016/j.net.2024.07.022_bib22
  article-title: Neural networks: an overview of early research, current frameworks and new challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.014
  contributor:
    fullname: Prieto
– volume: 236
  year: 2024
  ident: 10.1016/j.net.2024.07.022_bib28
  article-title: A novel neural network and sensitivity analysis method for predicting the thermal resistance of heat pipes with nanofluids
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Wang
– volume: 189
  start-page: 278
  year: 2015
  ident: 10.1016/j.net.2024.07.022_bib6
  article-title: Conceptual design of passive containment cooling system for APR-1400 using multipod heat pipe
  publication-title: Nucl. Technol.
  doi: 10.13182/NT13-121
  contributor:
    fullname: Nam
– volume: 49
  start-page: 476
  year: 2017
  ident: 10.1016/j.net.2024.07.022_bib10
  article-title: Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2016.10.008
  contributor:
    fullname: Kusuma
– volume: 126
  start-page: 162
  year: 2018
  ident: 10.1016/j.net.2024.07.022_bib9
  article-title: Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.12.033
  contributor:
    fullname: Kusuma
– volume: 15
  start-page: 934
  year: 2014
  ident: 10.1016/j.net.2024.07.022_bib16
  article-title: Indicated pressure-based data-driven diesel engine NOx modeling
  publication-title: Int. J. Engine Res.
  doi: 10.1177/1468087414529420
  contributor:
    fullname: Benatzky
– volume: 58
  start-page: 179
  year: 2016
  ident: 10.1016/j.net.2024.07.022_bib26
  article-title: Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network, Insight-Non-Destructive Test
  publication-title: Cond. Monit.
  contributor:
    fullname: Jaber
– volume: 129
  start-page: 629
  year: 2017
  ident: 10.1016/j.net.2024.07.022_bib25
  article-title: Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6217-4
  contributor:
    fullname: Vakili
– volume: 43
  start-page: 3
  year: 2000
  ident: 10.1016/j.net.2024.07.022_bib23
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(00)00201-3
  contributor:
    fullname: Basheer
– volume: 113
  start-page: 206
  year: 2019
  ident: 10.1016/j.net.2024.07.022_bib12
  article-title: Experimental and computational analysis of a passive containment cooling system with closed-loop heat pipe technology
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2019.01.004
  contributor:
    fullname: Changdong
– volume: 130
  start-page: 265
  year: 2014
  ident: 10.1016/j.net.2024.07.022_bib14
  article-title: A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.05.046
  contributor:
    fullname: d'Ambrosio
– year: 2018
  ident: 10.1016/j.net.2024.07.022_bib4
  article-title: Numerical study on natural circulation characteristics in FASSIP-02 experimental facility using RELAP5 code
  contributor:
    fullname: Antariksawan
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.net.2024.07.022_bib20
  article-title: Particle swarm optimization-based direct inverse control for controlling the power level of the Indonesian multipurpose reactor
  publication-title: Sci. Technol. Nucl. Install.
  doi: 10.1155/2016/1065790
  contributor:
    fullname: Pambudi
– volume: 259
  start-page: 205
  year: 2013
  ident: 10.1016/j.net.2024.07.022_bib3
  article-title: Systematic analysis of a station blackout scenario for APR1400 with test facility ATLAS and MARS code from scaling viewpoint
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.03.005
  contributor:
    fullname: Yu
– volume: 142
  year: 2020
  ident: 10.1016/j.net.2024.07.022_bib7
  article-title: Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107412
  contributor:
    fullname: Liu
– volume: 40
  start-page: 27
  year: 2015
  ident: 10.1016/j.net.2024.07.022_bib15
  article-title: Semi-physical mean-value NOx model for diesel engine control
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2015.02.005
  contributor:
    fullname: Quérel
– volume: 157
  year: 2019
  ident: 10.1016/j.net.2024.07.022_bib13
  article-title: A general method to predict the performance of closed pulsating heat pipe by artificial neural network
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.113761
  contributor:
    fullname: Wang
SSID ssj0064470
Score 2.375152
Snippet The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 5145
SubjectTerms Loop heat pipe
Neural network
Nonlinear autoregressive exogenous
Passive cooling system
Thermal dynamics
원자력공학
Title Thermal dynamics aspect identification of loop heat pipe with capillary tube wick using nonlinear autoregressive exogenous neural network
URI https://dx.doi.org/10.1016/j.net.2024.07.022
https://doaj.org/article/3f53cf5ef67b4119b1435407ed35c58c
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003137656
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2024, 56(12), , pp.5145-5153
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9xADB4VTuWAaAti6UOW2hNSRLKZJJNjH6DtpZe2ErfRxPGgZdEmCqxEf0L_NfZMsoILvfQUJUoy1tix_WU8n5X6VDvkpLZ2iWnZgjWmlBgsKeFQgn6eFqgz2e-8-Fn9uDTfzoUmZ9vqS2rCIj1wnLiz3Bc5-oJ8WTU6y-pGAjyjEGrzAguDwfum5QSmog_mIF_FrZD8OQvj37SeGSq7GPMzMJzrwNo5nz-JSIG4_0lg2lkP_lHIuThQ-2OuCJ-jjK_UC1q_VnuPGATfqL-sZnatN9DGzvK34MLeSVi2YxlQmHnoPNx0XQ_ieqFf9gTyAxbQ9dJ1aPgDd5tGruEKpBL-CtaRQsMN4ITlgAIsZ88IdN9FXlcQKkweeR0LyQ_V74vzX18XydhdIUFZOks0JyZUkqy75Iwy2tYzrm61M74ynv2nr3zlkE8Ja-Oa1DgspN0kZj4viNOcI7XLstCxgpJchl6wka81aWxqV9WZYzRC7FB8PlOn0wzbPpJo2Km67NqymFbUYdPKsjpm6ovoYHuj8F-HC2wVdrQK-y-rmCk9adCOqURMEfhVy-fG_sjatitchmHleNXZ1WAZXHznZ0pON01-8j8kfKteysCxMuad2r0bNvRe7dy2mw_BlB8Ajwj4-g
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+dynamics+aspect+identification+of+loop+heat+pipe+with+capillary+tube+wick+using+nonlinear+autoregressive+exogenous+neural+network&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Setyo+Pambudi%2C+Yoyok+Dwi&rft.au=Giarno&rft.au=Hatmoko%2C+Sumantri&rft.au=Antariksawan%2C+Anhar+Riza&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1738-5733&rft.volume=56&rft.issue=12&rft.spage=5145&rft.epage=5153&rft_id=info:doi/10.1016%2Fj.net.2024.07.022&rft.externalDocID=S1738573324003371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon