Thermal dynamics aspect identification of loop heat pipe with capillary tube wick using nonlinear autoregressive exogenous neural network
The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identi...
Saved in:
Published in: | Nuclear engineering and technology Vol. 56; no. 12; pp. 5145 - 5153 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-12-2024
Elsevier 한국원자력학회 |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identification of LHP with capillary tube wick was carried out on the MATLAB platform. The experiment data obtained is used to identify the neural network of LHP with capillary tube wick. The temperature of the water as an evaporator heat source was varied at 60, 70, 80, and 90 °C. The LHP was charged with demineralized water with a filling ratio of 100 %. The air as a coolant in condenser section was blown at velocity of 2.5 m/s. The LHP was vacuumed with an initial pressure of 2690 Pa. The result confirmed that NARX based on the neural network model can predict the temperature of the condenser section with a given input set under the steady-state and transient conditions. The coefficient of determination is higher than 0.998 and Mean Square Error (MSE) is below 0.0082. The result obtained shows that the NARX neural network model can predict thermal dynamics phenomena in LHP quickly and precisely. |
---|---|
AbstractList | The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identification of LHP with capillary tube wick was carried out on the MATLAB platform. The experiment data obtained is used to identify the neural network of LHP with capillary tube wick. The temperature of the water as an evaporator heat source was varied at 60, 70, 80, and 90 °C. The LHP was charged with demineralized water with a filling ratio of 100 %. The air as a coolant in condenser section was blown at velocity of 2.5 m/s. The LHP was vacuumed with an initial pressure of 2690 Pa. The result confirmed that NARX based on the neural network model can predict the temperature of the condenser section with a given input set under the steady-state and transient conditions. The coefficient of determination is higher than 0.998 and Mean Square Error (MSE) is below 0.0082. The result obtained shows that the NARX neural network model can predict thermal dynamics phenomena in LHP quickly and precisely. The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal dynamics of LHP with capillary tube wick using a non-linear autoregressive exogenous (NARX) based on a neural network. The neural network identification of LHP with capillary tube wick was carried out on the MATLAB platform. The experiment data obtained is used to identify the neural network of LHP with capillary tube wick. The temperature of the water as an evaporator heat source was varied at 60, 70, 80, and 90 ◦C. The LHP was charged with demineralized water with a filling ratio of 100 %. The air as a coolant in condenser section was blown at velocity of 2.5 m/s. The LHP was vacuumed with an initial pressure of 2690 Pa. The result confirmed that NARX based on the neural network model can predict the temperature of the condenser section with a given input set under the steady-state and transient conditions. The coefficient of determination is higher than 0.998 and Mean Square Error (MSE) is below 0.0082. The result obtained shows that the NARX neural network model can predict thermal dynamics phenomena in LHP quickly and precisely. KCI Citation Count: 0 |
Author | Giarno Setyo Pambudi, Yoyok Dwi Hatmoko, Sumantri Kusuma, Mukhsinun Hadi Antariksawan, Anhar Riza |
Author_xml | – sequence: 1 givenname: Yoyok Dwi orcidid: 0009-0006-2628-7187 surname: Setyo Pambudi fullname: Setyo Pambudi, Yoyok Dwi organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia – sequence: 2 surname: Giarno fullname: Giarno organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia – sequence: 3 givenname: Sumantri surname: Hatmoko fullname: Hatmoko, Sumantri organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia – sequence: 4 givenname: Anhar Riza surname: Antariksawan fullname: Antariksawan, Anhar Riza organization: Research Center for Science and Accelerator Technology, National Research and Innovation Agency, Babarsari, Yogyakarta, 55281, Indonesia – sequence: 5 givenname: Mukhsinun Hadi orcidid: 0000-0003-1226-5711 surname: Kusuma fullname: Kusuma, Mukhsinun Hadi email: mhad001@brin.go.id organization: Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Setu, Tangerang Selatan, 15314, Indonesia |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003137656$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UU2L2zAQFWULzW77A3rTuWBXsiRLpqdl6UdgobCk0JuQ5ZGjxJGM5OzHT-i_rpKUHvc0zDDvzZv3rtFViAEQ-khJTQltP-_qAEvdkIbXRNakad6gVdMwXjGhfl-hFZVMVUIy9g5d57wjpOVckhX6s9lCOpgJDy_BHLzN2OQZ7IL9AGHxzluz-BhwdHiKccZbMAue_Qz4yS9bbM3sp8mkF7wc-9PM7vEx-zDiom_yAUzC5rjEBGOCnP0jYHiOI4R4zDjAMZXLRfhTTPv36K0zU4YP_-oN-vXt6-buR3X_8_v67va-srQTrOIdk9CCkIIyStUwOOjZwI1yUjnKWyedNLa0YDtleqKMFbztlKWOCVAdu0GfLrwhOb23Xkfjz3WMep_07cNmrWmxR7SKleX1ZXmIZqfn5A_l1zPiPIhp1CYt3k6gmRPMOgGulT2ntOspZ4ITCQMTVihbuOiFy6aYcwL3n48SfQpR73TxQp9C1ETqEmLBfLlgoDjy6CHpbD0EC4NPJaWiwr-C_gswc6nt |
Cites_doi | 10.1016/j.applthermaleng.2017.05.205 10.1016/j.rser.2015.12.350 10.1016/j.egypro.2013.07.210 10.1016/j.anucene.2020.107324 10.1016/B978-0-444-63234-0.50171-8 10.1016/j.applthermaleng.2020.116403 10.3390/en11030620 10.1016/j.measurement.2019.01.037 10.1016/j.applthermaleng.2024.122395 10.1016/j.neucom.2016.06.014 10.13182/NT13-121 10.1016/j.net.2016.10.008 10.1016/j.ijthermalsci.2017.12.033 10.1177/1468087414529420 10.1007/s10973-017-6217-4 10.1016/S0167-7012(00)00201-3 10.1016/j.pnucene.2019.01.004 10.1016/j.apenergy.2014.05.046 10.1155/2016/1065790 10.1016/j.nucengdes.2013.03.005 10.1016/j.anucene.2020.107412 10.1016/j.conengprac.2015.02.005 10.1016/j.applthermaleng.2019.113761 |
ContentType | Journal Article |
Copyright | 2024 Korean Nuclear Society |
Copyright_xml | – notice: 2024 Korean Nuclear Society |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.net.2024.07.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals Korean Citation Index (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2234-358X |
EndPage | 5153 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10645683 oai_doaj_org_article_3f53cf5ef67b4119b1435407ed35c58c 10_1016_j_net_2024_07_022 S1738573324003371 |
GroupedDBID | .UV 0R~ 0SF 123 4.4 457 5VS 6I. 9ZL AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACYCR ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ JDI KQ8 KVFHK M41 NCXOZ O9- OK1 RIG ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c1953-4937e6e57513118ddfeb3d4a8f78f146f7f7aca8fec98ab08ac54698c1f35e893 |
IEDL.DBID | DOA |
ISSN | 1738-5733 |
IngestDate | Sun Nov 24 03:22:30 EST 2024 Mon Nov 18 19:23:13 EST 2024 Wed Nov 20 13:36:40 EST 2024 Sat Nov 16 15:57:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Thermal dynamics Neural network Passive cooling system Nonlinear autoregressive exogenous Loop heat pipe |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1953-4937e6e57513118ddfeb3d4a8f78f146f7f7aca8fec98ab08ac54698c1f35e893 |
ORCID | 0009-0006-2628-7187 0000-0003-1226-5711 |
OpenAccessLink | https://doaj.org/article/3f53cf5ef67b4119b1435407ed35c58c |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10645683 doaj_primary_oai_doaj_org_article_3f53cf5ef67b4119b1435407ed35c58c crossref_primary_10_1016_j_net_2024_07_022 elsevier_sciencedirect_doi_10_1016_j_net_2024_07_022 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 2024-12 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear engineering and technology |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier 한국원자력학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 한국원자력학회 |
References | Pambudi, Wahab, Kusumoputro (bib20) 2016; 2016 Jaber, Bicker (bib26) 2016; 58 Rana, Rawat, Bijalwan, Bahuguna (bib24) 2018 Kusuma, Putra, Antariksawan, Koestoer, Widodo, Ismarwanti, Verlambang (bib9) 2018; 126 Alcan, Unel, Aran, Yilmaz, Gurel, Koprubasi (bib19) 2019; 137 Zhang, Wu (bib27) 2018; 71 Wang, Yan, Meng, Chen (bib13) 2019; 157 Zhao, Dong, Zheng, Ma, Chen (bib5) 2017; 125 d'Ambrosio, Finesso, Fu, Mittica, Spessa (bib14) 2014; 130 Basheer, Hajmeer (bib23) 2000; 43 Gurney (bib29) 2018 Changdong, Wenying, Jiang, Wei, Ting, Cheng, Hong (bib12) 2019; 113 Wang, Wen, Wu, Yang, Zhao, Wang (bib28) 2024; 236 Benatzky, Stadlbauer, Formentin, Schilling, Alberer (bib16) 2014; 15 Boussaada, Curea, Remaci, Camblong, Mrabet Bellaaj (bib18) 2018; 11 Recker, Kerimoglu, Harwardt, Tkacheva, Marquardt (bib21) 2013 Prieto, Prieto, Ortigosa, Ros, Pelayo, Ortega, Rojas (bib22) 2016; 214 Yu, Park, Kim, Kang, Cho, Choi (bib3) 2013; 259 Mueller, Tsvetkov (bib8) 2020; 141 Yin, Hu, Chi, Li, Nan, Wang (bib11) 2021; 184 Wang (bib1) 2013; 39 Kusuma, Haryanto, Hatmoko, Pambudi, ButarButar, Putra, Wahanani, Kiono, Rozi, Ariantara (bib32) 2024 Nam, Park, Kim (bib6) 2015; 189 Kusuma, Putra, Antariksawan, Imawan (bib10) 2017; 49 Liu, Zhang, Liang, Tang, Wang, Tian, Zhang, Qiu, Su (bib7) 2020; 142 Vakili, Karami, Delfani, Khosrojerdi, Kalhor (bib25) 2017; 129 Han, Wang, Zheng, Xu, Chen (bib17) 2016; 59 He, Yan, Wang (bib31) 2024; 241 (bib2) 2009 Quérel, Grondin, Letellier (bib15) 2015; 40 Antariksawan, Widodo, Juarsa, Haryanto, Kusuma, Putra (bib4) 2018 Rana (10.1016/j.net.2024.07.022_bib24) 2018 He (10.1016/j.net.2024.07.022_bib31) 2024; 241 Yu (10.1016/j.net.2024.07.022_bib3) 2013; 259 Prieto (10.1016/j.net.2024.07.022_bib22) 2016; 214 Antariksawan (10.1016/j.net.2024.07.022_bib4) 2018 Kusuma (10.1016/j.net.2024.07.022_bib9) 2018; 126 Wang (10.1016/j.net.2024.07.022_bib28) 2024; 236 Boussaada (10.1016/j.net.2024.07.022_bib18) 2018; 11 Quérel (10.1016/j.net.2024.07.022_bib15) 2015; 40 Mueller (10.1016/j.net.2024.07.022_bib8) 2020; 141 Benatzky (10.1016/j.net.2024.07.022_bib16) 2014; 15 d'Ambrosio (10.1016/j.net.2024.07.022_bib14) 2014; 130 Zhang (10.1016/j.net.2024.07.022_bib27) 2018; 71 Vakili (10.1016/j.net.2024.07.022_bib25) 2017; 129 Changdong (10.1016/j.net.2024.07.022_bib12) 2019; 113 Kusuma (10.1016/j.net.2024.07.022_bib32) 2024 Basheer (10.1016/j.net.2024.07.022_bib23) 2000; 43 Jaber (10.1016/j.net.2024.07.022_bib26) 2016; 58 Liu (10.1016/j.net.2024.07.022_bib7) 2020; 142 Zhao (10.1016/j.net.2024.07.022_bib5) 2017; 125 (10.1016/j.net.2024.07.022_bib2) 2009 Yin (10.1016/j.net.2024.07.022_bib11) 2021; 184 Wang (10.1016/j.net.2024.07.022_bib13) 2019; 157 Recker (10.1016/j.net.2024.07.022_bib21) 2013 Kusuma (10.1016/j.net.2024.07.022_bib10) 2017; 49 Alcan (10.1016/j.net.2024.07.022_bib19) 2019; 137 Gurney (10.1016/j.net.2024.07.022_bib29) 2018 Nam (10.1016/j.net.2024.07.022_bib6) 2015; 189 Wang (10.1016/j.net.2024.07.022_bib1) 2013; 39 Pambudi (10.1016/j.net.2024.07.022_bib20) 2016; 2016 Han (10.1016/j.net.2024.07.022_bib17) 2016; 59 |
References_xml | – volume: 49 start-page: 476 year: 2017 end-page: 483 ident: bib10 article-title: Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool publication-title: Nucl. Eng. Technol. contributor: fullname: Imawan – volume: 184 year: 2021 ident: bib11 article-title: Experimental investigation of two-phase thermosyphon loop for passive containment cooling publication-title: Appl. Therm. Eng. contributor: fullname: Wang – start-page: 1624 year: 2009 ident: bib2 publication-title: Water Cooled Nuclear Power Plants – volume: 259 start-page: 205 year: 2013 end-page: 220 ident: bib3 article-title: Systematic analysis of a station blackout scenario for APR1400 with test facility ATLAS and MARS code from scaling viewpoint publication-title: Nucl. Eng. Des. contributor: fullname: Choi – volume: 2016 start-page: 1 year: 2016 end-page: 9 ident: bib20 article-title: Particle swarm optimization-based direct inverse control for controlling the power level of the Indonesian multipurpose reactor publication-title: Sci. Technol. Nucl. Install. contributor: fullname: Kusumoputro – year: 2018 ident: bib29 article-title: An Introduction to Neural Networks contributor: fullname: Gurney – volume: 241 year: 2024 ident: bib31 article-title: Study on heat transfer characteristics of a dual-evaporator ultra-thin loop heat pipe for laptop cooling publication-title: Appl. Therm. Eng. contributor: fullname: Wang – year: 2018 ident: bib4 article-title: Numerical study on natural circulation characteristics in FASSIP-02 experimental facility using RELAP5 code publication-title: IOP Conf. Ser. Earth Environ. Sci. contributor: fullname: Putra – volume: 189 start-page: 278 year: 2015 end-page: 293 ident: bib6 article-title: Conceptual design of passive containment cooling system for APR-1400 using multipod heat pipe publication-title: Nucl. Technol. contributor: fullname: Kim – volume: 141 year: 2020 ident: bib8 article-title: Novel design integration for advanced nuclear heat-pipe systems publication-title: Ann. Nucl. Energy contributor: fullname: Tsvetkov – volume: 40 start-page: 27 year: 2015 end-page: 44 ident: bib15 article-title: Semi-physical mean-value NOx model for diesel engine control publication-title: Control Eng. Pract. contributor: fullname: Letellier – volume: 125 start-page: 1015 year: 2017 end-page: 1024 ident: bib5 article-title: Numerical simulation on heat transfer process in the reactor cavity of modular high temperature gas-cooled reactor publication-title: Appl. Therm. Eng. contributor: fullname: Chen – volume: 142 year: 2020 ident: bib7 article-title: Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor publication-title: Ann. Nucl. Energy contributor: fullname: Su – volume: 137 start-page: 71 year: 2019 end-page: 81 ident: bib19 article-title: Predicting NOx emissions in diesel engines via sigmoid NARX models using a new experiment design for combustion identification publication-title: Measurement contributor: fullname: Koprubasi – volume: 214 start-page: 242 year: 2016 end-page: 268 ident: bib22 article-title: Neural networks: an overview of early research, current frameworks and new challenges publication-title: Neurocomputing contributor: fullname: Rojas – volume: 58 start-page: 179 year: 2016 end-page: 186 ident: bib26 article-title: Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network, Insight-Non-Destructive Test publication-title: Cond. Monit. contributor: fullname: Bicker – volume: 126 start-page: 162 year: 2018 end-page: 171 ident: bib9 article-title: Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe publication-title: Int. J. Therm. Sci. contributor: fullname: Verlambang – volume: 130 start-page: 265 year: 2014 end-page: 279 ident: bib14 article-title: A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines publication-title: Appl. Energy contributor: fullname: Spessa – start-page: 1021 year: 2013 end-page: 1026 ident: bib21 article-title: On the integration of model identification and process optimization publication-title: Comput. Aided Chem. Eng. contributor: fullname: Marquardt – volume: 15 start-page: 934 year: 2014 end-page: 943 ident: bib16 article-title: Indicated pressure-based data-driven diesel engine NOx modeling publication-title: Int. J. Engine Res. contributor: fullname: Alberer – volume: 43 start-page: 3 year: 2000 end-page: 31 ident: bib23 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J. Microbiol. Methods contributor: fullname: Hajmeer – volume: 71 start-page: 1075 year: 2018 end-page: 1080 ident: bib27 article-title: Prediction of heat transfer characteristics of nanofluids in heat pipes based on artificial neural network model publication-title: Chem. Eng. Trans. contributor: fullname: Wu – volume: 236 year: 2024 ident: bib28 article-title: A novel neural network and sensitivity analysis method for predicting the thermal resistance of heat pipes with nanofluids publication-title: Appl. Therm. Eng. contributor: fullname: Wang – volume: 129 start-page: 629 year: 2017 end-page: 637 ident: bib25 article-title: Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions publication-title: J. Therm. Anal. Calorim. contributor: fullname: Kalhor – volume: 59 start-page: 692 year: 2016 end-page: 709 ident: bib17 article-title: Review of the development of pulsating heat pipe for heat dissipation publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Chen – volume: 39 start-page: 240 year: 2013 end-page: 247 ident: bib1 article-title: Preliminary study for the passive containment cooling system analysis of the advanced PWR publication-title: Energy Proc. contributor: fullname: Wang – volume: 113 start-page: 206 year: 2019 end-page: 214 ident: bib12 article-title: Experimental and computational analysis of a passive containment cooling system with closed-loop heat pipe technology publication-title: Prog. Nucl. Energy contributor: fullname: Hong – year: 2024 ident: bib32 article-title: Experimental investigation of thermal characteristics on a new loop pipe model for passive cooling system publication-title: Therm. Sci. Eng. Prog. contributor: fullname: Ariantara – volume: 157 year: 2019 ident: bib13 article-title: A general method to predict the performance of closed pulsating heat pipe by artificial neural network publication-title: Appl. Therm. Eng. contributor: fullname: Chen – volume: 11 start-page: 620 year: 2018 ident: bib18 article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation publication-title: Energies contributor: fullname: Mrabet Bellaaj – start-page: 1 year: 2018 end-page: 6 ident: bib24 article-title: Application of multi layer (perceptron) artificial neural network in the diagnosis system: a systematic review publication-title: 2018 Int. Conf. Res. Intell. Comput. Eng. contributor: fullname: Bahuguna – volume: 125 start-page: 1015 year: 2017 ident: 10.1016/j.net.2024.07.022_bib5 article-title: Numerical simulation on heat transfer process in the reactor cavity of modular high temperature gas-cooled reactor publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.05.205 contributor: fullname: Zhao – volume: 59 start-page: 692 year: 2016 ident: 10.1016/j.net.2024.07.022_bib17 article-title: Review of the development of pulsating heat pipe for heat dissipation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.350 contributor: fullname: Han – volume: 39 start-page: 240 year: 2013 ident: 10.1016/j.net.2024.07.022_bib1 article-title: Preliminary study for the passive containment cooling system analysis of the advanced PWR publication-title: Energy Proc. doi: 10.1016/j.egypro.2013.07.210 contributor: fullname: Wang – year: 2018 ident: 10.1016/j.net.2024.07.022_bib29 contributor: fullname: Gurney – start-page: 1624 year: 2009 ident: 10.1016/j.net.2024.07.022_bib2 – volume: 141 year: 2020 ident: 10.1016/j.net.2024.07.022_bib8 article-title: Novel design integration for advanced nuclear heat-pipe systems publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2020.107324 contributor: fullname: Mueller – start-page: 1 year: 2018 ident: 10.1016/j.net.2024.07.022_bib24 article-title: Application of multi layer (perceptron) artificial neural network in the diagnosis system: a systematic review contributor: fullname: Rana – start-page: 1021 year: 2013 ident: 10.1016/j.net.2024.07.022_bib21 article-title: On the integration of model identification and process optimization doi: 10.1016/B978-0-444-63234-0.50171-8 contributor: fullname: Recker – volume: 71 start-page: 1075 year: 2018 ident: 10.1016/j.net.2024.07.022_bib27 article-title: Prediction of heat transfer characteristics of nanofluids in heat pipes based on artificial neural network model publication-title: Chem. Eng. Trans. contributor: fullname: Zhang – year: 2024 ident: 10.1016/j.net.2024.07.022_bib32 article-title: Experimental investigation of thermal characteristics on a new loop pipe model for passive cooling system publication-title: Therm. Sci. Eng. Prog. contributor: fullname: Kusuma – volume: 184 year: 2021 ident: 10.1016/j.net.2024.07.022_bib11 article-title: Experimental investigation of two-phase thermosyphon loop for passive containment cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116403 contributor: fullname: Yin – volume: 11 start-page: 620 year: 2018 ident: 10.1016/j.net.2024.07.022_bib18 article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation publication-title: Energies doi: 10.3390/en11030620 contributor: fullname: Boussaada – volume: 137 start-page: 71 year: 2019 ident: 10.1016/j.net.2024.07.022_bib19 article-title: Predicting NOx emissions in diesel engines via sigmoid NARX models using a new experiment design for combustion identification publication-title: Measurement doi: 10.1016/j.measurement.2019.01.037 contributor: fullname: Alcan – volume: 241 year: 2024 ident: 10.1016/j.net.2024.07.022_bib31 article-title: Study on heat transfer characteristics of a dual-evaporator ultra-thin loop heat pipe for laptop cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.122395 contributor: fullname: He – volume: 214 start-page: 242 year: 2016 ident: 10.1016/j.net.2024.07.022_bib22 article-title: Neural networks: an overview of early research, current frameworks and new challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.014 contributor: fullname: Prieto – volume: 236 year: 2024 ident: 10.1016/j.net.2024.07.022_bib28 article-title: A novel neural network and sensitivity analysis method for predicting the thermal resistance of heat pipes with nanofluids publication-title: Appl. Therm. Eng. contributor: fullname: Wang – volume: 189 start-page: 278 year: 2015 ident: 10.1016/j.net.2024.07.022_bib6 article-title: Conceptual design of passive containment cooling system for APR-1400 using multipod heat pipe publication-title: Nucl. Technol. doi: 10.13182/NT13-121 contributor: fullname: Nam – volume: 49 start-page: 476 year: 2017 ident: 10.1016/j.net.2024.07.022_bib10 article-title: Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2016.10.008 contributor: fullname: Kusuma – volume: 126 start-page: 162 year: 2018 ident: 10.1016/j.net.2024.07.022_bib9 article-title: Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.12.033 contributor: fullname: Kusuma – volume: 15 start-page: 934 year: 2014 ident: 10.1016/j.net.2024.07.022_bib16 article-title: Indicated pressure-based data-driven diesel engine NOx modeling publication-title: Int. J. Engine Res. doi: 10.1177/1468087414529420 contributor: fullname: Benatzky – volume: 58 start-page: 179 year: 2016 ident: 10.1016/j.net.2024.07.022_bib26 article-title: Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network, Insight-Non-Destructive Test publication-title: Cond. Monit. contributor: fullname: Jaber – volume: 129 start-page: 629 year: 2017 ident: 10.1016/j.net.2024.07.022_bib25 article-title: Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6217-4 contributor: fullname: Vakili – volume: 43 start-page: 3 year: 2000 ident: 10.1016/j.net.2024.07.022_bib23 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(00)00201-3 contributor: fullname: Basheer – volume: 113 start-page: 206 year: 2019 ident: 10.1016/j.net.2024.07.022_bib12 article-title: Experimental and computational analysis of a passive containment cooling system with closed-loop heat pipe technology publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2019.01.004 contributor: fullname: Changdong – volume: 130 start-page: 265 year: 2014 ident: 10.1016/j.net.2024.07.022_bib14 article-title: A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.05.046 contributor: fullname: d'Ambrosio – year: 2018 ident: 10.1016/j.net.2024.07.022_bib4 article-title: Numerical study on natural circulation characteristics in FASSIP-02 experimental facility using RELAP5 code contributor: fullname: Antariksawan – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.net.2024.07.022_bib20 article-title: Particle swarm optimization-based direct inverse control for controlling the power level of the Indonesian multipurpose reactor publication-title: Sci. Technol. Nucl. Install. doi: 10.1155/2016/1065790 contributor: fullname: Pambudi – volume: 259 start-page: 205 year: 2013 ident: 10.1016/j.net.2024.07.022_bib3 article-title: Systematic analysis of a station blackout scenario for APR1400 with test facility ATLAS and MARS code from scaling viewpoint publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.03.005 contributor: fullname: Yu – volume: 142 year: 2020 ident: 10.1016/j.net.2024.07.022_bib7 article-title: Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2020.107412 contributor: fullname: Liu – volume: 40 start-page: 27 year: 2015 ident: 10.1016/j.net.2024.07.022_bib15 article-title: Semi-physical mean-value NOx model for diesel engine control publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2015.02.005 contributor: fullname: Quérel – volume: 157 year: 2019 ident: 10.1016/j.net.2024.07.022_bib13 article-title: A general method to predict the performance of closed pulsating heat pipe by artificial neural network publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.113761 contributor: fullname: Wang |
SSID | ssj0064470 |
Score | 2.375152 |
Snippet | The loop heat pipe (LHP) has the potential to be used as a passive cooling system in small modular reactors. The research objective is to study the thermal... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 5145 |
SubjectTerms | Loop heat pipe Neural network Nonlinear autoregressive exogenous Passive cooling system Thermal dynamics 원자력공학 |
Title | Thermal dynamics aspect identification of loop heat pipe with capillary tube wick using nonlinear autoregressive exogenous neural network |
URI | https://dx.doi.org/10.1016/j.net.2024.07.022 https://doaj.org/article/3f53cf5ef67b4119b1435407ed35c58c https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003137656 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nuclear Engineering and Technology, 2024, 56(12), , pp.5145-5153 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9xADB4VTuWAaAti6UOW2hNSRLKZJJNjH6DtpZe2ErfRxPGgZdEmCqxEf0L_NfZMsoILvfQUJUoy1tix_WU8n5X6VDvkpLZ2iWnZgjWmlBgsKeFQgn6eFqgz2e-8-Fn9uDTfzoUmZ9vqS2rCIj1wnLiz3Bc5-oJ8WTU6y-pGAjyjEGrzAguDwfum5QSmog_mIF_FrZD8OQvj37SeGSq7GPMzMJzrwNo5nz-JSIG4_0lg2lkP_lHIuThQ-2OuCJ-jjK_UC1q_VnuPGATfqL-sZnatN9DGzvK34MLeSVi2YxlQmHnoPNx0XQ_ieqFf9gTyAxbQ9dJ1aPgDd5tGruEKpBL-CtaRQsMN4ITlgAIsZ88IdN9FXlcQKkweeR0LyQ_V74vzX18XydhdIUFZOks0JyZUkqy75Iwy2tYzrm61M74ynv2nr3zlkE8Ja-Oa1DgspN0kZj4viNOcI7XLstCxgpJchl6wka81aWxqV9WZYzRC7FB8PlOn0wzbPpJo2Km67NqymFbUYdPKsjpm6ovoYHuj8F-HC2wVdrQK-y-rmCk9adCOqURMEfhVy-fG_sjatitchmHleNXZ1WAZXHznZ0pON01-8j8kfKteysCxMuad2r0bNvRe7dy2mw_BlB8Ajwj4-g |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+dynamics+aspect+identification+of+loop+heat+pipe+with+capillary+tube+wick+using+nonlinear+autoregressive+exogenous+neural+network&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Setyo+Pambudi%2C+Yoyok+Dwi&rft.au=Giarno&rft.au=Hatmoko%2C+Sumantri&rft.au=Antariksawan%2C+Anhar+Riza&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1738-5733&rft.volume=56&rft.issue=12&rft.spage=5145&rft.epage=5153&rft_id=info:doi/10.1016%2Fj.net.2024.07.022&rft.externalDocID=S1738573324003371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon |