A machine learning ensemble approach for predicting solar-sensitive hybrid photocatalysts on hydrogen evolution
Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its remarkable properties, such as high energy density and zero emissions upon combustion, make it a promising candidate for addressing the pressing cha...
Saved in:
Published in: | Physica scripta Vol. 99; no. 7; pp. 76015 - 76024 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
IOP Publishing
01-07-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its remarkable properties, such as high energy density and zero emissions upon combustion, make it a promising candidate for addressing the pressing challenges of climate change and transitioning towards a clean and renewable energy future. In an effort to improve efficiency and reduce experimental costs, we adopted machine learning techniques in this study. Our focus turned to predictive analyses of hydrogen evolution values using three photocatalysts, namely, graphene-supported LaFeO 3 (GLFO), graphene-supported LaRuO 3 (GLRO), and graphene-supported BiFeO 3 (GBFO), examining their correlation with varying levels of pH, catalyst amount, and H 2 O 2 concentration. To achieve this, a diverse range of machine learning models are used, including Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), XGBoost, Gradient Boosting, and AdaBoost—each bringing its strengths to the predictive modeling arena. An important step involved combining the most effective models—Random Forests, Gradient Boosting, and XGBoost—into an ensemble model. This collaborative approach aimed to leverage their collective strengths and improve overall predictability. The ensemble model emerged as a powerful tool for understanding photocatalytic hydrogen evolution. Standard metrics were employed to assess the performance of our ensemble prediction model, encompassing R squared, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). The yielded results showcase exceptional accuracy, with R squared values of 96.9%, 99.3%, and 98% for GLFO, GBFO, and GLRO, respectively. Moreover, our model demonstrates minimal error rates across all metrics, underscoring its robust predictive capabilities and highlighting its efficacy in accurately forecasting the intricate relationships between GLFO, GBFO, and GLRO values and their influencing factors. |
---|---|
AbstractList | Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its remarkable properties, such as high energy density and zero emissions upon combustion, make it a promising candidate for addressing the pressing challenges of climate change and transitioning towards a clean and renewable energy future. In an effort to improve efficiency and reduce experimental costs, we adopted machine learning techniques in this study. Our focus turned to predictive analyses of hydrogen evolution values using three photocatalysts, namely, graphene-supported LaFeO 3 (GLFO), graphene-supported LaRuO 3 (GLRO), and graphene-supported BiFeO 3 (GBFO), examining their correlation with varying levels of pH, catalyst amount, and H 2 O 2 concentration. To achieve this, a diverse range of machine learning models are used, including Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), XGBoost, Gradient Boosting, and AdaBoost—each bringing its strengths to the predictive modeling arena. An important step involved combining the most effective models—Random Forests, Gradient Boosting, and XGBoost—into an ensemble model. This collaborative approach aimed to leverage their collective strengths and improve overall predictability. The ensemble model emerged as a powerful tool for understanding photocatalytic hydrogen evolution. Standard metrics were employed to assess the performance of our ensemble prediction model, encompassing R squared, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). The yielded results showcase exceptional accuracy, with R squared values of 96.9%, 99.3%, and 98% for GLFO, GBFO, and GLRO, respectively. Moreover, our model demonstrates minimal error rates across all metrics, underscoring its robust predictive capabilities and highlighting its efficacy in accurately forecasting the intricate relationships between GLFO, GBFO, and GLRO values and their influencing factors. |
Author | Orak, Ceren Yüksel, Aslı Bakır, Rezan |
Author_xml | – sequence: 1 givenname: Rezan orcidid: 0000-0002-4373-2231 surname: Bakır fullname: Bakır, Rezan organization: Sivas University of Science and Technology Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Sivas, Turkey – sequence: 2 givenname: Ceren surname: Orak fullname: Orak, Ceren organization: Sivas University of Science and Technology Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Sivas, Turkey – sequence: 3 givenname: Aslı surname: Yüksel fullname: Yüksel, Aslı organization: Izmir Institute of Technology, Geothermal Energy Research and Application Center, Urla, Izmir, Turkey |
BookMark | eNp9kD1rwzAQhkVJoUnavaOmTnVzsmXZGkPoFwS6tLOQpXOi4EhGcgL593VI6VQ6Hdz7vMfxzMjEB4-E3DN4YlDXC8Yhz3gtxULbUuT6ikx_VxMyBShYVksub8gspR1ALnIhpyQs6V6brfNIO9TRO7-h6BPumw6p7vsYxpS2IdI-onVmOAMpdDpmaeTc4I5It6cmOkv7bRiC0YPuTmlINPgxsDFs0FM8hu4wuOBvyXWru4R3P3NOvl6eP1dv2frj9X21XGeGST5kbdlyCwhNy3klrRw_56W0nEGBWpiyZkJiCY2srBbC2BKlNRaLvKnAWFMUcwKXuyaGlCK2qo9ur-NJMVBnYepsR53tqIuwsfJ4qbjQq104RD8--B_-8AfeJyWlqhRUAlipetsW34r0frM |
CODEN | PHSTBO |
Cites_doi | 10.1088/1402-4896/ad2e57 10.3390/catal11091107 10.57041/pjosr.v3i1.946 10.1016/S1002-0721(14)60193-9 10.1016/j.ijhydene.2021.11.171 10.1016/j.compeleceng.2023.108804 10.1002/er.4930 10.1021/acs.iecr.0c02562 10.1016/j.chemosphere.2023.141010 10.1088/1402-4896/ad23bb 10.1016/j.chemosphere.2023.138852 10.1007/s42452-020-03374-x 10.1016/j.enconman.2020.112935 10.1007/s13399-021-01388-y 10.1039/D3GC02644B 10.1007/s42979-023-01798-x 10.1016/j.apcatb.2017.03.016 10.1016/j.ijhydene.2023.07.128 10.1016/j.ijhydene.2022.02.030 10.1007/s10462-020-09896-5 10.1080/10408340600969486 10.1016/j.ecolind.2021.107450 10.1021/acsomega.2c05721 10.1016/S1874-1029(13)60052-X 10.1016/j.cattod.2017.01.001 10.1016/j.ijhydene.2020.04.071 10.1021/acscatal.9b02531 10.1080/01614940.2022.2082650 10.1016/j.mineng.2012.05.008 10.1016/j.ijhydene.2022.08.013 10.1016/j.apcatb.2017.02.008 10.1016/j.ijhydene.2021.12.254 10.3390/s19051088 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd |
Copyright_xml | – notice: 2024 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1402-4896/ad562a |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1402-4896 |
ExternalDocumentID | 10_1088_1402_4896_ad562a psad562a |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT LAP MV1 N5L N9A PJBAE RIN RNS ROL RPA SJN SY9 TN5 W28 WH7 XPP ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c194t-f5f4d0e0bf4479d9894459d4103ea6c58169e50b97da66cd5e9dcde32b70cdc33 |
ISSN | 0031-8949 |
IngestDate | Fri Nov 22 03:39:25 EST 2024 Sun Aug 18 17:30:26 EDT 2024 Tue Aug 20 22:16:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c194t-f5f4d0e0bf4479d9894459d4103ea6c58169e50b97da66cd5e9dcde32b70cdc33 |
Notes | PHYSSCR-127713.R1 |
ORCID | 0000-0002-4373-2231 |
PageCount | 10 |
ParticipantIDs | iop_journals_10_1088_1402_4896_ad562a crossref_primary_10_1088_1402_4896_ad562a |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica scripta |
PublicationTitleAbbrev | PS |
PublicationTitleAlternate | Phys. Scr |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Hosseini (psad562abib16) 2020; 44 Fatima (psad562abib13) 2023; 3 Xu (psad562abib33) 2019; 19 Bakır (psad562abib5) 2023; 110 Ying (psad562abib36) 2013; 39 Yan (psad562abib35) 2022; 47 Ren (psad562abib29) 2020; 216 Bentéjac (psad562abib6) 2021; 54 Orak (psad562abib27) 2020; 59 Chen (psad562abib7) 2016 Hu (psad562abib17) 2014; 32 Orak (psad562abib26) 2022b; 47 Saadetnejad (psad562abib30) 2022; 47 Ghanem (psad562abib15) 2023; 4 Iervolino (psad562abib18) 2017; 207 Mageed (psad562abib21) 2023; 13 Ghanem (psad562abib14) 2020; 2 Liu (psad562abib20) 2023; 25 Tahir (psad562abib32) 2020; 45 Yu (psad562abib37) 2021; 125 Demircioğlu (psad562abib9) 2024 Jiang (psad562abib19) 2021; 11 Bakir (psad562abib3); Vol. 1 Muniyappa (psad562abib23) 2022; 47 Demircioğlu (psad562abib10) 2024; 99 Esmaeili (psad562abib11) 2023; 332 Cutler (psad562abib8) 2012 Xu (psad562abib34) 2006; 36 Ramkumar (psad562abib28) 2023; 52 Bakır (psad562abib4) 2023 Orak (psad562abib25) 2022a; 7 Estahbanati (psad562abib12) 2017; 209 Navidpour (psad562abib24) 2022; 66 Acharya (psad562abib1) 2020; 353 Salahshoori (psad562abib31) 2024; 350 Auret (psad562abib2) 2012; 35 Masood (psad562abib22) 2019; 9 |
References_xml | – year: 2024 ident: psad562abib9 article-title: Artificial intelligence-based position control: reinforcement learning approach in spring mass damper systems doi: 10.1088/1402-4896/ad2e57 contributor: fullname: Demircioğlu – volume: 11 year: 2021 ident: psad562abib19 article-title: A novel machine learning model to predict the photo-degradation performance of different photocatalysts on a variety of water contaminants publication-title: Catalysts doi: 10.3390/catal11091107 contributor: fullname: Jiang – start-page: 785 year: 2016 ident: psad562abib7 article-title: Xgboost: a scalable tree boosting system contributor: fullname: Chen – volume: 3 start-page: 26 year: 2023 ident: psad562abib13 article-title: XGBoost and random forest algorithms: an in depth analysis publication-title: Pak. J. Sci. Res. doi: 10.57041/pjosr.v3i1.946 contributor: fullname: Fatima – volume: 32 start-page: 1126 year: 2014 ident: psad562abib17 article-title: Preparation of LaMnO3/graphene thin films and their photocatalytic activity publication-title: J. Rare Earths doi: 10.1016/S1002-0721(14)60193-9 contributor: fullname: Hu – volume: 47 start-page: 5307 year: 2022 ident: psad562abib23 article-title: Cocatalyst free nickel sulphide nanostructure for enhanced photocatalytic hydrogen evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.171 contributor: fullname: Muniyappa – volume: 110 year: 2023 ident: psad562abib5 article-title: DroidEncoder: malware detection using auto-encoder based feature extractor and machine learning algorithms publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2023.108804 contributor: fullname: Bakır – volume: 44 start-page: 4110 year: 2020 ident: psad562abib16 article-title: Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy publication-title: Int. J. Energy Res. doi: 10.1002/er.4930 contributor: fullname: Hosseini – volume: 59 start-page: 19153 year: 2020 ident: psad562abib27 article-title: Electrolytic Oxidation of 1,8-Diazabicyclo[5.4.0]undec-7-ene in Hot-compressed water on a titanium electrode publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c02562 contributor: fullname: Orak – volume: 350 year: 2024 ident: psad562abib31 article-title: Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.141010 contributor: fullname: Salahshoori – volume: 99 year: 2024 ident: psad562abib10 article-title: Machine learning analysis of data obtained by finite element method: a new approach in structural design publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad23bb contributor: fullname: Demircioğlu – volume: 332 year: 2023 ident: psad562abib11 article-title: CdS nanocrystallites sensitized ZnO nanosheets for visible light induced sonophotocatalytic/photocatalytic degradation of tetracycline: From experimental results to a generalized model based on machine learning methods publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138852 contributor: fullname: Esmaeili – volume: 2 start-page: 1 year: 2020 ident: psad562abib14 article-title: Context-dependent model for spam detection on social networks publication-title: SN Applied Sciences doi: 10.1007/s42452-020-03374-x contributor: fullname: Ghanem – volume: 216 year: 2020 ident: psad562abib29 article-title: Machine learning-assisted multiphysics coupling performance optimization in a photocatalytic hydrogen production system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112935 contributor: fullname: Ren – volume: 13 start-page: 3319 year: 2023 ident: psad562abib21 article-title: Modeling photocatalytic hydrogen production from ethanol over copper oxide nanoparticles: a comparative analysis of various machine learning techniques publication-title: Biomass Conversion and Biorefinery doi: 10.1007/s13399-021-01388-y contributor: fullname: Mageed – volume: 25 start-page: 8778 year: 2023 ident: psad562abib20 article-title: Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO2 publication-title: Green Chem. doi: 10.1039/D3GC02644B contributor: fullname: Liu – start-page: 157 year: 2012 ident: psad562abib8 article-title: Random forests publication-title: Ensemble Machine Learning: Methods and Applications contributor: fullname: Cutler – volume: 4 start-page: 380 year: 2023 ident: psad562abib15 article-title: Contents-based spam detection on social networks using RoBERTa embedding and stacked BLSTM publication-title: SN Computer Science doi: 10.1007/s42979-023-01798-x contributor: fullname: Ghanem – volume: 209 start-page: 483 year: 2017 ident: psad562abib12 article-title: Photocatalytic valorization of glycerol to hydrogen: optimization of operating parameters by artificial neural network publication-title: Appl. Catalysis B doi: 10.1016/j.apcatb.2017.03.016 contributor: fullname: Estahbanati – volume: 52 start-page: 696 year: 2023 ident: psad562abib28 article-title: Enhanced machine learning for nanomaterial identification of photo thermal hydrogen production publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2023.07.128 contributor: fullname: Ramkumar – volume: 47 start-page: 19655 year: 2022 ident: psad562abib30 article-title: Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.02.030 contributor: fullname: Saadetnejad – volume: 54 start-page: 1937 year: 2021 ident: psad562abib6 article-title: A comparative analysis of gradient boosting algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09896-5 contributor: fullname: Bentéjac – volume: 36 start-page: 177 year: 2006 ident: psad562abib34 article-title: Support vector machines: a recent method for classification in chemometrics publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408340600969486 contributor: fullname: Xu – volume: 125 year: 2021 ident: psad562abib37 article-title: A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107450 contributor: fullname: Yu – volume: 7 start-page: 42489 year: 2022a ident: psad562abib25 article-title: Box–behnken design for hydrogen evolution from sugar industry wastewater using solar-driven hybrid catalysts publication-title: ACS Omega doi: 10.1021/acsomega.2c05721 contributor: fullname: Orak – volume: 39 start-page: 745 year: 2013 ident: psad562abib36 article-title: Advance and prospects of AdaBoost algorithm publication-title: Acta Autom. Sin. doi: 10.1016/S1874-1029(13)60052-X contributor: fullname: Ying – volume: 353 start-page: 220 year: 2020 ident: psad562abib1 article-title: Visible light driven LaFeO3 nano sphere/RGO composite photocatalysts for efficient water decomposition reaction publication-title: Catal. Today doi: 10.1016/j.cattod.2017.01.001 contributor: fullname: Acharya – volume: 45 start-page: 15985 year: 2020 ident: psad562abib32 article-title: Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.04.071 contributor: fullname: Tahir – volume: 9 start-page: 11774 year: 2019 ident: psad562abib22 article-title: Machine learning for accelerated discovery of solar photocatalysts publication-title: ACS Catal. doi: 10.1021/acscatal.9b02531 contributor: fullname: Masood – volume: 66 start-page: 687 year: 2022 ident: psad562abib24 article-title: Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid publication-title: Catalysis Reviews - Science and Engineering doi: 10.1080/01614940.2022.2082650 contributor: fullname: Navidpour – start-page: 1 year: 2023 ident: psad562abib4 article-title: Evaluating the impact of tuned pre-trained architectures’ feature maps on deep learning model performance for tomato disease detection publication-title: Multimedia Tools Appl. contributor: fullname: Bakır – volume: 35 start-page: 27 year: 2012 ident: psad562abib2 article-title: Interpretation of nonlinear relationships between process variables by use of random forests publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.05.008 contributor: fullname: Auret – volume: Vol. 1 ident: psad562abib3 article-title: Using transfer learning technique as a feature extraction phase for diagnosis of cataract disease in the eye contributor: fullname: Bakir – volume: 47 start-page: 34075 year: 2022 ident: psad562abib35 article-title: Development of machine learning models to enhance element-doped g-C3N4 photocatalyst for hydrogen production through splitting water publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.013 contributor: fullname: Yan – volume: 207 start-page: 182 year: 2017 ident: psad562abib18 article-title: Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3 publication-title: Appl. Catalysis B doi: 10.1016/j.apcatb.2017.02.008 contributor: fullname: Iervolino – volume: 47 start-page: 8841 year: 2022b ident: psad562abib26 article-title: Comparison of photocatalytic performances of solar-driven hybrid catalysts for hydrogen energy evolution from 1,8–Diazabicyclo[5.4.0]undec-7-ene (DBU) solution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.254 contributor: fullname: Orak – volume: 19 start-page: 1088 year: 2019 ident: psad562abib33 article-title: Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning publication-title: Sensors doi: 10.3390/s19051088 contributor: fullname: Xu |
SSID | ssj0026269 |
Score | 2.4429183 |
Snippet | Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its... |
SourceID | crossref iop |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 76015 |
SubjectTerms | DBU energy hydrogen machine learning photocatalysis |
Title | A machine learning ensemble approach for predicting solar-sensitive hybrid photocatalysts on hydrogen evolution |
URI | https://iopscience.iop.org/article/10.1088/1402-4896/ad562a |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6RIiQuFU_RQsse4ICipX6s7d1jEoIqDm2lFglOK3t33VRVYytOkdJf39mHH0EIlQMXy9o463jmy3hm9tsZhD4o8FKLQpYEvGVNKA0UyWMaE8Zkykyzl0iZVPbxeXbyg32Z03mfzOnH_qumYQx0bXbO_oO2u0lhAM5B53AErcPxQXqfjG8sP1K3DSEuxxCp6huzQ6otIG65hfXKrNFY1nNj4lvSGC67ZRItNmYf17heVOvK5nc2jVtWWGzUqro0jQF--YcYOrdnTudjZ4n6SD-_Ni7rNHRUbn3XA_J0lVtrPNODLWk_zeL9dHbdeAKB83-n4TBBEdGOzOqD1tOzQUptaIvjkDDuCpZ-1s78QjRLKHM9blv77BooeRxmfzT7YCpt4QD_bfN-U-DYDV5yHfWwbtxHI_Q4AttkTOP5t5MuRof4zkVM_sf5lW24wVE3_ZGbYcuTGV1V9cAxuXiGdn1EgScOCs_RI718gZ44XTQvUTXBHhC4BQRuAYFbQGAABO4BgX8DBHaAwNuAwNUSt4DAHSBeoe9f5xezY-K7bBAZcromZVJSFeigKCnNuDIF-WnCFQ2DWOepTFiYcp0EBc9UnqZSJZorqXQcFVkglYzj12hnWS31G4RlxKmkKgUhaapjWSQqpzmjMpdRqAq-hz61EhO1K6YiLAmCMWGkK4x0hZPuHvoIIhX-n9X85br3W9fVjeBcZMKsOIeJqFW5_8CZ3qKnPXzfoZ316lYfoFGjbg8tRu4Bq02ChQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+ensemble+approach+for+predicting+solar-sensitive+hybrid+photocatalysts+on+hydrogen+evolution&rft.jtitle=Physica+scripta&rft.au=Bak%C4%B1r%2C+Rezan&rft.au=Orak%2C+Ceren&rft.au=Y%C3%BCksel%2C+Asl%C4%B1&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=99&rft.issue=7&rft_id=info:doi/10.1088%2F1402-4896%2Fad562a&rft.externalDocID=psad562a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon |