A machine learning ensemble approach for predicting solar-sensitive hybrid photocatalysts on hydrogen evolution

Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its remarkable properties, such as high energy density and zero emissions upon combustion, make it a promising candidate for addressing the pressing cha...

Full description

Saved in:
Bibliographic Details
Published in:Physica scripta Vol. 99; no. 7; pp. 76015 - 76024
Main Authors: Bakır, Rezan, Orak, Ceren, Yüksel, Aslı
Format: Journal Article
Language:English
Published: IOP Publishing 01-07-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its remarkable properties, such as high energy density and zero emissions upon combustion, make it a promising candidate for addressing the pressing challenges of climate change and transitioning towards a clean and renewable energy future. In an effort to improve efficiency and reduce experimental costs, we adopted machine learning techniques in this study. Our focus turned to predictive analyses of hydrogen evolution values using three photocatalysts, namely, graphene-supported LaFeO 3 (GLFO), graphene-supported LaRuO 3 (GLRO), and graphene-supported BiFeO 3 (GBFO), examining their correlation with varying levels of pH, catalyst amount, and H 2 O 2 concentration. To achieve this, a diverse range of machine learning models are used, including Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), XGBoost, Gradient Boosting, and AdaBoost—each bringing its strengths to the predictive modeling arena. An important step involved combining the most effective models—Random Forests, Gradient Boosting, and XGBoost—into an ensemble model. This collaborative approach aimed to leverage their collective strengths and improve overall predictability. The ensemble model emerged as a powerful tool for understanding photocatalytic hydrogen evolution. Standard metrics were employed to assess the performance of our ensemble prediction model, encompassing R squared, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). The yielded results showcase exceptional accuracy, with R squared values of 96.9%, 99.3%, and 98% for GLFO, GBFO, and GLRO, respectively. Moreover, our model demonstrates minimal error rates across all metrics, underscoring its robust predictive capabilities and highlighting its efficacy in accurately forecasting the intricate relationships between GLFO, GBFO, and GLRO values and their influencing factors.
AbstractList Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its remarkable properties, such as high energy density and zero emissions upon combustion, make it a promising candidate for addressing the pressing challenges of climate change and transitioning towards a clean and renewable energy future. In an effort to improve efficiency and reduce experimental costs, we adopted machine learning techniques in this study. Our focus turned to predictive analyses of hydrogen evolution values using three photocatalysts, namely, graphene-supported LaFeO 3 (GLFO), graphene-supported LaRuO 3 (GLRO), and graphene-supported BiFeO 3 (GBFO), examining their correlation with varying levels of pH, catalyst amount, and H 2 O 2 concentration. To achieve this, a diverse range of machine learning models are used, including Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), XGBoost, Gradient Boosting, and AdaBoost—each bringing its strengths to the predictive modeling arena. An important step involved combining the most effective models—Random Forests, Gradient Boosting, and XGBoost—into an ensemble model. This collaborative approach aimed to leverage their collective strengths and improve overall predictability. The ensemble model emerged as a powerful tool for understanding photocatalytic hydrogen evolution. Standard metrics were employed to assess the performance of our ensemble prediction model, encompassing R squared, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). The yielded results showcase exceptional accuracy, with R squared values of 96.9%, 99.3%, and 98% for GLFO, GBFO, and GLRO, respectively. Moreover, our model demonstrates minimal error rates across all metrics, underscoring its robust predictive capabilities and highlighting its efficacy in accurately forecasting the intricate relationships between GLFO, GBFO, and GLRO values and their influencing factors.
Author Orak, Ceren
Yüksel, Aslı
Bakır, Rezan
Author_xml – sequence: 1
  givenname: Rezan
  orcidid: 0000-0002-4373-2231
  surname: Bakır
  fullname: Bakır, Rezan
  organization: Sivas University of Science and Technology Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Sivas, Turkey
– sequence: 2
  givenname: Ceren
  surname: Orak
  fullname: Orak, Ceren
  organization: Sivas University of Science and Technology Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Sivas, Turkey
– sequence: 3
  givenname: Aslı
  surname: Yüksel
  fullname: Yüksel, Aslı
  organization: Izmir Institute of Technology, Geothermal Energy Research and Application Center, Urla, Izmir, Turkey
BookMark eNp9kD1rwzAQhkVJoUnavaOmTnVzsmXZGkPoFwS6tLOQpXOi4EhGcgL593VI6VQ6Hdz7vMfxzMjEB4-E3DN4YlDXC8Yhz3gtxULbUuT6ikx_VxMyBShYVksub8gspR1ALnIhpyQs6V6brfNIO9TRO7-h6BPumw6p7vsYxpS2IdI-onVmOAMpdDpmaeTc4I5It6cmOkv7bRiC0YPuTmlINPgxsDFs0FM8hu4wuOBvyXWru4R3P3NOvl6eP1dv2frj9X21XGeGST5kbdlyCwhNy3klrRw_56W0nEGBWpiyZkJiCY2srBbC2BKlNRaLvKnAWFMUcwKXuyaGlCK2qo9ur-NJMVBnYepsR53tqIuwsfJ4qbjQq104RD8--B_-8AfeJyWlqhRUAlipetsW34r0frM
CODEN PHSTBO
Cites_doi 10.1088/1402-4896/ad2e57
10.3390/catal11091107
10.57041/pjosr.v3i1.946
10.1016/S1002-0721(14)60193-9
10.1016/j.ijhydene.2021.11.171
10.1016/j.compeleceng.2023.108804
10.1002/er.4930
10.1021/acs.iecr.0c02562
10.1016/j.chemosphere.2023.141010
10.1088/1402-4896/ad23bb
10.1016/j.chemosphere.2023.138852
10.1007/s42452-020-03374-x
10.1016/j.enconman.2020.112935
10.1007/s13399-021-01388-y
10.1039/D3GC02644B
10.1007/s42979-023-01798-x
10.1016/j.apcatb.2017.03.016
10.1016/j.ijhydene.2023.07.128
10.1016/j.ijhydene.2022.02.030
10.1007/s10462-020-09896-5
10.1080/10408340600969486
10.1016/j.ecolind.2021.107450
10.1021/acsomega.2c05721
10.1016/S1874-1029(13)60052-X
10.1016/j.cattod.2017.01.001
10.1016/j.ijhydene.2020.04.071
10.1021/acscatal.9b02531
10.1080/01614940.2022.2082650
10.1016/j.mineng.2012.05.008
10.1016/j.ijhydene.2022.08.013
10.1016/j.apcatb.2017.02.008
10.1016/j.ijhydene.2021.12.254
10.3390/s19051088
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd
Copyright_xml – notice: 2024 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1402-4896/ad562a
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1402-4896
ExternalDocumentID 10_1088_1402_4896_ad562a
psad562a
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
LAP
MV1
N5L
N9A
PJBAE
RIN
RNS
ROL
RPA
SJN
SY9
TN5
W28
WH7
XPP
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c194t-f5f4d0e0bf4479d9894459d4103ea6c58169e50b97da66cd5e9dcde32b70cdc33
ISSN 0031-8949
IngestDate Fri Nov 22 03:39:25 EST 2024
Sun Aug 18 17:30:26 EDT 2024
Tue Aug 20 22:16:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c194t-f5f4d0e0bf4479d9894459d4103ea6c58169e50b97da66cd5e9dcde32b70cdc33
Notes PHYSSCR-127713.R1
ORCID 0000-0002-4373-2231
PageCount 10
ParticipantIDs iop_journals_10_1088_1402_4896_ad562a
crossref_primary_10_1088_1402_4896_ad562a
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica scripta
PublicationTitleAbbrev PS
PublicationTitleAlternate Phys. Scr
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Hosseini (psad562abib16) 2020; 44
Fatima (psad562abib13) 2023; 3
Xu (psad562abib33) 2019; 19
Bakır (psad562abib5) 2023; 110
Ying (psad562abib36) 2013; 39
Yan (psad562abib35) 2022; 47
Ren (psad562abib29) 2020; 216
Bentéjac (psad562abib6) 2021; 54
Orak (psad562abib27) 2020; 59
Chen (psad562abib7) 2016
Hu (psad562abib17) 2014; 32
Orak (psad562abib26) 2022b; 47
Saadetnejad (psad562abib30) 2022; 47
Ghanem (psad562abib15) 2023; 4
Iervolino (psad562abib18) 2017; 207
Mageed (psad562abib21) 2023; 13
Ghanem (psad562abib14) 2020; 2
Liu (psad562abib20) 2023; 25
Tahir (psad562abib32) 2020; 45
Yu (psad562abib37) 2021; 125
Demircioğlu (psad562abib9) 2024
Jiang (psad562abib19) 2021; 11
Bakir (psad562abib3); Vol. 1
Muniyappa (psad562abib23) 2022; 47
Demircioğlu (psad562abib10) 2024; 99
Esmaeili (psad562abib11) 2023; 332
Cutler (psad562abib8) 2012
Xu (psad562abib34) 2006; 36
Ramkumar (psad562abib28) 2023; 52
Bakır (psad562abib4) 2023
Orak (psad562abib25) 2022a; 7
Estahbanati (psad562abib12) 2017; 209
Navidpour (psad562abib24) 2022; 66
Acharya (psad562abib1) 2020; 353
Salahshoori (psad562abib31) 2024; 350
Auret (psad562abib2) 2012; 35
Masood (psad562abib22) 2019; 9
References_xml – year: 2024
  ident: psad562abib9
  article-title: Artificial intelligence-based position control: reinforcement learning approach in spring mass damper systems
  doi: 10.1088/1402-4896/ad2e57
  contributor:
    fullname: Demircioğlu
– volume: 11
  year: 2021
  ident: psad562abib19
  article-title: A novel machine learning model to predict the photo-degradation performance of different photocatalysts on a variety of water contaminants
  publication-title: Catalysts
  doi: 10.3390/catal11091107
  contributor:
    fullname: Jiang
– start-page: 785
  year: 2016
  ident: psad562abib7
  article-title: Xgboost: a scalable tree boosting system
  contributor:
    fullname: Chen
– volume: 3
  start-page: 26
  year: 2023
  ident: psad562abib13
  article-title: XGBoost and random forest algorithms: an in depth analysis
  publication-title: Pak. J. Sci. Res.
  doi: 10.57041/pjosr.v3i1.946
  contributor:
    fullname: Fatima
– volume: 32
  start-page: 1126
  year: 2014
  ident: psad562abib17
  article-title: Preparation of LaMnO3/graphene thin films and their photocatalytic activity
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(14)60193-9
  contributor:
    fullname: Hu
– volume: 47
  start-page: 5307
  year: 2022
  ident: psad562abib23
  article-title: Cocatalyst free nickel sulphide nanostructure for enhanced photocatalytic hydrogen evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.171
  contributor:
    fullname: Muniyappa
– volume: 110
  year: 2023
  ident: psad562abib5
  article-title: DroidEncoder: malware detection using auto-encoder based feature extractor and machine learning algorithms
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108804
  contributor:
    fullname: Bakır
– volume: 44
  start-page: 4110
  year: 2020
  ident: psad562abib16
  article-title: Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4930
  contributor:
    fullname: Hosseini
– volume: 59
  start-page: 19153
  year: 2020
  ident: psad562abib27
  article-title: Electrolytic Oxidation of 1,8-Diazabicyclo[5.4.0]undec-7-ene in Hot-compressed water on a titanium electrode
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c02562
  contributor:
    fullname: Orak
– volume: 350
  year: 2024
  ident: psad562abib31
  article-title: Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.141010
  contributor:
    fullname: Salahshoori
– volume: 99
  year: 2024
  ident: psad562abib10
  article-title: Machine learning analysis of data obtained by finite element method: a new approach in structural design
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad23bb
  contributor:
    fullname: Demircioğlu
– volume: 332
  year: 2023
  ident: psad562abib11
  article-title: CdS nanocrystallites sensitized ZnO nanosheets for visible light induced sonophotocatalytic/photocatalytic degradation of tetracycline: From experimental results to a generalized model based on machine learning methods
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.138852
  contributor:
    fullname: Esmaeili
– volume: 2
  start-page: 1
  year: 2020
  ident: psad562abib14
  article-title: Context-dependent model for spam detection on social networks
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-03374-x
  contributor:
    fullname: Ghanem
– volume: 216
  year: 2020
  ident: psad562abib29
  article-title: Machine learning-assisted multiphysics coupling performance optimization in a photocatalytic hydrogen production system
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112935
  contributor:
    fullname: Ren
– volume: 13
  start-page: 3319
  year: 2023
  ident: psad562abib21
  article-title: Modeling photocatalytic hydrogen production from ethanol over copper oxide nanoparticles: a comparative analysis of various machine learning techniques
  publication-title: Biomass Conversion and Biorefinery
  doi: 10.1007/s13399-021-01388-y
  contributor:
    fullname: Mageed
– volume: 25
  start-page: 8778
  year: 2023
  ident: psad562abib20
  article-title: Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO2
  publication-title: Green Chem.
  doi: 10.1039/D3GC02644B
  contributor:
    fullname: Liu
– start-page: 157
  year: 2012
  ident: psad562abib8
  article-title: Random forests
  publication-title: Ensemble Machine Learning: Methods and Applications
  contributor:
    fullname: Cutler
– volume: 4
  start-page: 380
  year: 2023
  ident: psad562abib15
  article-title: Contents-based spam detection on social networks using RoBERTa embedding and stacked BLSTM
  publication-title: SN Computer Science
  doi: 10.1007/s42979-023-01798-x
  contributor:
    fullname: Ghanem
– volume: 209
  start-page: 483
  year: 2017
  ident: psad562abib12
  article-title: Photocatalytic valorization of glycerol to hydrogen: optimization of operating parameters by artificial neural network
  publication-title: Appl. Catalysis B
  doi: 10.1016/j.apcatb.2017.03.016
  contributor:
    fullname: Estahbanati
– volume: 52
  start-page: 696
  year: 2023
  ident: psad562abib28
  article-title: Enhanced machine learning for nanomaterial identification of photo thermal hydrogen production
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2023.07.128
  contributor:
    fullname: Ramkumar
– volume: 47
  start-page: 19655
  year: 2022
  ident: psad562abib30
  article-title: Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.02.030
  contributor:
    fullname: Saadetnejad
– volume: 54
  start-page: 1937
  year: 2021
  ident: psad562abib6
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09896-5
  contributor:
    fullname: Bentéjac
– volume: 36
  start-page: 177
  year: 2006
  ident: psad562abib34
  article-title: Support vector machines: a recent method for classification in chemometrics
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408340600969486
  contributor:
    fullname: Xu
– volume: 125
  year: 2021
  ident: psad562abib37
  article-title: A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107450
  contributor:
    fullname: Yu
– volume: 7
  start-page: 42489
  year: 2022a
  ident: psad562abib25
  article-title: Box–behnken design for hydrogen evolution from sugar industry wastewater using solar-driven hybrid catalysts
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05721
  contributor:
    fullname: Orak
– volume: 39
  start-page: 745
  year: 2013
  ident: psad562abib36
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Autom. Sin.
  doi: 10.1016/S1874-1029(13)60052-X
  contributor:
    fullname: Ying
– volume: 353
  start-page: 220
  year: 2020
  ident: psad562abib1
  article-title: Visible light driven LaFeO3 nano sphere/RGO composite photocatalysts for efficient water decomposition reaction
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.01.001
  contributor:
    fullname: Acharya
– volume: 45
  start-page: 15985
  year: 2020
  ident: psad562abib32
  article-title: Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.071
  contributor:
    fullname: Tahir
– volume: 9
  start-page: 11774
  year: 2019
  ident: psad562abib22
  article-title: Machine learning for accelerated discovery of solar photocatalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02531
  contributor:
    fullname: Masood
– volume: 66
  start-page: 687
  year: 2022
  ident: psad562abib24
  article-title: Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid
  publication-title: Catalysis Reviews - Science and Engineering
  doi: 10.1080/01614940.2022.2082650
  contributor:
    fullname: Navidpour
– start-page: 1
  year: 2023
  ident: psad562abib4
  article-title: Evaluating the impact of tuned pre-trained architectures’ feature maps on deep learning model performance for tomato disease detection
  publication-title: Multimedia Tools Appl.
  contributor:
    fullname: Bakır
– volume: 35
  start-page: 27
  year: 2012
  ident: psad562abib2
  article-title: Interpretation of nonlinear relationships between process variables by use of random forests
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.05.008
  contributor:
    fullname: Auret
– volume: Vol. 1
  ident: psad562abib3
  article-title: Using transfer learning technique as a feature extraction phase for diagnosis of cataract disease in the eye
  contributor:
    fullname: Bakir
– volume: 47
  start-page: 34075
  year: 2022
  ident: psad562abib35
  article-title: Development of machine learning models to enhance element-doped g-C3N4 photocatalyst for hydrogen production through splitting water
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.013
  contributor:
    fullname: Yan
– volume: 207
  start-page: 182
  year: 2017
  ident: psad562abib18
  article-title: Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3
  publication-title: Appl. Catalysis B
  doi: 10.1016/j.apcatb.2017.02.008
  contributor:
    fullname: Iervolino
– volume: 47
  start-page: 8841
  year: 2022b
  ident: psad562abib26
  article-title: Comparison of photocatalytic performances of solar-driven hybrid catalysts for hydrogen energy evolution from 1,8–Diazabicyclo[5.4.0]undec-7-ene (DBU) solution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.12.254
  contributor:
    fullname: Orak
– volume: 19
  start-page: 1088
  year: 2019
  ident: psad562abib33
  article-title: Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning
  publication-title: Sensors
  doi: 10.3390/s19051088
  contributor:
    fullname: Xu
SSID ssj0026269
Score 2.4429183
Snippet Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its...
SourceID crossref
iop
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 76015
SubjectTerms DBU
energy
hydrogen
machine learning
photocatalysis
Title A machine learning ensemble approach for predicting solar-sensitive hybrid photocatalysts on hydrogen evolution
URI https://iopscience.iop.org/article/10.1088/1402-4896/ad562a
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6RIiQuFU_RQsse4ICipX6s7d1jEoIqDm2lFglOK3t33VRVYytOkdJf39mHH0EIlQMXy9o463jmy3hm9tsZhD4o8FKLQpYEvGVNKA0UyWMaE8Zkykyzl0iZVPbxeXbyg32Z03mfzOnH_qumYQx0bXbO_oO2u0lhAM5B53AErcPxQXqfjG8sP1K3DSEuxxCp6huzQ6otIG65hfXKrNFY1nNj4lvSGC67ZRItNmYf17heVOvK5nc2jVtWWGzUqro0jQF--YcYOrdnTudjZ4n6SD-_Ni7rNHRUbn3XA_J0lVtrPNODLWk_zeL9dHbdeAKB83-n4TBBEdGOzOqD1tOzQUptaIvjkDDuCpZ-1s78QjRLKHM9blv77BooeRxmfzT7YCpt4QD_bfN-U-DYDV5yHfWwbtxHI_Q4AttkTOP5t5MuRof4zkVM_sf5lW24wVE3_ZGbYcuTGV1V9cAxuXiGdn1EgScOCs_RI718gZ44XTQvUTXBHhC4BQRuAYFbQGAABO4BgX8DBHaAwNuAwNUSt4DAHSBeoe9f5xezY-K7bBAZcromZVJSFeigKCnNuDIF-WnCFQ2DWOepTFiYcp0EBc9UnqZSJZorqXQcFVkglYzj12hnWS31G4RlxKmkKgUhaapjWSQqpzmjMpdRqAq-hz61EhO1K6YiLAmCMWGkK4x0hZPuHvoIIhX-n9X85br3W9fVjeBcZMKsOIeJqFW5_8CZ3qKnPXzfoZ316lYfoFGjbg8tRu4Bq02ChQ
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+ensemble+approach+for+predicting+solar-sensitive+hybrid+photocatalysts+on+hydrogen+evolution&rft.jtitle=Physica+scripta&rft.au=Bak%C4%B1r%2C+Rezan&rft.au=Orak%2C+Ceren&rft.au=Y%C3%BCksel%2C+Asl%C4%B1&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=99&rft.issue=7&rft_id=info:doi/10.1088%2F1402-4896%2Fad562a&rft.externalDocID=psad562a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon