Thermomechanical properties of multifunctional polymer hybrid nanocomposites based on carbon nanotubes and nanosilica

Nanocomposites containing low wt% of oxidized multi‐walled carbon nanotubes (MWCNT‐OXI), nanosilica (NS), and its hybrid (MWCNT‐OXI/NS) in epoxy resin were produced and evaluated. The used nanoparticles were studied by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science Vol. 141; no. 41
Main Authors: Silva, Bruno Milton Oliveira, Fernandes, Nathália Maria Moraes, Barbosa, Juliano Martins, Pinto, Gabriel Matheus, Benega, Marcos Antônio Gimenes, Taha‐Tijerina, José Jaime, Andrade, Ricardo Jorge Espanhol, Ribeiro, Hélio
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 05-11-2024
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nanocomposites containing low wt% of oxidized multi‐walled carbon nanotubes (MWCNT‐OXI), nanosilica (NS), and its hybrid (MWCNT‐OXI/NS) in epoxy resin were produced and evaluated. The used nanoparticles were studied by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman spectroscopy while the nanocomposites were investigated in relation to its morphology, thermal, and mechanical properties. The results demonstrated significant improvements in the storage modulus (E′), glass transition temperature (Tg), and cross link density (CD), for the produced nanocomposites. Increases in thermal conductivity (TC) of up to 85% at 90°C were observed for the nanocomposites containing 1.0 wt% of the hybrid MWCNT‐OXI + NS nanofiller, when compared with neat polymer. It was also verified increases in the resistance to plastic deformation for the nanocomposites, maintained the polymer thermal stability with the addition of these nanoparticles. Finally, the use of MWCNT‐OXI and NS, combined or not, significantly improved the thermal and mechanical properties of polymer, showing multifunctional characteristics for the produced nanocomposites. Model for the epoxy system containing nanosilica, CNTs and its hybrids nanoparticles. MWCNT‐OXI, multi‐walled carbon nanotubes; NS, nanosilica.
AbstractList Nanocomposites containing low wt% of oxidized multi‐walled carbon nanotubes (MWCNT‐OXI), nanosilica (NS), and its hybrid (MWCNT‐OXI/NS) in epoxy resin were produced and evaluated. The used nanoparticles were studied by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman spectroscopy while the nanocomposites were investigated in relation to its morphology, thermal, and mechanical properties. The results demonstrated significant improvements in the storage modulus (E′), glass transition temperature (Tg), and cross link density (CD), for the produced nanocomposites. Increases in thermal conductivity (TC) of up to 85% at 90°C were observed for the nanocomposites containing 1.0 wt% of the hybrid MWCNT‐OXI + NS nanofiller, when compared with neat polymer. It was also verified increases in the resistance to plastic deformation for the nanocomposites, maintained the polymer thermal stability with the addition of these nanoparticles. Finally, the use of MWCNT‐OXI and NS, combined or not, significantly improved the thermal and mechanical properties of polymer, showing multifunctional characteristics for the produced nanocomposites.
Nanocomposites containing low wt% of oxidized multi‐walled carbon nanotubes (MWCNT‐OXI), nanosilica (NS), and its hybrid (MWCNT‐OXI/NS) in epoxy resin were produced and evaluated. The used nanoparticles were studied by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman spectroscopy while the nanocomposites were investigated in relation to its morphology, thermal, and mechanical properties. The results demonstrated significant improvements in the storage modulus ( E ′), glass transition temperature ( T g ), and cross link density (CD), for the produced nanocomposites. Increases in thermal conductivity (TC) of up to 85% at 90°C were observed for the nanocomposites containing 1.0 wt% of the hybrid MWCNT‐OXI + NS nanofiller, when compared with neat polymer. It was also verified increases in the resistance to plastic deformation for the nanocomposites, maintained the polymer thermal stability with the addition of these nanoparticles. Finally, the use of MWCNT‐OXI and NS, combined or not, significantly improved the thermal and mechanical properties of polymer, showing multifunctional characteristics for the produced nanocomposites.
Nanocomposites containing low wt% of oxidized multi‐walled carbon nanotubes (MWCNT‐OXI), nanosilica (NS), and its hybrid (MWCNT‐OXI/NS) in epoxy resin were produced and evaluated. The used nanoparticles were studied by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman spectroscopy while the nanocomposites were investigated in relation to its morphology, thermal, and mechanical properties. The results demonstrated significant improvements in the storage modulus (E′), glass transition temperature (Tg), and cross link density (CD), for the produced nanocomposites. Increases in thermal conductivity (TC) of up to 85% at 90°C were observed for the nanocomposites containing 1.0 wt% of the hybrid MWCNT‐OXI + NS nanofiller, when compared with neat polymer. It was also verified increases in the resistance to plastic deformation for the nanocomposites, maintained the polymer thermal stability with the addition of these nanoparticles. Finally, the use of MWCNT‐OXI and NS, combined or not, significantly improved the thermal and mechanical properties of polymer, showing multifunctional characteristics for the produced nanocomposites. Model for the epoxy system containing nanosilica, CNTs and its hybrids nanoparticles. MWCNT‐OXI, multi‐walled carbon nanotubes; NS, nanosilica.
Author Benega, Marcos Antônio Gimenes
Silva, Bruno Milton Oliveira
Andrade, Ricardo Jorge Espanhol
Taha‐Tijerina, José Jaime
Fernandes, Nathália Maria Moraes
Pinto, Gabriel Matheus
Barbosa, Juliano Martins
Ribeiro, Hélio
Author_xml – sequence: 1
  givenname: Bruno Milton Oliveira
  surname: Silva
  fullname: Silva, Bruno Milton Oliveira
  organization: MackGraphe–Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute
– sequence: 2
  givenname: Nathália Maria Moraes
  surname: Fernandes
  fullname: Fernandes, Nathália Maria Moraes
  organization: MackGraphe–Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute
– sequence: 3
  givenname: Juliano Martins
  surname: Barbosa
  fullname: Barbosa, Juliano Martins
  organization: Engineering School, Mackenzie Presbyterian University
– sequence: 4
  givenname: Gabriel Matheus
  surname: Pinto
  fullname: Pinto, Gabriel Matheus
  organization: MackGraphe–Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute
– sequence: 5
  givenname: Marcos Antônio Gimenes
  orcidid: 0000-0003-4954-7384
  surname: Benega
  fullname: Benega, Marcos Antônio Gimenes
  organization: MackGraphe–Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute
– sequence: 6
  givenname: José Jaime
  orcidid: 0000-0001-6781-9414
  surname: Taha‐Tijerina
  fullname: Taha‐Tijerina, José Jaime
  organization: University of Texas Rio Grande Valley ‐ UTRGV
– sequence: 7
  givenname: Ricardo Jorge Espanhol
  orcidid: 0000-0002-6902-8269
  surname: Andrade
  fullname: Andrade, Ricardo Jorge Espanhol
  organization: MackGraphe–Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute
– sequence: 8
  givenname: Hélio
  orcidid: 0000-0001-5489-1927
  surname: Ribeiro
  fullname: Ribeiro, Hélio
  email: helio.ribeiro1@mackenzie.br
  organization: Engineering School, Mackenzie Presbyterian University
BookMark eNp1kD9PwzAUxC1UJNrCwDeIxMQQ-uw4djJWFf-kSnQos-U4juoqsYOdCOXb4xJWphvud-_pboUW1lmN0D2GJwxANrLvn3IGOb1CSwwlTykjxQIto4fToizzG7QK4QyAcQ5sicbjSfvOdVqdpDVKtknvXa_9YHRIXJN0YzuYZrRqMM5eXNdOnfbJaaq8qRMrrVOu610wQwxUMug6cTZR0ldRLvYwVtGRdoaDaeOXW3TdyDbouz9do8-X5-PuLd1_vL7vtvtU4YLTlMsM8zJXjDGiaYmrpqQ8o4xWVZNRDpIRnmVEAvAaFOg6ClGQ1yVXuqEyW6OH-W4s9TXqMIizG33sEUSGMYGCUJxH6nGmlHcheN2I3ptO-klgEJdVRVxV_K4a2c3MfptWT_-DYns4zIkfbEx9Ag
Cites_doi 10.1016/j.polymertesting.2021.107180
10.1021/acsami.7b09945
10.3390/nano10061160
10.1016/j.surfin.2021.101389
10.1016/j.matpr.2019.02.047
10.1016/j.surfin.2023.103211
10.3390/polym8080281
10.1007/s10971-009-1958-6
10.21577/1984-6835.20180072
10.1016/j.polymertesting.2015.03.010
10.1088/1757-899X/1248/1/012084
10.3390/polym14193969
10.1016/j.prostr.2017.07.034
10.1002/app.46560
10.1016/j.carbon.2021.11.067
10.1016/0008-6223(95)00017-8
10.1016/j.carbon.2010.09.047
10.1016/j.susmat.2023.e00684
10.1002/pc.27328
10.1007/3-540-39947-X
10.1021/am3010576
10.1002/app.41216
10.1016/j.jnoncrysol.2012.11.006
10.3390/polym15061398
10.1016/j.polymertesting.2022.107645
10.1016/j.compositesa.2013.01.001
10.1016/j.polymdegradstab.2007.10.005
10.1155/2022/6040629
10.1021/acs.macromol.2c01719
10.1088/1757-899X/978/1/012031
10.1080/15583724.2019.1650063
10.1007/s12633-021-01527-0
10.1590/S0103-50532012000600012
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.56054
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_56054
APP56054
Genre researchArticle
GrantInformation_xml – fundername: National Institute of Science and Technology for Rheology of Complex Materials Applied to Advanced Technologies (INCT‐Rhe9)
  funderid: 406765/2022‐7
– fundername: Mackenzie Research Fund (MackPesquisa)
  funderid: MACK–0012510
– fundername: Programa Institucional de Internacionalização–PrInt—CAPES–Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES
  funderid: 88887.717575/2022‐00
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 305109/2022‐7
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: 2020/11496‐0
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAMNL
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c1874-7a31795c6662e491bf9473464bbf3470a627332a007d0c0ed7d02c05d97cef4a3
IEDL.DBID 33P
ISSN 0021-8995
IngestDate Thu Oct 10 21:07:08 EDT 2024
Fri Nov 22 01:39:53 EST 2024
Thu Oct 03 09:54:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1874-7a31795c6662e491bf9473464bbf3470a627332a007d0c0ed7d02c05d97cef4a3
ORCID 0000-0002-6902-8269
0000-0003-4954-7384
0000-0001-5489-1927
0000-0001-6781-9414
PQID 3112082415
PQPubID 1006379
PageCount 11
ParticipantIDs proquest_journals_3112082415
crossref_primary_10_1002_app_56054
wiley_primary_10_1002_app_56054_APP56054
PublicationCentury 2000
PublicationDate November 5, 2024
PublicationDateYYYYMMDD 2024-11-05
PublicationDate_xml – month: 11
  year: 2024
  text: November 5, 2024
  day: 05
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2022; 112
2021; 26
2019; 9
2013; 48
2023; 15
2023; 37
2019; 11
2020; 60
1995; 33
2022; 1248
2015; 207
2013; 362
2020; 10
2008; 93
2022; 189
2023; 41
2021; 98
2014; 4
2023; 44
2022; 2022
2001
2009; 50
2020
2018; 135
2015; 132
2015; 43
2022; 12
2022; 14
2022; 55
2011; 49
2018; 10
2012; 4
2012; 23
2016; 8
2020; 978
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
A. A. Nayl, A. I. Abd‐Elhamid, A. A. Aly, S. Bräse (e_1_2_10_18_1) 2022; 12
Callister W. D. (e_1_2_10_34_1) 2020
N. Yang, X. Chen, T. Ren, P. Zhang, D. Yang (e_1_2_10_10_1) 2015; 207
e_1_2_10_2_1
e_1_2_10_4_1
B. Arash, Q. Wang, V. Varadan (e_1_2_10_11_1) 2014; 4
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_33_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 43
  start-page: 182
  year: 2015
  publication-title: Polym. Test.
– volume: 11
  start-page: 24485
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 132
  year: 2015
  publication-title: J. Appl. Polym. Sci.
– volume: 4
  start-page: 4398
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  year: 2022
  publication-title: RSC Adv
– volume: 135
  year: 2018
  publication-title: J. Appl. Polym. Sci.
– volume: 37
  year: 2023
  publication-title: Sustain. Mater. Technol.
– volume: 5
  start-page: 647
  year: 2017
  publication-title: Procedia Struct. Integrity.
– volume: 9
  start-page: 127
  year: 2019
  publication-title: Materials Today: Proceedings
– volume: 55
  start-page: 9990
  year: 2022
  publication-title: Macromolecules
– volume: 189
  start-page: 113
  year: 2022
  publication-title: Carbon
– volume: 41
  year: 2023
  publication-title: Surf. Interfaces.
– volume: 10
  year: 2020
  publication-title: Nanomaterials
– volume: 98
  year: 2021
  publication-title: Polym. Test.
– volume: 112
  year: 2022
  publication-title: Polym. Test.
– start-page: 1
  year: 2001
– volume: 10
  start-page: 1018
  year: 2018
  publication-title: Rev. Virtual Quim
– volume: 44
  start-page: 3387
  year: 2023
  publication-title: Polym. Compos.
– volume: 48
  start-page: 101
  year: 2013
  publication-title: Compos. A: Appl. Sci. Manuf.
– volume: 14
  year: 2022
  publication-title: Polymer
– volume: 362
  start-page: 20
  year: 2013
  publication-title: J. Non‐Cryst. Solids
– volume: 33
  start-page: 883
  year: 1995
  publication-title: Carbon
– volume: 978
  year: 2020
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 50
  start-page: 328
  year: 2009
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 15
  year: 2023
  publication-title: Polymer
– volume: 60
  start-page: 1
  year: 2020
  publication-title: Polym. Rev.
– volume: 14
  start-page: 1
  year: 2022
  publication-title: Silicon
– volume: 207
  year: 2015
  publication-title: Sens. Actuators B: Chem
– volume: 23
  start-page: 1078
  year: 2012
  publication-title: Article J. Braz. Chem. Soc
– year: 2020
– volume: 49
  start-page: 495
  year: 2011
  publication-title: Carbon
– volume: 26
  year: 2021
  publication-title: Surf. Interfaces.
– volume: 4
  year: 2014
  publication-title: Sci. Rep
– volume: 1248
  year: 2022
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 8
  year: 2016
  publication-title: Polymer
– volume: 2022
  start-page: 1
  year: 2022
  publication-title: Adv. Mater. Sci. Eng.
– volume: 93
  start-page: 201
  year: 2008
  publication-title: Polym. Degrad. Stab.
– ident: e_1_2_10_15_1
  doi: 10.1016/j.polymertesting.2021.107180
– volume: 12
  year: 2022
  ident: e_1_2_10_18_1
  publication-title: RSC Adv
  contributor:
    fullname: A. A. Nayl, A. I. Abd‐Elhamid, A. A. Aly, S. Bräse
– ident: e_1_2_10_36_1
  doi: 10.1021/acsami.7b09945
– ident: e_1_2_10_37_1
  doi: 10.3390/nano10061160
– ident: e_1_2_10_31_1
  doi: 10.1016/j.surfin.2021.101389
– ident: e_1_2_10_33_1
  doi: 10.1016/j.matpr.2019.02.047
– ident: e_1_2_10_27_1
  doi: 10.1016/j.surfin.2023.103211
– ident: e_1_2_10_7_1
  doi: 10.3390/polym8080281
– ident: e_1_2_10_24_1
  doi: 10.1007/s10971-009-1958-6
– ident: e_1_2_10_16_1
  doi: 10.21577/1984-6835.20180072
– ident: e_1_2_10_26_1
  doi: 10.1016/j.polymertesting.2015.03.010
– volume: 207
  year: 2015
  ident: e_1_2_10_10_1
  publication-title: Sens. Actuators B: Chem
  contributor:
    fullname: N. Yang, X. Chen, T. Ren, P. Zhang, D. Yang
– ident: e_1_2_10_2_1
  doi: 10.1088/1757-899X/1248/1/012084
– ident: e_1_2_10_20_1
  doi: 10.3390/polym14193969
– ident: e_1_2_10_9_1
  doi: 10.1016/j.prostr.2017.07.034
– ident: e_1_2_10_19_1
  doi: 10.1002/app.46560
– ident: e_1_2_10_12_1
  doi: 10.1016/j.carbon.2021.11.067
– ident: e_1_2_10_14_1
  doi: 10.1016/0008-6223(95)00017-8
– ident: e_1_2_10_35_1
  doi: 10.1016/j.carbon.2010.09.047
– ident: e_1_2_10_29_1
  doi: 10.1016/j.susmat.2023.e00684
– ident: e_1_2_10_8_1
  doi: 10.1002/pc.27328
– ident: e_1_2_10_13_1
  doi: 10.1007/3-540-39947-X
– ident: e_1_2_10_22_1
  doi: 10.1021/am3010576
– ident: e_1_2_10_5_1
  doi: 10.1002/app.41216
– volume: 4
  year: 2014
  ident: e_1_2_10_11_1
  publication-title: Sci. Rep
  contributor:
    fullname: B. Arash, Q. Wang, V. Varadan
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jnoncrysol.2012.11.006
– ident: e_1_2_10_23_1
  doi: 10.3390/polym15061398
– ident: e_1_2_10_3_1
  doi: 10.1016/j.polymertesting.2022.107645
– ident: e_1_2_10_21_1
  doi: 10.1016/j.compositesa.2013.01.001
– ident: e_1_2_10_25_1
  doi: 10.1016/j.polymdegradstab.2007.10.005
– ident: e_1_2_10_38_1
  doi: 10.1155/2022/6040629
– ident: e_1_2_10_6_1
  doi: 10.1021/acs.macromol.2c01719
– ident: e_1_2_10_17_1
  doi: 10.1088/1757-899X/978/1/012031
– volume-title: Callister's Materials Science and Engineering
  year: 2020
  ident: e_1_2_10_34_1
  contributor:
    fullname: Callister W. D.
– ident: e_1_2_10_4_1
  doi: 10.1080/15583724.2019.1650063
– ident: e_1_2_10_32_1
  doi: 10.1007/s12633-021-01527-0
– ident: e_1_2_10_30_1
  doi: 10.1590/S0103-50532012000600012
SSID ssj0011506
Score 2.5006828
Snippet Nanocomposites containing low wt% of oxidized multi‐walled carbon nanotubes (MWCNT‐OXI), nanosilica (NS), and its hybrid (MWCNT‐OXI/NS) in epoxy resin were...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Addition polymerization
carbon nanotubes
Epoxy resins
Glass transition temperature
Mechanical properties
Multi wall carbon nanotubes
multifunctional nanocomposites
Nanocomposites
Nanoparticles
nanosilica
Plastic deformation
Polymers
Raman spectroscopy
Storage modulus
Thermal conductivity
thermal properties
Thermal resistance
Thermal stability
Thermodynamic properties
Thermogravimetric analysis
Thermomechanical properties
Title Thermomechanical properties of multifunctional polymer hybrid nanocomposites based on carbon nanotubes and nanosilica
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.56054
https://www.proquest.com/docview/3112082415
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6kx78FqdTgnjwUtY1SbPiaejGTjJQwVtJmgQF1452Pey_9710Xx4EwVMKSUrJe8n7vdf3fiHkjveFBsPuAmuUDLiRcaBi44I45AosXpRoz1MwfpHP7_2nIdLkPKxqYRp-iHXADXeGP69xgytddTekoXgNFphrgVyg4CX48g02Wf9BQOa8Jr2jF4BPIVasQmHUXc_8aYs2AHMbpno7Mzr81xcekYMlvKSDRh-OyY7NT8j-FungKalBM8ppMbVY84siojMMyJfIrEoLR32KIZq7JkpIZ8XXYmpL-rHA4i6aq7zAPHRM9oIJaAUNLXKaqVJDg93zWkOPypvB1SfGBc_I22j4-jgOlpcvBBle0xdIBcgiERm4N5HlSU-7hEvGY661Y1yGKgbgwyIFGMOEWWgNNFEWCpPIzDqu2Dlp5UVuLwgFjyVzIkucZDF3LNJMCx6bvjBMwSHn2uR2JYZ01nBspA2bcpTCGqZ-DduksxJQutxmVcoALQKGARDSJvdeFL-_IB1MJv7h8u9Dr8heBCDG1x6KDmnNy9pek93K1Dde274BbxTYZQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HNSDb3F11SAevBRrk7Rb8CI-WHGVBVfwVpImQcFtl6578N87k-5DD4LgKYUkpcxMMl-mM18ATkRLanTsLrBGJYEwSRyo2LggDoVCjxel2vMUtJ-Sx5fW9Q3R5FxMamFqfohpwI1Wht-vaYFTQPpsxhpK92Chv5ZiHhZFjIZIBRy8O_2HQNx5dYLHeYCnCjnhFQqjs-nUn95oBjG_A1XvaW7X_veN67A6RpjssjaJDZizxSasfOMd3IIRGkfVL_uWyn5JS2xAMfmKyFVZ6ZjPMiSPVwcK2aB8_-zbir1-Un0XK1RRUio65XvhBHKEhpUFy1WlsaHuj5HGHlXUg4dvFBrchufbm95VOxjfvxDkdFNfkCgEF6nM8YQTWZGea5eKhKOotXZcJKGKEfvwSCHMMGEeWoNNlIfSpElunVB8BxaKsrC7wPDQkjuZpy7hsXA80lxLEZuWNFzhPucacDzRQzaoaTaymlA5ylCGmZdhA5oTDWXjlTbMOAJGhDGIQxpw6nXx-wuyy27XP-z9fegRLLV7D52sc_d4vw_LEWIaX4oom7DwUY3sAcwPzejQm94XH7vcjQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4AaIHv8X5GcSDl7KuSdoVT-IcijIGKngrSZOg4NrRuYP_ve-l25wHQfCUQpJS8pL8fnl97xeAc9GWGoHdBdaoJBAmiQMVGxfEoVCIeFGqvU7B7WPSe2l3bkgm53KaC1PrQ8wcbrQy_H5NC3xoXPNbNJSuwUK4lmIRlgXScBLO57w_-4VA0nl1fEcrwEOFnMoKhVFz1vUnGH0zzHme6oGmu_GvT9yE9Qm_ZFf1hNiCBVtsw9qc6uAOjHFqVINyYCnpl2zEhuSRr0halZWO-RhDwrvaTciG5fvnwFbs9ZOyu1ihipIC0SnaCzsQDBpWFixXlcaCqj_GGmtUUTcevZFjcBeeuzdP17fB5PaFIKd7-oJEIbVIZY7nm8iKtKVdKhIuYqG14yIJVYzMh0cKSYYJ89AaLKI8lCZNcuuE4nuwVJSF3QeGR5bcyTx1CY-F45HmWorYtKXhCnc514CzqRmyYS2ykdVyylGGY5j5MWzA0dRA2WSdjTKOdBFJDLKQBlx4U_z-guyq3_cPB39vegor_U43e7jr3R_CaoSExuchyiNY-qjG9hgWR2Z84ifeF5Vu2zM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermomechanical+properties+of+multifunctional+polymer+hybrid+nanocomposites+based+on+carbon+nanotubes+and+nanosilica&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Silva%2C+Bruno+Milton+Oliveira&rft.au=Fernandes%2C+Nath%C3%A1lia+Maria+Moraes&rft.au=Barbosa%2C+Juliano+Martins&rft.au=Pinto%2C+Gabriel+Matheus&rft.date=2024-11-05&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.56054&rft.externalDBID=10.1002%252Fapp.56054&rft.externalDocID=APP56054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon