Software development effort estimation techniques: a survey

Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models, software effort estimation (SEE) is one of the most difficult tasks for successful software development. several see models have been proposed. ho...

Full description

Saved in:
Bibliographic Details
Published in:al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil Vol. 31; no. 1; pp. 80 - 92
Main Authors: Ahmad, Farah Basil, Ibrahim, Lahib Muhammad
Format: Journal Article
Language:Arabic
English
Published: الموصل، العراق جامعة الموصل، كلية التربية للعلوم الصرفة 01-03-2022
College of Education for Pure Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models, software effort estimation (SEE) is one of the most difficult tasks for successful software development. several see models have been proposed. however, software effort overestimation or underestimation can lead to failure or cancellation of a project. hence, the main target of this research is to find a performance model for estimating the software effort through conduction empirical comparisons using various machine learning (ml) algorithms. various ml techniques have been used with seven datasets used for effort estimation. these datasets are china, Albrecht, Maxwell, Desharnais, Kemerer, Cocomo81, Kitchenham, to determine the best performance for software development effort estimation. root mean square error (RMSE), mean absolute error (MAE), and r-squared were the evaluation metrics considered. results and experiments with various ml algorithms for software effort estimation have shown that the lasso algorithm with china dataset produced the best performance compared to the other algorithms. يتم استخدام تقدير جهد البرمجيات (Software Effort Estimation (SEE)) للتنبؤ وبشكل دقيق بالجهد من حيث (عدد شهور العمل أو عدد ساعات العمل)، وعلى الرغم من وجود العديد من النماذج فإن تقدير جهد البرمجيات يعد من أصعب المهام لتطوير البرمجيات الناجحة. حيث تم اقتراح العديد من نماذج تقدير جهد البرمجيات ومع ذلك، فإن الإفراط في تقدير جهد البرامج أو النقص في تقدير جهد البرامج يؤدي إلى إلغاء المشروع أو فشل المشروع. إن الهدف الرئيسي لهذا البحث هو العثور على نموذج أداء لتقدير جهد البرمجيات من خلال إجراء دراسة ومقارنات تجريبية لخوارزميات التعلم الآلي. تم استخدام تقنيات التعلم الآلي مع سبع مجموعة بيانات مستخدمة والتي تضمنت china، Albrecht، Maxwell Desharnais، Kemerer،Cocomo81 ، Kitchenham، وذلك لتحديد أفضل أداء لتقدير جهود تطوير البرمجيات. حيث تم اعتبار الجذر التربيعي لمتوسط الخطأ (RMSE) ومتوسط الخطأ المطلق (MAE) وR-Squared كمقاييس للتقييم التي تم أخذها في الاعتبار. أظهرت النتائج والتجارب مع خوارزميات التعلم الآلي المختلفة لتقدير جهد البرمجيات أن خوارزمية LASSO مع مجموعة بيانات china أنتجت أفضل أداء مقارنة مع خوارزميات التعلم الآلي الأخرى.
AbstractList Software Effort Estimation (SEE) is used in accurately predicting the effort in terms of (person–hours or person–months). Although there are many models, Software Effort Estimation (SEE) is one of the most difficult tasks for successful software development. Several SEE models have been proposed. However, software effort overestimation or underestimation can lead to failure or cancellation of a project. Hence, the main target of this research is to find a performance model for estimating the software effort through conduction empirical comparisons using various Machine Learning (ML) algorithms. Various ML techniques have been used with seven datasets used for Effort Estimation. These datasets are China, Albrecht, Maxwell, Desharnais, Kemerer, Cocomo81, Kitchenham, to determine the best performance for Software Development Effort Estimation. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-Squared were the evaluation metrics considered. Results and experiments with various ML algorithms for software effort estimation have shown that the LASSO algorithm with China dataset produced the best performance compared to the other algorithms.
Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models, software effort estimation (SEE) is one of the most difficult tasks for successful software development. several see models have been proposed. however, software effort overestimation or underestimation can lead to failure or cancellation of a project. hence, the main target of this research is to find a performance model for estimating the software effort through conduction empirical comparisons using various machine learning (ml) algorithms. various ml techniques have been used with seven datasets used for effort estimation. these datasets are china, Albrecht, Maxwell, Desharnais, Kemerer, Cocomo81, Kitchenham, to determine the best performance for software development effort estimation. root mean square error (RMSE), mean absolute error (MAE), and r-squared were the evaluation metrics considered. results and experiments with various ml algorithms for software effort estimation have shown that the lasso algorithm with china dataset produced the best performance compared to the other algorithms. يتم استخدام تقدير جهد البرمجيات (Software Effort Estimation (SEE)) للتنبؤ وبشكل دقيق بالجهد من حيث (عدد شهور العمل أو عدد ساعات العمل)، وعلى الرغم من وجود العديد من النماذج فإن تقدير جهد البرمجيات يعد من أصعب المهام لتطوير البرمجيات الناجحة. حيث تم اقتراح العديد من نماذج تقدير جهد البرمجيات ومع ذلك، فإن الإفراط في تقدير جهد البرامج أو النقص في تقدير جهد البرامج يؤدي إلى إلغاء المشروع أو فشل المشروع. إن الهدف الرئيسي لهذا البحث هو العثور على نموذج أداء لتقدير جهد البرمجيات من خلال إجراء دراسة ومقارنات تجريبية لخوارزميات التعلم الآلي. تم استخدام تقنيات التعلم الآلي مع سبع مجموعة بيانات مستخدمة والتي تضمنت china، Albrecht، Maxwell Desharnais، Kemerer،Cocomo81 ، Kitchenham، وذلك لتحديد أفضل أداء لتقدير جهود تطوير البرمجيات. حيث تم اعتبار الجذر التربيعي لمتوسط الخطأ (RMSE) ومتوسط الخطأ المطلق (MAE) وR-Squared كمقاييس للتقييم التي تم أخذها في الاعتبار. أظهرت النتائج والتجارب مع خوارزميات التعلم الآلي المختلفة لتقدير جهد البرمجيات أن خوارزمية LASSO مع مجموعة بيانات china أنتجت أفضل أداء مقارنة مع خوارزميات التعلم الآلي الأخرى.
Author Ibrahim, Lahib Muhammad
Ahmad, Farah Basil
Author_xml – sequence: 1
  fullname: Ahmad, Farah Basil
  organization: Department of software engineering, college of computer sciences and mathematics, university of Mosul, Mosul, Iraq
– sequence: 2
  fullname: Ibrahim, Lahib Muhammad
  organization: Department of software engineering, college of computer sciences and mathematics, university of Mosul, Mosul, Iraq
BookMark eNo9zs1OwkAUhuGJ0UREbkF7A8U5Z9qZqa4MomJIXICJu-bMn5ZAB9uC4e5txLh6k2_x5Ltgp3WsPWPXwMdC6KK4mT68LV7GyBHHIBBVNgbkcMIGKGWWYi74KRuABkwB8_dzNmrbFecctRKZkgN2t4ih-6bGJ87v_TpuN77uEh9CbPq0XbWhrop10nn7WVdfO9_eJpS0u2bvD5fsLNC69aO_DtnycbqcPKfz16fZ5H6eWtASUkmOA2oHgAgotLMFSe_ICOJaqwwVd0iy4GgQLJfSW06FUcEHE8CIIZsdWRdpVW6b_lJzKCNV5e8Qm4-Smq6ya18KQ8YG6FmNmROq0KSwKIzNbYZS2966Olq-R3ygfw5EJngO4gffOmSi
ContentType Journal Article
DBID ADJCN
AHFXO
DOA
DOI 10.33899/EDUSJ.2022.132274.1201
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate تقنيات تقدير جهود تطوير البرمجيات:دراسة
EISSN 2664-2530
EndPage 92
ExternalDocumentID oai_doaj_org_article_3babcf1088824d3798a7299bc5c4268c
1343051
GroupedDBID ADJCN
AHFXO
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-LOGICAL-c1861-6ad0128d11221238dc9a6edab3a08874270d2a6902b21c066ec0a9b7fefbf1b3
IEDL.DBID DOA
ISSN 1812-125X
IngestDate Tue Oct 22 15:06:27 EDT 2024
Wed Nov 06 06:01:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language Arabic
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1861-6ad0128d11221238dc9a6edab3a08874270d2a6902b21c066ec0a9b7fefbf1b3
OpenAccessLink https://doaj.org/article/3babcf1088824d3798a7299bc5c4268c
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_3babcf1088824d3798a7299bc5c4268c
emarefa_primary_1343051
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace الموصل، العراق
PublicationPlace_xml – name: الموصل، العراق
PublicationTitle al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil
PublicationYear 2022
Publisher جامعة الموصل، كلية التربية للعلوم الصرفة
College of Education for Pure Sciences
Publisher_xml – name: جامعة الموصل، كلية التربية للعلوم الصرفة
– name: College of Education for Pure Sciences
SSID ssj0002873476
Score 2.2271092
Snippet Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models,...
Software Effort Estimation (SEE) is used in accurately predicting the effort in terms of (person–hours or person–months). Although there are many models,...
SourceID doaj
emarefa
SourceType Open Website
Publisher
StartPage 80
SubjectTerms decision tree
machine learning (ml)
random forest
software effort estimation (see)
support vector machines (svm)
أشجار القرار
التعلم الآلي
برمجيات الحاسوب
Title Software development effort estimation techniques: a survey
URI https://search.emarefa.net/detail/BIM-1343051
https://doaj.org/article/3babcf1088824d3798a7299bc5c4268c
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsC8SoveWB1Gz8a2zAVSMXE0g7dIj-HDgW1FMS_52yHqhsLU6TIOjk--b7vorvvELrTTgjNfUVCNYpEQGwkOrqKaFYDXsdog8-jE6byda6emySTsx31lWrCijxwObght8a6SOEyKCY8l1oZ4IPaupEDcFEuR99K7yRTi_zLSHKRJ8slBCOA4vNS3MWTntwQovh6AckhY4OUjUkxoCyNhcmy_bk31wA-mR2kmRyhw44i4nHZ2jHaM6sT9DCFePkF6_FOmQ9uInBOeMA9LS2IeParybq-x2M83aw-w_cpmk2a2dML6QYfEEdVTUltfMIND1woIYvyTps6eGO5SUFBMFl5ZiCvZZZRB6QhuMpoK2OINlLLz1Bv-bYMFwhzp3gES8YHKmQVdGo-rTWQAlgYmOmjx_TJ7XuRtmiT2HR-AS5oOxe0f7mgj867A9vaoTxJidHL_zB_hQ6Sp0rh1zXqfaw24Qbtr_3mNjv9B2drrP0
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Development+Effort+Estimation+Techniques%3A+A+Survey&rft.jtitle=al-Tarbiyah+wa-al-%CA%BBilm+lil-%CA%BBul%C5%ABm+al-ins%C4%81n%C4%AByah+%3A+majallah+%CA%BBilm%C4%AByah+mu%E1%B8%A5akkamah+ta%E1%B9%A3duru+%CA%BBan+Kull%C4%AByat+al-Tarbiyah+lil-%CA%BBUl%C5%ABm+al-Ins%C4%81n%C4%AByah+f%C4%AB+J%C4%81mi%CA%BBat+al-Maw%E1%B9%A3il&rft.au=farah+alhamdany&rft.au=laheeb+Ibrahim&rft.date=2022-03-01&rft.pub=College+of+Education+for+Pure+Sciences&rft.issn=1812-125X&rft.eissn=2664-2530&rft.volume=31&rft.issue=1&rft.spage=80&rft.epage=92&rft_id=info:doi/10.33899%2Fedusj.2022.132274.1201&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3babcf1088824d3798a7299bc5c4268c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1812-125X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1812-125X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1812-125X&client=summon