Software development effort estimation techniques: a survey
Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models, software effort estimation (SEE) is one of the most difficult tasks for successful software development. several see models have been proposed. ho...
Saved in:
Published in: | al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil Vol. 31; no. 1; pp. 80 - 92 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | Arabic English |
Published: |
الموصل، العراق
جامعة الموصل، كلية التربية للعلوم الصرفة
01-03-2022
College of Education for Pure Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models, software effort estimation (SEE) is one of the most difficult tasks for successful software development. several see models have been proposed. however, software effort overestimation or underestimation can lead to failure or cancellation of a project. hence, the main target of this research is to find a performance model for estimating the software effort through conduction empirical comparisons using various machine learning (ml) algorithms. various ml techniques have been used with seven datasets used for effort estimation. these datasets are china, Albrecht, Maxwell, Desharnais, Kemerer, Cocomo81, Kitchenham, to determine the best performance for software development effort estimation. root mean square error (RMSE), mean absolute error (MAE), and r-squared were the evaluation metrics considered. results and experiments with various ml algorithms for software effort estimation have shown that the lasso algorithm with china dataset produced the best performance compared to the other algorithms.
يتم استخدام تقدير جهد البرمجيات (Software Effort Estimation (SEE)) للتنبؤ وبشكل دقيق بالجهد من حيث (عدد شهور العمل أو عدد ساعات العمل)، وعلى الرغم من وجود العديد من النماذج فإن تقدير جهد البرمجيات يعد من أصعب المهام لتطوير البرمجيات الناجحة. حيث تم اقتراح العديد من نماذج تقدير جهد البرمجيات ومع ذلك، فإن الإفراط في تقدير جهد البرامج أو النقص في تقدير جهد البرامج يؤدي إلى إلغاء المشروع أو فشل المشروع.
إن الهدف الرئيسي لهذا البحث هو العثور على نموذج أداء لتقدير جهد البرمجيات من خلال إجراء دراسة ومقارنات تجريبية لخوارزميات التعلم الآلي. تم استخدام تقنيات التعلم الآلي مع سبع مجموعة بيانات مستخدمة والتي تضمنت china، Albrecht، Maxwell Desharnais، Kemerer،Cocomo81 ، Kitchenham، وذلك لتحديد أفضل أداء لتقدير جهود تطوير البرمجيات. حيث تم اعتبار الجذر التربيعي لمتوسط الخطأ (RMSE) ومتوسط الخطأ المطلق (MAE) وR-Squared كمقاييس للتقييم التي تم أخذها في الاعتبار. أظهرت النتائج والتجارب مع خوارزميات التعلم الآلي المختلفة لتقدير جهد البرمجيات أن خوارزمية LASSO مع مجموعة بيانات china أنتجت أفضل أداء مقارنة مع خوارزميات التعلم الآلي الأخرى. |
---|---|
AbstractList | Software Effort Estimation (SEE) is used in accurately predicting the effort in terms of (person–hours or person–months). Although there are many models, Software Effort Estimation (SEE) is one of the most difficult tasks for successful software development. Several SEE models have been proposed. However, software effort overestimation or underestimation can lead to failure or cancellation of a project.
Hence, the main target of this research is to find a performance model for estimating the software effort through conduction empirical comparisons using various Machine Learning (ML) algorithms. Various ML techniques have been used with seven datasets used for Effort Estimation. These datasets are China, Albrecht, Maxwell, Desharnais, Kemerer, Cocomo81, Kitchenham, to determine the best performance for Software Development Effort Estimation. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-Squared were the evaluation metrics considered. Results and experiments with various ML algorithms for software effort estimation have shown that the LASSO algorithm with China dataset produced the best performance compared to the other algorithms. Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models, software effort estimation (SEE) is one of the most difficult tasks for successful software development. several see models have been proposed. however, software effort overestimation or underestimation can lead to failure or cancellation of a project. hence, the main target of this research is to find a performance model for estimating the software effort through conduction empirical comparisons using various machine learning (ml) algorithms. various ml techniques have been used with seven datasets used for effort estimation. these datasets are china, Albrecht, Maxwell, Desharnais, Kemerer, Cocomo81, Kitchenham, to determine the best performance for software development effort estimation. root mean square error (RMSE), mean absolute error (MAE), and r-squared were the evaluation metrics considered. results and experiments with various ml algorithms for software effort estimation have shown that the lasso algorithm with china dataset produced the best performance compared to the other algorithms. يتم استخدام تقدير جهد البرمجيات (Software Effort Estimation (SEE)) للتنبؤ وبشكل دقيق بالجهد من حيث (عدد شهور العمل أو عدد ساعات العمل)، وعلى الرغم من وجود العديد من النماذج فإن تقدير جهد البرمجيات يعد من أصعب المهام لتطوير البرمجيات الناجحة. حيث تم اقتراح العديد من نماذج تقدير جهد البرمجيات ومع ذلك، فإن الإفراط في تقدير جهد البرامج أو النقص في تقدير جهد البرامج يؤدي إلى إلغاء المشروع أو فشل المشروع. إن الهدف الرئيسي لهذا البحث هو العثور على نموذج أداء لتقدير جهد البرمجيات من خلال إجراء دراسة ومقارنات تجريبية لخوارزميات التعلم الآلي. تم استخدام تقنيات التعلم الآلي مع سبع مجموعة بيانات مستخدمة والتي تضمنت china، Albrecht، Maxwell Desharnais، Kemerer،Cocomo81 ، Kitchenham، وذلك لتحديد أفضل أداء لتقدير جهود تطوير البرمجيات. حيث تم اعتبار الجذر التربيعي لمتوسط الخطأ (RMSE) ومتوسط الخطأ المطلق (MAE) وR-Squared كمقاييس للتقييم التي تم أخذها في الاعتبار. أظهرت النتائج والتجارب مع خوارزميات التعلم الآلي المختلفة لتقدير جهد البرمجيات أن خوارزمية LASSO مع مجموعة بيانات china أنتجت أفضل أداء مقارنة مع خوارزميات التعلم الآلي الأخرى. |
Author | Ibrahim, Lahib Muhammad Ahmad, Farah Basil |
Author_xml | – sequence: 1 fullname: Ahmad, Farah Basil organization: Department of software engineering, college of computer sciences and mathematics, university of Mosul, Mosul, Iraq – sequence: 2 fullname: Ibrahim, Lahib Muhammad organization: Department of software engineering, college of computer sciences and mathematics, university of Mosul, Mosul, Iraq |
BookMark | eNo9zs1OwkAUhuGJ0UREbkF7A8U5Z9qZqa4MomJIXICJu-bMn5ZAB9uC4e5txLh6k2_x5Ltgp3WsPWPXwMdC6KK4mT68LV7GyBHHIBBVNgbkcMIGKGWWYi74KRuABkwB8_dzNmrbFecctRKZkgN2t4ih-6bGJ87v_TpuN77uEh9CbPq0XbWhrop10nn7WVdfO9_eJpS0u2bvD5fsLNC69aO_DtnycbqcPKfz16fZ5H6eWtASUkmOA2oHgAgotLMFSe_ICOJaqwwVd0iy4GgQLJfSW06FUcEHE8CIIZsdWRdpVW6b_lJzKCNV5e8Qm4-Smq6ya18KQ8YG6FmNmROq0KSwKIzNbYZS2966Olq-R3ygfw5EJngO4gffOmSi |
ContentType | Journal Article |
DBID | ADJCN AHFXO DOA |
DOI | 10.33899/EDUSJ.2022.132274.1201 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | تقنيات تقدير جهود تطوير البرمجيات:دراسة |
EISSN | 2664-2530 |
EndPage | 92 |
ExternalDocumentID | oai_doaj_org_article_3babcf1088824d3798a7299bc5c4268c 1343051 |
GroupedDBID | ADJCN AHFXO ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ |
ID | FETCH-LOGICAL-c1861-6ad0128d11221238dc9a6edab3a08874270d2a6902b21c066ec0a9b7fefbf1b3 |
IEDL.DBID | DOA |
ISSN | 1812-125X |
IngestDate | Tue Oct 22 15:06:27 EDT 2024 Wed Nov 06 06:01:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | Arabic English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1861-6ad0128d11221238dc9a6edab3a08874270d2a6902b21c066ec0a9b7fefbf1b3 |
OpenAccessLink | https://doaj.org/article/3babcf1088824d3798a7299bc5c4268c |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3babcf1088824d3798a7299bc5c4268c emarefa_primary_1343051 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | الموصل، العراق |
PublicationPlace_xml | – name: الموصل، العراق |
PublicationTitle | al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil |
PublicationYear | 2022 |
Publisher | جامعة الموصل، كلية التربية للعلوم الصرفة College of Education for Pure Sciences |
Publisher_xml | – name: جامعة الموصل، كلية التربية للعلوم الصرفة – name: College of Education for Pure Sciences |
SSID | ssj0002873476 |
Score | 2.2271092 |
Snippet | Software effort estimation (SEE) is used in accurately predicting the effort in terms of (person-hours or person-months). although there are many models,... Software Effort Estimation (SEE) is used in accurately predicting the effort in terms of (person–hours or person–months). Although there are many models,... |
SourceID | doaj emarefa |
SourceType | Open Website Publisher |
StartPage | 80 |
SubjectTerms | decision tree machine learning (ml) random forest software effort estimation (see) support vector machines (svm) أشجار القرار التعلم الآلي برمجيات الحاسوب |
Title | Software development effort estimation techniques: a survey |
URI | https://search.emarefa.net/detail/BIM-1343051 https://doaj.org/article/3babcf1088824d3798a7299bc5c4268c |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsC8SoveWB1Gz8a2zAVSMXE0g7dIj-HDgW1FMS_52yHqhsLU6TIOjk--b7vorvvELrTTgjNfUVCNYpEQGwkOrqKaFYDXsdog8-jE6byda6emySTsx31lWrCijxwObght8a6SOEyKCY8l1oZ4IPaupEDcFEuR99K7yRTi_zLSHKRJ8slBCOA4vNS3MWTntwQovh6AckhY4OUjUkxoCyNhcmy_bk31wA-mR2kmRyhw44i4nHZ2jHaM6sT9DCFePkF6_FOmQ9uInBOeMA9LS2IeParybq-x2M83aw-w_cpmk2a2dML6QYfEEdVTUltfMIND1woIYvyTps6eGO5SUFBMFl5ZiCvZZZRB6QhuMpoK2OINlLLz1Bv-bYMFwhzp3gES8YHKmQVdGo-rTWQAlgYmOmjx_TJ7XuRtmiT2HR-AS5oOxe0f7mgj867A9vaoTxJidHL_zB_hQ6Sp0rh1zXqfaw24Qbtr_3mNjv9B2drrP0 |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Development+Effort+Estimation+Techniques%3A+A+Survey&rft.jtitle=al-Tarbiyah+wa-al-%CA%BBilm+lil-%CA%BBul%C5%ABm+al-ins%C4%81n%C4%AByah+%3A+majallah+%CA%BBilm%C4%AByah+mu%E1%B8%A5akkamah+ta%E1%B9%A3duru+%CA%BBan+Kull%C4%AByat+al-Tarbiyah+lil-%CA%BBUl%C5%ABm+al-Ins%C4%81n%C4%AByah+f%C4%AB+J%C4%81mi%CA%BBat+al-Maw%E1%B9%A3il&rft.au=farah+alhamdany&rft.au=laheeb+Ibrahim&rft.date=2022-03-01&rft.pub=College+of+Education+for+Pure+Sciences&rft.issn=1812-125X&rft.eissn=2664-2530&rft.volume=31&rft.issue=1&rft.spage=80&rft.epage=92&rft_id=info:doi/10.33899%2Fedusj.2022.132274.1201&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3babcf1088824d3798a7299bc5c4268c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1812-125X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1812-125X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1812-125X&client=summon |