Linear Transformations Preserving the Minimal Values of the Cyclicity Index of Tropical Matrices

The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the cyclicity index of a strongly connected directed graph is equal to the greatest common divisor of the lengths of all its directed cycles. The cyc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) Vol. 281; no. 2; pp. 234 - 245
Main Authors: Guterman, A. E., Kreines, E. M., Vlasov, A. V.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01-05-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the cyclicity index of a strongly connected directed graph is equal to the greatest common divisor of the lengths of all its directed cycles. The cyclicity index of a tropical matrix is the cyclicity index of its critical subgraph, i.e., the subgraph of the adjacency graph consisting of all cycles with the largest average weight. This paper considers linear transformations of tropical matrices that preserve two values of the cyclicity index, 1 and 2. A complete characterization of such transformations is obtained. To this end, it is proved that the values 1 and 2 of the cyclicity index are preserved if and only if all its values are preserved. It is shown that there are mappings of another type that preserve only one value of the cyclicity index.
AbstractList The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the cyclicity index of a strongly connected directed graph is equal to the greatest common divisor of the lengths of all its directed cycles. The cyclicity index of a tropical matrix is the cyclicity index of its critical subgraph, i.e., the subgraph of the adjacency graph consisting of all cycles with the largest average weight. This paper considers linear transformations of tropical matrices that preserve two values of the cyclicity index, 1 and 2. A complete characterization of such transformations is obtained. To this end, it is proved that the values 1 and 2 of the cyclicity index are preserved if and only if all its values are preserved. It is shown that there are mappings of another type that preserve only one value of the cyclicity index.
Author Vlasov, A. V.
Kreines, E. M.
Guterman, A. E.
Author_xml – sequence: 1
  givenname: A. E.
  surname: Guterman
  fullname: Guterman, A. E.
  email: alexander.guterman@biu.ac.il
  organization: Bar-Ilan University, Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics
– sequence: 2
  givenname: E. M.
  surname: Kreines
  fullname: Kreines, E. M.
  organization: Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics, Tel Aviv University
– sequence: 3
  givenname: A. V.
  surname: Vlasov
  fullname: Vlasov, A. V.
  organization: Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics
BookMark eNp9UMtOwzAQtBBItIUf4BSJs8FvJ0dU8ajUCg6Fq3Fcp7hK7WKniPw9boPEjdOuRjOzOzMGpz54C8AVRjcYIXmbMKp4CRFhEElUCdifgBHmksJSVvw070gSSKlk52Cc0gZlkSjpCLzPnbc6FsuofWpC3OrOBZ-Kl2iTjV_Or4vuwxYL591Wt8Wbbvc2FaE5otPetM64ri9mfmW_D_Ayhp0zmbnQXXTGpgtw1ug22cvfOQGvD_fL6ROcPz_OpndzaHDJe0gbKikToqJoxY0m1Fgq6pWtBDWcVKzOYYhhAlleo7o0TBvRmEpgohnhCNEJuB58dzF85h87tQn76PNJRRFjTBJCcWaRgWViSCnaRu1iDhZ7hZE6NKmGJlVuUh2bVH0W0UGUMtmvbfyz_kf1A6r6eNo
Cites_doi 10.1515/spma-2020-0128
10.1016/j.laa.2009.04.027
10.1080/03081089208818176
10.1016/S0024-3795(00)00020-3
10.1515/9781400865239
10.1016/0024-3795(92)90377-M
10.1016/j.laa.2020.10.032
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10958-024-07096-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 245
ExternalDocumentID 10_1007_s10958_024_07096_y
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AACDK
AAEOY
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACDTI
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFQL
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAYXX
AAYZH
AEARS
CITATION
H13
ID FETCH-LOGICAL-c185y-3f373466930d5ca23ce36bde963c5294b1572c460e5b0b8c4ac6fc9612a425003
IEDL.DBID AEJHL
ISSN 1072-3374
IngestDate Mon Nov 18 02:02:10 EST 2024
Fri Nov 22 03:02:33 EST 2024
Wed Apr 24 01:25:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185y-3f373466930d5ca23ce36bde963c5294b1572c460e5b0b8c4ac6fc9612a425003
PQID 3044472231
PQPubID 2043545
PageCount 12
ParticipantIDs proquest_journals_3044472231
crossref_primary_10_1007_s10958_024_07096_y
springer_journals_10_1007_s10958_024_07096_y
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Kennedy-Cochran-PatrickAMerletGNowakTSergeevSNew bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rankLinear Algebra Appl.2021611279309419062510.1016/j.laa.2020.10.032
LiC-KTsingNKLinear preserver problems: A brief introduction and some special techniquesLinear Algebra Appl.1992162–164217235114840110.1016/0024-3795(92)90377-M
GutermanAKreinesEVlasovANon-surjective linear transformations of tropical matrices preserving the cyclicity indexKybernetika20225856917074538621
G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitz. Deutsch. Akad. Wiss., Berlin (1897).
GavalecMLinear matrix period in max-plus algebraLinear Algebra Appl.2000307167182174192410.1016/S0024-3795(00)00020-3
S. Pierce and others, “A survey of linear preserver problems,” Linear Multilinear Algebra, 33, 1–119 (1992).
M. Gavalec, Periodicity in Extremal Algebras, Gaudeamus, Hradec Kr´alov´e (2004).
GutermanAKreinesEThomassenCLinear transformations of tropical matrices preserving the cyclicity indexSpecial Matrices20219112118422386610.1515/spma-2020-0128
B. Heidergott, G. J. Olsder, and J. van der Woude, Max Plus at Work, Princeton Series in Applied Mathematics (2006).
L. Molnar, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces (Lect. Notes Math., 1895) (2007).
SergeevSMax algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classesLinear Algebra Appl.200943113251339254791410.1016/j.laa.2009.04.027
7096_CR9
S Sergeev (7096_CR11) 2009; 431
C-K Li (7096_CR8) 1992; 162–164
A Kennedy-Cochran-Patrick (7096_CR7) 2021; 611
A Guterman (7096_CR4) 2021; 9
7096_CR10
A Guterman (7096_CR5) 2022; 58
7096_CR6
7096_CR1
M Gavalec (7096_CR3) 2000; 307
7096_CR2
References_xml – volume: 9
  start-page: 112
  year: 2021
  ident: 7096_CR4
  publication-title: Special Matrices
  doi: 10.1515/spma-2020-0128
  contributor:
    fullname: A Guterman
– volume: 431
  start-page: 1325
  year: 2009
  ident: 7096_CR11
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.04.027
  contributor:
    fullname: S Sergeev
– ident: 7096_CR10
  doi: 10.1080/03081089208818176
– volume: 307
  start-page: 167
  year: 2000
  ident: 7096_CR3
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00020-3
  contributor:
    fullname: M Gavalec
– ident: 7096_CR6
  doi: 10.1515/9781400865239
– ident: 7096_CR1
– volume: 58
  start-page: 691
  issue: 5
  year: 2022
  ident: 7096_CR5
  publication-title: Kybernetika
  contributor:
    fullname: A Guterman
– volume: 162–164
  start-page: 217
  year: 1992
  ident: 7096_CR8
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(92)90377-M
  contributor:
    fullname: C-K Li
– ident: 7096_CR9
– ident: 7096_CR2
– volume: 611
  start-page: 279
  year: 2021
  ident: 7096_CR7
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2020.10.032
  contributor:
    fullname: A Kennedy-Cochran-Patrick
SSID ssj0007683
Score 2.3637064
Snippet The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 234
SubjectTerms Graph theory
Linear transformations
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Title Linear Transformations Preserving the Minimal Values of the Cyclicity Index of Tropical Matrices
URI https://link.springer.com/article/10.1007/s10958-024-07096-y
https://www.proquest.com/docview/3044472231
Volume 281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RuOjBbyOKpgdvWrOt-zwSBMGIF6fxNtuuM0QchMlh_72vYwM0etDTkq5pmvf5a_v6K8A55yZmJUNRFxfL1I6ZoEIYCZWBwnBpJlwE-jZy78G7f_avO5omhy22LtK3q-pEsgjUK3fdAsenmFIoWmng0nwd6ph7HDTueqtz27tbBGBE0PO6es-ijHl2eVfm51G-5qMlyPx2Llqkm-72vya6A1sluiStuTnswppK92BzsKBmzfbhBVefaN0kXEGsaHlE12LouJG-EuxNBsN0-I5DPfERzpSMk6K1ncvRUCJwJ33Nsqibw-l4ohVNBgXZv8oO4LHbCds9Wj6zQCUm65yyhHnMdvWbiLEjucUkqknECl1TOlZgC9PxLGm7hnKEIXxpc-kmMkBoxNHhMSocQi0dp-oICC5mPMOMk8SX3Bbo3YpJnxWnO5wz02nARSXsaDJn04iWvMlabhHKLSrkFuUNaFb6iErPyiKmCe48BDVmAy4rBSx__z7a8d-6n8CGVehQ1zY2ofYxnalTWM_i2Vlpb_rbD2-6n5N80PU
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4BHYCBN6I8PbCBpSR2XiOClla0XQiILdiOgyqVtGro0H_POU3agmCA1bYs656f5bvPAJdC2JiVLE09vCxTnjBJpbRSqkKN4dJOhQxNN3Lr0e-9BHcNQ5PDq16Yotq9epIsIvVSs1voBhRzCkUzDT06XYUaDz2Otly7aUf3zXkERgg9K6z3HcqYz8tmmZ93-ZqQFijz28NokW-a2_876Q5slfiS3MwMYhdWdLYHm905OWu-D694_0T7JtESZkXbI6Yaw0SO7I3gatLtZ_133OpZDPCoZJgWo7dTNegrhO6kbXgWzXA0Ho6Mqkm3oPvX-QE8NRvRbYuWHy1Qhel6SlnKfMY98yti4irhMIWKkolG51SuE3Jpu76juGdpV1oyUFwoL1UhgiOBLo9x4RDWsmGmj4Dgdca37CRNAyW4RP_WTAWseN8RgtluHa4qacejGZ9GvGBONnKLUW5xIbd4WofTSiFx6Vt5zAzFnY-wxq7DdaWAxfTvux3_bfkFrLeibifutHsPJ7DhFPo0lY6nsPYxnugzWM2TyXlpfJ-ZTtNX
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sC6IH32K1ag7eNHR3s89j6YNW2yJYxduaZLNSqNvSx6H_3sl2-1D0IF6TEMLMZOYbMvMF4IZzE6OSoaiLyTK1IyaoEEZMZaDQXZoxF4HuRm4-ed1Xv1bXNDmrLv602n35JLnoadAsTcm0PIri8kbjW-D4FOMLRZMNXDrPQcHGTAYtvVCp3zfbK2-McHpRZO9ZlDHPzhpnft7la3BaI85vj6Rp7Gns___UB7CX4U5SWRjKIWyp5Ah2OyvS1skxvGFeinZPehtYFm2S6CoN7VGSd4KrSaef9D9wqxc-wGOTYZyOVudy0JcI6UlL8y_q4d54ONImQDrpNwBqcgLPjXqv2qTZBwxUYhifUxYzj9mu_i0xciS3mEQFikjhpZWOFdjCdDxL2q6hHGEIX9pcurEMEDRxdAXoL04hnwwTdQYE0xzPMKM49iW3Bd57xaTP0ncfzpnpFOF2KflwtODZCNeMylpuIcotTOUWzotQWionzO7cJGSa-s5DuGMW4W6pjPX077ud_235NWw_1hphu9V9uIAdK1WnLoAsQX46nqlLyE2i2VVmh59gtdwa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Transformations+Preserving+the+Minimal+Values+of+the+Cyclicity+Index+of+Tropical+Matrices&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Guterman%2C+A.+E.&rft.au=Kreines%2C+E.+M.&rft.au=Vlasov%2C+A.+V.&rft.date=2024-05-01&rft.pub=Springer+International+Publishing&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=281&rft.issue=2&rft.spage=234&rft.epage=245&rft_id=info:doi/10.1007%2Fs10958-024-07096-y&rft.externalDocID=10_1007_s10958_024_07096_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon