Linear Transformations Preserving the Minimal Values of the Cyclicity Index of Tropical Matrices
The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the cyclicity index of a strongly connected directed graph is equal to the greatest common divisor of the lengths of all its directed cycles. The cyc...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) Vol. 281; no. 2; pp. 234 - 245 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-05-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the cyclicity index of a strongly connected directed graph is equal to the greatest common divisor of the lengths of all its directed cycles. The cyclicity index of a tropical matrix is the cyclicity index of its critical subgraph, i.e., the subgraph of the adjacency graph consisting of all cycles with the largest average weight. This paper considers linear transformations of tropical matrices that preserve two values of the cyclicity index, 1 and 2. A complete characterization of such transformations is obtained. To this end, it is proved that the values 1 and 2 of the cyclicity index are preserved if and only if all its values are preserved. It is shown that there are mappings of another type that preserve only one value of the cyclicity index. |
---|---|
AbstractList | The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the cyclicity index of a strongly connected directed graph is equal to the greatest common divisor of the lengths of all its directed cycles. The cyclicity index of a tropical matrix is the cyclicity index of its critical subgraph, i.e., the subgraph of the adjacency graph consisting of all cycles with the largest average weight. This paper considers linear transformations of tropical matrices that preserve two values of the cyclicity index, 1 and 2. A complete characterization of such transformations is obtained. To this end, it is proved that the values 1 and 2 of the cyclicity index are preserved if and only if all its values are preserved. It is shown that there are mappings of another type that preserve only one value of the cyclicity index. |
Author | Vlasov, A. V. Kreines, E. M. Guterman, A. E. |
Author_xml | – sequence: 1 givenname: A. E. surname: Guterman fullname: Guterman, A. E. email: alexander.guterman@biu.ac.il organization: Bar-Ilan University, Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics – sequence: 2 givenname: E. M. surname: Kreines fullname: Kreines, E. M. organization: Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics, Tel Aviv University – sequence: 3 givenname: A. V. surname: Vlasov fullname: Vlasov, A. V. organization: Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics |
BookMark | eNp9UMtOwzAQtBBItIUf4BSJs8FvJ0dU8ajUCg6Fq3Fcp7hK7WKniPw9boPEjdOuRjOzOzMGpz54C8AVRjcYIXmbMKp4CRFhEElUCdifgBHmksJSVvw070gSSKlk52Cc0gZlkSjpCLzPnbc6FsuofWpC3OrOBZ-Kl2iTjV_Or4vuwxYL591Wt8Wbbvc2FaE5otPetM64ri9mfmW_D_Ayhp0zmbnQXXTGpgtw1ug22cvfOQGvD_fL6ROcPz_OpndzaHDJe0gbKikToqJoxY0m1Fgq6pWtBDWcVKzOYYhhAlleo7o0TBvRmEpgohnhCNEJuB58dzF85h87tQn76PNJRRFjTBJCcWaRgWViSCnaRu1iDhZ7hZE6NKmGJlVuUh2bVH0W0UGUMtmvbfyz_kf1A6r6eNo |
Cites_doi | 10.1515/spma-2020-0128 10.1016/j.laa.2009.04.027 10.1080/03081089208818176 10.1016/S0024-3795(00)00020-3 10.1515/9781400865239 10.1016/0024-3795(92)90377-M 10.1016/j.laa.2020.10.032 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10958-024-07096-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 245 |
ExternalDocumentID | 10_1007_s10958_024_07096_y |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AACDK AAEOY AAFGU AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACDTI ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFQL AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAYXX AAYZH AEARS CITATION H13 |
ID | FETCH-LOGICAL-c185y-3f373466930d5ca23ce36bde963c5294b1572c460e5b0b8c4ac6fc9612a425003 |
IEDL.DBID | AEJHL |
ISSN | 1072-3374 |
IngestDate | Mon Nov 18 02:02:10 EST 2024 Fri Nov 22 03:02:33 EST 2024 Wed Apr 24 01:25:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185y-3f373466930d5ca23ce36bde963c5294b1572c460e5b0b8c4ac6fc9612a425003 |
PQID | 3044472231 |
PQPubID | 2043545 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3044472231 crossref_primary_10_1007_s10958_024_07096_y springer_journals_10_1007_s10958_024_07096_y |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Kennedy-Cochran-PatrickAMerletGNowakTSergeevSNew bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rankLinear Algebra Appl.2021611279309419062510.1016/j.laa.2020.10.032 LiC-KTsingNKLinear preserver problems: A brief introduction and some special techniquesLinear Algebra Appl.1992162–164217235114840110.1016/0024-3795(92)90377-M GutermanAKreinesEVlasovANon-surjective linear transformations of tropical matrices preserving the cyclicity indexKybernetika20225856917074538621 G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitz. Deutsch. Akad. Wiss., Berlin (1897). GavalecMLinear matrix period in max-plus algebraLinear Algebra Appl.2000307167182174192410.1016/S0024-3795(00)00020-3 S. Pierce and others, “A survey of linear preserver problems,” Linear Multilinear Algebra, 33, 1–119 (1992). M. Gavalec, Periodicity in Extremal Algebras, Gaudeamus, Hradec Kr´alov´e (2004). GutermanAKreinesEThomassenCLinear transformations of tropical matrices preserving the cyclicity indexSpecial Matrices20219112118422386610.1515/spma-2020-0128 B. Heidergott, G. J. Olsder, and J. van der Woude, Max Plus at Work, Princeton Series in Applied Mathematics (2006). L. Molnar, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces (Lect. Notes Math., 1895) (2007). SergeevSMax algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classesLinear Algebra Appl.200943113251339254791410.1016/j.laa.2009.04.027 7096_CR9 S Sergeev (7096_CR11) 2009; 431 C-K Li (7096_CR8) 1992; 162–164 A Kennedy-Cochran-Patrick (7096_CR7) 2021; 611 A Guterman (7096_CR4) 2021; 9 7096_CR10 A Guterman (7096_CR5) 2022; 58 7096_CR6 7096_CR1 M Gavalec (7096_CR3) 2000; 307 7096_CR2 |
References_xml | – volume: 9 start-page: 112 year: 2021 ident: 7096_CR4 publication-title: Special Matrices doi: 10.1515/spma-2020-0128 contributor: fullname: A Guterman – volume: 431 start-page: 1325 year: 2009 ident: 7096_CR11 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2009.04.027 contributor: fullname: S Sergeev – ident: 7096_CR10 doi: 10.1080/03081089208818176 – volume: 307 start-page: 167 year: 2000 ident: 7096_CR3 publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(00)00020-3 contributor: fullname: M Gavalec – ident: 7096_CR6 doi: 10.1515/9781400865239 – ident: 7096_CR1 – volume: 58 start-page: 691 issue: 5 year: 2022 ident: 7096_CR5 publication-title: Kybernetika contributor: fullname: A Guterman – volume: 162–164 start-page: 217 year: 1992 ident: 7096_CR8 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(92)90377-M contributor: fullname: C-K Li – ident: 7096_CR9 – ident: 7096_CR2 – volume: 611 start-page: 279 year: 2021 ident: 7096_CR7 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2020.10.032 contributor: fullname: A Kennedy-Cochran-Patrick |
SSID | ssj0007683 |
Score | 2.3637064 |
Snippet | The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 234 |
SubjectTerms | Graph theory Linear transformations Mathematical analysis Mathematics Mathematics and Statistics Matrices (mathematics) |
Title | Linear Transformations Preserving the Minimal Values of the Cyclicity Index of Tropical Matrices |
URI | https://link.springer.com/article/10.1007/s10958-024-07096-y https://www.proquest.com/docview/3044472231 |
Volume | 281 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RuOjBbyOKpgdvWrOt-zwSBMGIF6fxNtuuM0QchMlh_72vYwM0etDTkq5pmvf5a_v6K8A55yZmJUNRFxfL1I6ZoEIYCZWBwnBpJlwE-jZy78G7f_avO5omhy22LtK3q-pEsgjUK3fdAsenmFIoWmng0nwd6ph7HDTueqtz27tbBGBE0PO6es-ijHl2eVfm51G-5qMlyPx2Llqkm-72vya6A1sluiStuTnswppK92BzsKBmzfbhBVefaN0kXEGsaHlE12LouJG-EuxNBsN0-I5DPfERzpSMk6K1ncvRUCJwJ33Nsqibw-l4ohVNBgXZv8oO4LHbCds9Wj6zQCUm65yyhHnMdvWbiLEjucUkqknECl1TOlZgC9PxLGm7hnKEIXxpc-kmMkBoxNHhMSocQi0dp-oICC5mPMOMk8SX3Bbo3YpJnxWnO5wz02nARSXsaDJn04iWvMlabhHKLSrkFuUNaFb6iErPyiKmCe48BDVmAy4rBSx__z7a8d-6n8CGVehQ1zY2ofYxnalTWM_i2Vlpb_rbD2-6n5N80PU |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4BHYCBN6I8PbCBpSR2XiOClla0XQiILdiOgyqVtGro0H_POU3agmCA1bYs656f5bvPAJdC2JiVLE09vCxTnjBJpbRSqkKN4dJOhQxNN3Lr0e-9BHcNQ5PDq16Yotq9epIsIvVSs1voBhRzCkUzDT06XYUaDz2Otly7aUf3zXkERgg9K6z3HcqYz8tmmZ93-ZqQFijz28NokW-a2_876Q5slfiS3MwMYhdWdLYHm905OWu-D694_0T7JtESZkXbI6Yaw0SO7I3gatLtZ_133OpZDPCoZJgWo7dTNegrhO6kbXgWzXA0Ho6Mqkm3oPvX-QE8NRvRbYuWHy1Qhel6SlnKfMY98yti4irhMIWKkolG51SuE3Jpu76juGdpV1oyUFwoL1UhgiOBLo9x4RDWsmGmj4Dgdca37CRNAyW4RP_WTAWseN8RgtluHa4qacejGZ9GvGBONnKLUW5xIbd4WofTSiFx6Vt5zAzFnY-wxq7DdaWAxfTvux3_bfkFrLeibifutHsPJ7DhFPo0lY6nsPYxnugzWM2TyXlpfJ-ZTtNX |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sC6IH32K1ag7eNHR3s89j6YNW2yJYxduaZLNSqNvSx6H_3sl2-1D0IF6TEMLMZOYbMvMF4IZzE6OSoaiLyTK1IyaoEEZMZaDQXZoxF4HuRm4-ed1Xv1bXNDmrLv602n35JLnoadAsTcm0PIri8kbjW-D4FOMLRZMNXDrPQcHGTAYtvVCp3zfbK2-McHpRZO9ZlDHPzhpnft7la3BaI85vj6Rp7Gns___UB7CX4U5SWRjKIWyp5Ah2OyvS1skxvGFeinZPehtYFm2S6CoN7VGSd4KrSaef9D9wqxc-wGOTYZyOVudy0JcI6UlL8y_q4d54ONImQDrpNwBqcgLPjXqv2qTZBwxUYhifUxYzj9mu_i0xciS3mEQFikjhpZWOFdjCdDxL2q6hHGEIX9pcurEMEDRxdAXoL04hnwwTdQYE0xzPMKM49iW3Bd57xaTP0ncfzpnpFOF2KflwtODZCNeMylpuIcotTOUWzotQWionzO7cJGSa-s5DuGMW4W6pjPX077ud_235NWw_1hphu9V9uIAdK1WnLoAsQX46nqlLyE2i2VVmh59gtdwa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Transformations+Preserving+the+Minimal+Values+of+the+Cyclicity+Index+of+Tropical+Matrices&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Guterman%2C+A.+E.&rft.au=Kreines%2C+E.+M.&rft.au=Vlasov%2C+A.+V.&rft.date=2024-05-01&rft.pub=Springer+International+Publishing&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=281&rft.issue=2&rft.spage=234&rft.epage=245&rft_id=info:doi/10.1007%2Fs10958-024-07096-y&rft.externalDocID=10_1007_s10958_024_07096_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |