Topology-defined bioactive properties of porous Ti-6Al-4V scaffolds produced by laser powder bed fusion

•Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are considered.•Bioactive properties of scaffolds are studied in vitro using multipotent MMSCs.•TPMS models are superior to a strut model by osteoinductive activity...

Full description

Saved in:
Bibliographic Details
Published in:Materials letters Vol. 377; p. 137528
Main Authors: Kiselevskiy, Mikhail V., Anisimova, Natalia Yu, Novruzov, Keryam M., Kapustin, Alexei V., Ryzhkin, Alexander A., Abramova, Marina M., Enikeev, Nariman A.
Format: Journal Article
Language:English
Published: Elsevier B.V 15-12-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are considered.•Bioactive properties of scaffolds are studied in vitro using multipotent MMSCs.•TPMS models are superior to a strut model by osteoinductive activity.•Sheet Gyroid and Diamond models are promising for developing 3D-printed scaffolds. The effect of the design of additively printed Ti porous structures on their bioactive properties is elucidated by in vitro testing. 3D-printed scaffolds with pores defined by several bioinspired triply periodic minimal surfaces as well as by a strut model have been engineered. Cell proliferation, angiogenesis and osteogenesis have been studied with the help of multipotent mesenchymal stromal cells. The elementary unit size and pore design can notably modify bioactive properties of porous structures. The models providing maximal bioactive activity of developed scaffolds are discussed.
AbstractList •Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are considered.•Bioactive properties of scaffolds are studied in vitro using multipotent MMSCs.•TPMS models are superior to a strut model by osteoinductive activity.•Sheet Gyroid and Diamond models are promising for developing 3D-printed scaffolds. The effect of the design of additively printed Ti porous structures on their bioactive properties is elucidated by in vitro testing. 3D-printed scaffolds with pores defined by several bioinspired triply periodic minimal surfaces as well as by a strut model have been engineered. Cell proliferation, angiogenesis and osteogenesis have been studied with the help of multipotent mesenchymal stromal cells. The elementary unit size and pore design can notably modify bioactive properties of porous structures. The models providing maximal bioactive activity of developed scaffolds are discussed.
ArticleNumber 137528
Author Abramova, Marina M.
Novruzov, Keryam M.
Kapustin, Alexei V.
Anisimova, Natalia Yu
Ryzhkin, Alexander A.
Enikeev, Nariman A.
Kiselevskiy, Mikhail V.
Author_xml – sequence: 1
  givenname: Mikhail V.
  surname: Kiselevskiy
  fullname: Kiselevskiy, Mikhail V.
  organization: N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia
– sequence: 2
  givenname: Natalia Yu
  surname: Anisimova
  fullname: Anisimova, Natalia Yu
  organization: N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia
– sequence: 3
  givenname: Keryam M.
  surname: Novruzov
  fullname: Novruzov, Keryam M.
  organization: N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia
– sequence: 4
  givenname: Alexei V.
  orcidid: 0009-0006-8094-0036
  surname: Kapustin
  fullname: Kapustin, Alexei V.
  organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia
– sequence: 5
  givenname: Alexander A.
  orcidid: 0009-0002-6003-4184
  surname: Ryzhkin
  fullname: Ryzhkin, Alexander A.
  organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia
– sequence: 6
  givenname: Marina M.
  orcidid: 0000-0003-2691-6335
  surname: Abramova
  fullname: Abramova, Marina M.
  organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia
– sequence: 7
  givenname: Nariman A.
  orcidid: 0000-0002-7503-8949
  surname: Enikeev
  fullname: Enikeev, Nariman A.
  email: nariman.enikeev@gmail.com
  organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia
BookMark eNp9kM1qwzAQhHVIoUnaN-jBL2B3ZUuRfCmE0D8I9JKW3oQlrYKCYxnJScnb18E99zSwOzPsfgsy60KHhDxQKCjQ1eOhODZDi0NRQskKWgleyhmZjyuRcyG-b8kipQMAsBrYnOx3oQ9t2F9yi853aDPtQ2MGf8asj6HHOHhMWXBZH2I4pWzn89W6zdlXlkzjXGhtuhrtyVyzl6xtEsbR_GNH0ePMnZIP3R25cU2b8P5Pl-Tz5Xm3ecu3H6_vm_U2N1TyITeVNIyCBV3ZCmouOehSWipEzZ2xDUpmGK-10FJKYUvHOGBdStQWONVQLQmbek0MKUV0qo_-2MSLoqCugNRBTYDUFZCaAI2xpymG421nj1El47Ebf_IRzaBs8P8X_AKDsHXX
Cites_doi 10.1016/j.actamat.2010.02.004
10.1016/j.actbio.2007.05.009
10.1016/j.msea.2022.144479
10.1023/A:1008973120918
10.3390/biomimetics8070546
10.1039/C6RA17747F
10.1016/j.matchemphys.2021.125217
10.1016/j.actbio.2017.02.024
10.1002/jbm.1069
10.3390/polym12122938
10.1016/j.cirp.2017.05.009
10.1016/j.arth.2013.04.033
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.matlet.2024.137528
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_matlet_2024_137528
S0167577X24016689
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSZ
T5K
XPP
ZMT
~02
~G-
29M
AAYXX
ABXDB
ACNNM
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SMS
WUQ
ID FETCH-LOGICAL-c185t-c38c410d0b3d3095850b28d17795fcdae84c459b7b8887d2f450e928ebd051b03
ISSN 0167-577X
IngestDate Wed Nov 06 13:25:37 EST 2024
Sat Nov 02 15:59:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Bioactive properties
Ti alloys
Porous scaffolds
Additive manufacturing
Triply periodic minimized surfaces
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c185t-c38c410d0b3d3095850b28d17795fcdae84c459b7b8887d2f450e928ebd051b03
ORCID 0000-0002-7503-8949
0009-0002-6003-4184
0009-0006-8094-0036
0000-0003-2691-6335
ParticipantIDs crossref_primary_10_1016_j_matlet_2024_137528
elsevier_sciencedirect_doi_10_1016_j_matlet_2024_137528
PublicationCentury 2000
PublicationDate 2024-12-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Materials letters
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Surmeneva, Khrapov, Prosolov (b0070) 2022; 275
Bourell, Kruth, Leu (b0020) 2017; 66
Kiselevskiy, Anisimova, Kapustin (b0015) 2023; 8
Lu, Wang, Ji (b0050) 2016; 84
Zimina, Senatov, Choudhary (b0065) 2020; 12
Xue, Krishna, Bandyopadhyay, Bose (b0030) 2007; 3
du Plessis, Razavi, Benedetti (b0005) 2022; 125
Khrapov, Paveleva, Kozadayeva (b0075) 2023; 862
Thijs, Verhaeghe, Craeghs (b0025) 2010; 58
Davoodi, Montazerian, Mirhakimi (b0010) 2022; 15
Itälä, Ylänen, Ekholm (b0045) 2001; 58
Enikeev, Abramova, Kapustin (b0055) 2024; 14
Derome, Sternheim, Backstein, Malo (b0035) 2014; 29
Lu, Flautre, Anselme (b0040) 1999; 10
Bobbert, Lietaert, Eftekhari (b0060) 2017; 53
du Plessis (10.1016/j.matlet.2024.137528_b0005) 2022; 125
Davoodi (10.1016/j.matlet.2024.137528_b0010) 2022; 15
Enikeev (10.1016/j.matlet.2024.137528_b0055) 2024; 14
Kiselevskiy (10.1016/j.matlet.2024.137528_b0015) 2023; 8
Zimina (10.1016/j.matlet.2024.137528_b0065) 2020; 12
Itälä (10.1016/j.matlet.2024.137528_b0045) 2001; 58
Lu (10.1016/j.matlet.2024.137528_b0040) 1999; 10
Lu (10.1016/j.matlet.2024.137528_b0050) 2016; 84
Derome (10.1016/j.matlet.2024.137528_b0035) 2014; 29
Thijs (10.1016/j.matlet.2024.137528_b0025) 2010; 58
Bourell (10.1016/j.matlet.2024.137528_b0020) 2017; 66
Bobbert (10.1016/j.matlet.2024.137528_b0060) 2017; 53
Khrapov (10.1016/j.matlet.2024.137528_b0075) 2023; 862
Xue (10.1016/j.matlet.2024.137528_b0030) 2007; 3
Surmeneva (10.1016/j.matlet.2024.137528_b0070) 2022; 275
References_xml – volume: 14
  start-page: 3
  year: 2024
  end-page: 8
  ident: b0055
  publication-title: Lett. Mater.
  contributor:
    fullname: Kapustin
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: b0025
  publication-title: Acta Mater.
  contributor:
    fullname: Craeghs
– volume: 125
  year: 2022
  ident: b0005
  article-title: Progr
  publication-title: Mater. Sci.
  contributor:
    fullname: Benedetti
– volume: 66
  start-page: 659
  year: 2017
  end-page: 681
  ident: b0020
  publication-title: CIRP. Ann.
  contributor:
    fullname: Leu
– volume: 53
  start-page: 572
  year: 2017
  end-page: 584
  ident: b0060
  publication-title: Acta Biomater.
  contributor:
    fullname: Eftekhari
– volume: 3
  start-page: 1007
  year: 2007
  end-page: 1018
  ident: b0030
  publication-title: Acta Biomater.
  contributor:
    fullname: Bose
– volume: 58
  start-page: 679
  year: 2001
  end-page: 683
  ident: b0045
  publication-title: J. Biomed. Mater. Res.
  contributor:
    fullname: Ekholm
– volume: 29
  start-page: 122
  year: 2014
  end-page: 126
  ident: b0035
  publication-title: J. Arthroplasty
  contributor:
    fullname: Malo
– volume: 275
  year: 2022
  ident: b0070
  publication-title: Mater. Chem. Phys.
  contributor:
    fullname: Prosolov
– volume: 15
  start-page: 214
  year: 2022
  end-page: 249
  ident: b0010
  publication-title: Bioact. Mater.
  contributor:
    fullname: Mirhakimi
– volume: 12
  start-page: 2938
  year: 2020
  ident: b0065
  publication-title: Polymers
  contributor:
    fullname: Choudhary
– volume: 10
  start-page: 111
  year: 1999
  end-page: 120
  ident: b0040
  publication-title: J. Mater. Sci. Mater. Med.
  contributor:
    fullname: Anselme
– volume: 862
  year: 2023
  ident: b0075
  publication-title: Mater. Sci. Eng.
  contributor:
    fullname: Kozadayeva
– volume: 8
  start-page: 546
  year: 2023
  ident: b0015
  publication-title: Biomimetics
  contributor:
    fullname: Kapustin
– volume: 84
  start-page: 80522
  year: 2016
  end-page: 80528
  ident: b0050
  publication-title: RSC Advances
  contributor:
    fullname: Ji
– volume: 58
  start-page: 3303
  year: 2010
  ident: 10.1016/j.matlet.2024.137528_b0025
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.02.004
  contributor:
    fullname: Thijs
– volume: 3
  start-page: 1007
  year: 2007
  ident: 10.1016/j.matlet.2024.137528_b0030
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2007.05.009
  contributor:
    fullname: Xue
– volume: 14
  start-page: 3
  year: 2024
  ident: 10.1016/j.matlet.2024.137528_b0055
  publication-title: Lett. Mater.
  contributor:
    fullname: Enikeev
– volume: 862
  year: 2023
  ident: 10.1016/j.matlet.2024.137528_b0075
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2022.144479
  contributor:
    fullname: Khrapov
– volume: 10
  start-page: 111
  year: 1999
  ident: 10.1016/j.matlet.2024.137528_b0040
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1023/A:1008973120918
  contributor:
    fullname: Lu
– volume: 8
  start-page: 546
  year: 2023
  ident: 10.1016/j.matlet.2024.137528_b0015
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8070546
  contributor:
    fullname: Kiselevskiy
– volume: 15
  start-page: 214
  year: 2022
  ident: 10.1016/j.matlet.2024.137528_b0010
  publication-title: Bioact. Mater.
  contributor:
    fullname: Davoodi
– volume: 84
  start-page: 80522
  year: 2016
  ident: 10.1016/j.matlet.2024.137528_b0050
  publication-title: RSC Advances
  doi: 10.1039/C6RA17747F
  contributor:
    fullname: Lu
– volume: 125
  year: 2022
  ident: 10.1016/j.matlet.2024.137528_b0005
  article-title: Progr
  publication-title: Mater. Sci.
  contributor:
    fullname: du Plessis
– volume: 275
  year: 2022
  ident: 10.1016/j.matlet.2024.137528_b0070
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.125217
  contributor:
    fullname: Surmeneva
– volume: 53
  start-page: 572
  year: 2017
  ident: 10.1016/j.matlet.2024.137528_b0060
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.02.024
  contributor:
    fullname: Bobbert
– volume: 58
  start-page: 679
  year: 2001
  ident: 10.1016/j.matlet.2024.137528_b0045
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.1069
  contributor:
    fullname: Itälä
– volume: 12
  start-page: 2938
  year: 2020
  ident: 10.1016/j.matlet.2024.137528_b0065
  publication-title: Polymers
  doi: 10.3390/polym12122938
  contributor:
    fullname: Zimina
– volume: 66
  start-page: 659
  year: 2017
  ident: 10.1016/j.matlet.2024.137528_b0020
  publication-title: CIRP. Ann.
  doi: 10.1016/j.cirp.2017.05.009
  contributor:
    fullname: Bourell
– volume: 29
  start-page: 122
  year: 2014
  ident: 10.1016/j.matlet.2024.137528_b0035
  publication-title: J. Arthroplasty
  doi: 10.1016/j.arth.2013.04.033
  contributor:
    fullname: Derome
SSID ssj0004904
Score 2.4858122
Snippet •Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 137528
SubjectTerms Additive manufacturing
Bioactive properties
Porous scaffolds
Ti alloys
Triply periodic minimized surfaces
Title Topology-defined bioactive properties of porous Ti-6Al-4V scaffolds produced by laser powder bed fusion
URI https://dx.doi.org/10.1016/j.matlet.2024.137528
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6u0KCA4IFxPKSD9yqVHnWybGCogUEly2rcor8hOyWpmqaovLrGWfipFCEAIlLVFmxo8x8nn6ezIOQ50LGPBBp5mmWJHBAyWDPBb7x_FjHia-Nihqf7vkFez9PX07j6WDgYqL6sf-qaRgDXdvM2b_QdrcoDMBv0DlcQetw_TO9Y9eDnae0AQYJ_LIoeWPUbCzWyoZRY51ZIN42_HVWeOPJwosvh5XkxpQLVdkbVS2RmwK71mu4-astOiFgzNSV06XrBMU3-GbDRZMc1H8fano5bavrYoch-tefebEYXo5650NRAVi2HA29rcbIhx_rzkNdbtf1t3KLCUTrHf8yfNfNfctXthPZ0qXp6MIt3DoxwqZUIqZxomftILsGnZ1gxBPG5vvWOsKuLweWH50QVyPg-fCuI_uQURCxpE09_7Gm9oVd2q4MfCYYj9PsiJyEYKnAUJ5MXk_nb_rU2szvysPbCS77sgkRPHzWr9nNHmOZ3SG326MGnSBG7pKBXp6SW3sFKE_JjSYAWFb3yKefcUM73NAeN7Q0FHFDO9zQDjfU4YaKHW1wQxE3FHBDETf3yYdX09mLc69twuFJoHIbT0apjANf-SKy-xZOl74IUxUwliVGKq7TWMZJJphI4f9KhcZu8SxMtVBg74UfPSDHy3KpH9ryAFKEMoq0ioJYhywVyujEWBIrQl_oM-I54eUrrLWSuyDEqxyFnVth5yjsM8KchPOWLyIPzAEUv5356J9nPiY3e_w-Icebda2fkqNK1c9a6HwHcvqSWg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology-defined+bioactive+properties+of+porous+Ti-6Al-4V+scaffolds+produced+by+laser+powder+bed+fusion&rft.jtitle=Materials+letters&rft.au=Kiselevskiy%2C+Mikhail+V.&rft.au=Anisimova%2C+Natalia+Yu&rft.au=Novruzov%2C+Keryam+M.&rft.au=Kapustin%2C+Alexei+V.&rft.date=2024-12-15&rft.pub=Elsevier+B.V&rft.issn=0167-577X&rft.volume=377&rft_id=info:doi/10.1016%2Fj.matlet.2024.137528&rft.externalDocID=S0167577X24016689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-577X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-577X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-577X&client=summon