Topology-defined bioactive properties of porous Ti-6Al-4V scaffolds produced by laser powder bed fusion
•Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are considered.•Bioactive properties of scaffolds are studied in vitro using multipotent MMSCs.•TPMS models are superior to a strut model by osteoinductive activity...
Saved in:
Published in: | Materials letters Vol. 377; p. 137528 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
15-12-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are considered.•Bioactive properties of scaffolds are studied in vitro using multipotent MMSCs.•TPMS models are superior to a strut model by osteoinductive activity.•Sheet Gyroid and Diamond models are promising for developing 3D-printed scaffolds.
The effect of the design of additively printed Ti porous structures on their bioactive properties is elucidated by in vitro testing. 3D-printed scaffolds with pores defined by several bioinspired triply periodic minimal surfaces as well as by a strut model have been engineered. Cell proliferation, angiogenesis and osteogenesis have been studied with the help of multipotent mesenchymal stromal cells. The elementary unit size and pore design can notably modify bioactive properties of porous structures. The models providing maximal bioactive activity of developed scaffolds are discussed. |
---|---|
AbstractList | •Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are considered.•Bioactive properties of scaffolds are studied in vitro using multipotent MMSCs.•TPMS models are superior to a strut model by osteoinductive activity.•Sheet Gyroid and Diamond models are promising for developing 3D-printed scaffolds.
The effect of the design of additively printed Ti porous structures on their bioactive properties is elucidated by in vitro testing. 3D-printed scaffolds with pores defined by several bioinspired triply periodic minimal surfaces as well as by a strut model have been engineered. Cell proliferation, angiogenesis and osteogenesis have been studied with the help of multipotent mesenchymal stromal cells. The elementary unit size and pore design can notably modify bioactive properties of porous structures. The models providing maximal bioactive activity of developed scaffolds are discussed. |
ArticleNumber | 137528 |
Author | Abramova, Marina M. Novruzov, Keryam M. Kapustin, Alexei V. Anisimova, Natalia Yu Ryzhkin, Alexander A. Enikeev, Nariman A. Kiselevskiy, Mikhail V. |
Author_xml | – sequence: 1 givenname: Mikhail V. surname: Kiselevskiy fullname: Kiselevskiy, Mikhail V. organization: N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia – sequence: 2 givenname: Natalia Yu surname: Anisimova fullname: Anisimova, Natalia Yu organization: N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia – sequence: 3 givenname: Keryam M. surname: Novruzov fullname: Novruzov, Keryam M. organization: N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia – sequence: 4 givenname: Alexei V. orcidid: 0009-0006-8094-0036 surname: Kapustin fullname: Kapustin, Alexei V. organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia – sequence: 5 givenname: Alexander A. orcidid: 0009-0002-6003-4184 surname: Ryzhkin fullname: Ryzhkin, Alexander A. organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia – sequence: 6 givenname: Marina M. orcidid: 0000-0003-2691-6335 surname: Abramova fullname: Abramova, Marina M. organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia – sequence: 7 givenname: Nariman A. orcidid: 0000-0002-7503-8949 surname: Enikeev fullname: Enikeev, Nariman A. email: nariman.enikeev@gmail.com organization: Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia |
BookMark | eNp9kM1qwzAQhHVIoUnaN-jBL2B3ZUuRfCmE0D8I9JKW3oQlrYKCYxnJScnb18E99zSwOzPsfgsy60KHhDxQKCjQ1eOhODZDi0NRQskKWgleyhmZjyuRcyG-b8kipQMAsBrYnOx3oQ9t2F9yi853aDPtQ2MGf8asj6HHOHhMWXBZH2I4pWzn89W6zdlXlkzjXGhtuhrtyVyzl6xtEsbR_GNH0ePMnZIP3R25cU2b8P5Pl-Tz5Xm3ecu3H6_vm_U2N1TyITeVNIyCBV3ZCmouOehSWipEzZ2xDUpmGK-10FJKYUvHOGBdStQWONVQLQmbek0MKUV0qo_-2MSLoqCugNRBTYDUFZCaAI2xpymG421nj1El47Ebf_IRzaBs8P8X_AKDsHXX |
Cites_doi | 10.1016/j.actamat.2010.02.004 10.1016/j.actbio.2007.05.009 10.1016/j.msea.2022.144479 10.1023/A:1008973120918 10.3390/biomimetics8070546 10.1039/C6RA17747F 10.1016/j.matchemphys.2021.125217 10.1016/j.actbio.2017.02.024 10.1002/jbm.1069 10.3390/polym12122938 10.1016/j.cirp.2017.05.009 10.1016/j.arth.2013.04.033 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matlet.2024.137528 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_matlet_2024_137528 S0167577X24016689 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSZ T5K XPP ZMT ~02 ~G- 29M AAYXX ABXDB ACNNM ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SMS WUQ |
ID | FETCH-LOGICAL-c185t-c38c410d0b3d3095850b28d17795fcdae84c459b7b8887d2f450e928ebd051b03 |
ISSN | 0167-577X |
IngestDate | Wed Nov 06 13:25:37 EST 2024 Sat Nov 02 15:59:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bioactive properties Ti alloys Porous scaffolds Additive manufacturing Triply periodic minimized surfaces |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c185t-c38c410d0b3d3095850b28d17795fcdae84c459b7b8887d2f450e928ebd051b03 |
ORCID | 0000-0002-7503-8949 0009-0002-6003-4184 0009-0006-8094-0036 0000-0003-2691-6335 |
ParticipantIDs | crossref_primary_10_1016_j_matlet_2024_137528 elsevier_sciencedirect_doi_10_1016_j_matlet_2024_137528 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-15 |
PublicationDateYYYYMMDD | 2024-12-15 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Materials letters |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Surmeneva, Khrapov, Prosolov (b0070) 2022; 275 Bourell, Kruth, Leu (b0020) 2017; 66 Kiselevskiy, Anisimova, Kapustin (b0015) 2023; 8 Lu, Wang, Ji (b0050) 2016; 84 Zimina, Senatov, Choudhary (b0065) 2020; 12 Xue, Krishna, Bandyopadhyay, Bose (b0030) 2007; 3 du Plessis, Razavi, Benedetti (b0005) 2022; 125 Khrapov, Paveleva, Kozadayeva (b0075) 2023; 862 Thijs, Verhaeghe, Craeghs (b0025) 2010; 58 Davoodi, Montazerian, Mirhakimi (b0010) 2022; 15 Itälä, Ylänen, Ekholm (b0045) 2001; 58 Enikeev, Abramova, Kapustin (b0055) 2024; 14 Derome, Sternheim, Backstein, Malo (b0035) 2014; 29 Lu, Flautre, Anselme (b0040) 1999; 10 Bobbert, Lietaert, Eftekhari (b0060) 2017; 53 du Plessis (10.1016/j.matlet.2024.137528_b0005) 2022; 125 Davoodi (10.1016/j.matlet.2024.137528_b0010) 2022; 15 Enikeev (10.1016/j.matlet.2024.137528_b0055) 2024; 14 Kiselevskiy (10.1016/j.matlet.2024.137528_b0015) 2023; 8 Zimina (10.1016/j.matlet.2024.137528_b0065) 2020; 12 Itälä (10.1016/j.matlet.2024.137528_b0045) 2001; 58 Lu (10.1016/j.matlet.2024.137528_b0040) 1999; 10 Lu (10.1016/j.matlet.2024.137528_b0050) 2016; 84 Derome (10.1016/j.matlet.2024.137528_b0035) 2014; 29 Thijs (10.1016/j.matlet.2024.137528_b0025) 2010; 58 Bourell (10.1016/j.matlet.2024.137528_b0020) 2017; 66 Bobbert (10.1016/j.matlet.2024.137528_b0060) 2017; 53 Khrapov (10.1016/j.matlet.2024.137528_b0075) 2023; 862 Xue (10.1016/j.matlet.2024.137528_b0030) 2007; 3 Surmeneva (10.1016/j.matlet.2024.137528_b0070) 2022; 275 |
References_xml | – volume: 14 start-page: 3 year: 2024 end-page: 8 ident: b0055 publication-title: Lett. Mater. contributor: fullname: Kapustin – volume: 58 start-page: 3303 year: 2010 end-page: 3312 ident: b0025 publication-title: Acta Mater. contributor: fullname: Craeghs – volume: 125 year: 2022 ident: b0005 article-title: Progr publication-title: Mater. Sci. contributor: fullname: Benedetti – volume: 66 start-page: 659 year: 2017 end-page: 681 ident: b0020 publication-title: CIRP. Ann. contributor: fullname: Leu – volume: 53 start-page: 572 year: 2017 end-page: 584 ident: b0060 publication-title: Acta Biomater. contributor: fullname: Eftekhari – volume: 3 start-page: 1007 year: 2007 end-page: 1018 ident: b0030 publication-title: Acta Biomater. contributor: fullname: Bose – volume: 58 start-page: 679 year: 2001 end-page: 683 ident: b0045 publication-title: J. Biomed. Mater. Res. contributor: fullname: Ekholm – volume: 29 start-page: 122 year: 2014 end-page: 126 ident: b0035 publication-title: J. Arthroplasty contributor: fullname: Malo – volume: 275 year: 2022 ident: b0070 publication-title: Mater. Chem. Phys. contributor: fullname: Prosolov – volume: 15 start-page: 214 year: 2022 end-page: 249 ident: b0010 publication-title: Bioact. Mater. contributor: fullname: Mirhakimi – volume: 12 start-page: 2938 year: 2020 ident: b0065 publication-title: Polymers contributor: fullname: Choudhary – volume: 10 start-page: 111 year: 1999 end-page: 120 ident: b0040 publication-title: J. Mater. Sci. Mater. Med. contributor: fullname: Anselme – volume: 862 year: 2023 ident: b0075 publication-title: Mater. Sci. Eng. contributor: fullname: Kozadayeva – volume: 8 start-page: 546 year: 2023 ident: b0015 publication-title: Biomimetics contributor: fullname: Kapustin – volume: 84 start-page: 80522 year: 2016 end-page: 80528 ident: b0050 publication-title: RSC Advances contributor: fullname: Ji – volume: 58 start-page: 3303 year: 2010 ident: 10.1016/j.matlet.2024.137528_b0025 publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.02.004 contributor: fullname: Thijs – volume: 3 start-page: 1007 year: 2007 ident: 10.1016/j.matlet.2024.137528_b0030 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.05.009 contributor: fullname: Xue – volume: 14 start-page: 3 year: 2024 ident: 10.1016/j.matlet.2024.137528_b0055 publication-title: Lett. Mater. contributor: fullname: Enikeev – volume: 862 year: 2023 ident: 10.1016/j.matlet.2024.137528_b0075 publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2022.144479 contributor: fullname: Khrapov – volume: 10 start-page: 111 year: 1999 ident: 10.1016/j.matlet.2024.137528_b0040 publication-title: J. Mater. Sci. Mater. Med. doi: 10.1023/A:1008973120918 contributor: fullname: Lu – volume: 8 start-page: 546 year: 2023 ident: 10.1016/j.matlet.2024.137528_b0015 publication-title: Biomimetics doi: 10.3390/biomimetics8070546 contributor: fullname: Kiselevskiy – volume: 15 start-page: 214 year: 2022 ident: 10.1016/j.matlet.2024.137528_b0010 publication-title: Bioact. Mater. contributor: fullname: Davoodi – volume: 84 start-page: 80522 year: 2016 ident: 10.1016/j.matlet.2024.137528_b0050 publication-title: RSC Advances doi: 10.1039/C6RA17747F contributor: fullname: Lu – volume: 125 year: 2022 ident: 10.1016/j.matlet.2024.137528_b0005 article-title: Progr publication-title: Mater. Sci. contributor: fullname: du Plessis – volume: 275 year: 2022 ident: 10.1016/j.matlet.2024.137528_b0070 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.125217 contributor: fullname: Surmeneva – volume: 53 start-page: 572 year: 2017 ident: 10.1016/j.matlet.2024.137528_b0060 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.02.024 contributor: fullname: Bobbert – volume: 58 start-page: 679 year: 2001 ident: 10.1016/j.matlet.2024.137528_b0045 publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.1069 contributor: fullname: Itälä – volume: 12 start-page: 2938 year: 2020 ident: 10.1016/j.matlet.2024.137528_b0065 publication-title: Polymers doi: 10.3390/polym12122938 contributor: fullname: Zimina – volume: 66 start-page: 659 year: 2017 ident: 10.1016/j.matlet.2024.137528_b0020 publication-title: CIRP. Ann. doi: 10.1016/j.cirp.2017.05.009 contributor: fullname: Bourell – volume: 29 start-page: 122 year: 2014 ident: 10.1016/j.matlet.2024.137528_b0035 publication-title: J. Arthroplasty doi: 10.1016/j.arth.2013.04.033 contributor: fullname: Derome |
SSID | ssj0004904 |
Score | 2.4858122 |
Snippet | •Porous Ti6Al4V scaffolds with varied design are additively manufactured.•Bioinspired TPMS and a strut models forming porous structures are... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 137528 |
SubjectTerms | Additive manufacturing Bioactive properties Porous scaffolds Ti alloys Triply periodic minimized surfaces |
Title | Topology-defined bioactive properties of porous Ti-6Al-4V scaffolds produced by laser powder bed fusion |
URI | https://dx.doi.org/10.1016/j.matlet.2024.137528 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6u0KCA4IFxPKSD9yqVHnWybGCogUEly2rcor8hOyWpmqaovLrGWfipFCEAIlLVFmxo8x8nn6ezIOQ50LGPBBp5mmWJHBAyWDPBb7x_FjHia-Nihqf7vkFez9PX07j6WDgYqL6sf-qaRgDXdvM2b_QdrcoDMBv0DlcQetw_TO9Y9eDnae0AQYJ_LIoeWPUbCzWyoZRY51ZIN42_HVWeOPJwosvh5XkxpQLVdkbVS2RmwK71mu4-astOiFgzNSV06XrBMU3-GbDRZMc1H8fano5bavrYoch-tefebEYXo5650NRAVi2HA29rcbIhx_rzkNdbtf1t3KLCUTrHf8yfNfNfctXthPZ0qXp6MIt3DoxwqZUIqZxomftILsGnZ1gxBPG5vvWOsKuLweWH50QVyPg-fCuI_uQURCxpE09_7Gm9oVd2q4MfCYYj9PsiJyEYKnAUJ5MXk_nb_rU2szvysPbCS77sgkRPHzWr9nNHmOZ3SG326MGnSBG7pKBXp6SW3sFKE_JjSYAWFb3yKefcUM73NAeN7Q0FHFDO9zQDjfU4YaKHW1wQxE3FHBDETf3yYdX09mLc69twuFJoHIbT0apjANf-SKy-xZOl74IUxUwliVGKq7TWMZJJphI4f9KhcZu8SxMtVBg74UfPSDHy3KpH9ryAFKEMoq0ioJYhywVyujEWBIrQl_oM-I54eUrrLWSuyDEqxyFnVth5yjsM8KchPOWLyIPzAEUv5356J9nPiY3e_w-Icebda2fkqNK1c9a6HwHcvqSWg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology-defined+bioactive+properties+of+porous+Ti-6Al-4V+scaffolds+produced+by+laser+powder+bed+fusion&rft.jtitle=Materials+letters&rft.au=Kiselevskiy%2C+Mikhail+V.&rft.au=Anisimova%2C+Natalia+Yu&rft.au=Novruzov%2C+Keryam+M.&rft.au=Kapustin%2C+Alexei+V.&rft.date=2024-12-15&rft.pub=Elsevier+B.V&rft.issn=0167-577X&rft.volume=377&rft_id=info:doi/10.1016%2Fj.matlet.2024.137528&rft.externalDocID=S0167577X24016689 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-577X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-577X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-577X&client=summon |