Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows
3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore these ambiguities and only estimate a single solution. In contrast, we generate a diverse set of hypotheses that represents the full posterior...
Saved in:
Published in: | 2021 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 11179 - 11188 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-10-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | 3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore these ambiguities and only estimate a single solution. In contrast, we generate a diverse set of hypotheses that represents the full posterior distribution of feasible 3D poses. To this end, we propose a normalizing flow based method that exploits the deterministic 3D-to-2D mapping to solve the ambiguous inverse 2D-to-3D problem. Additionally, uncertain detections and occlusions are effectively modeled by incorporating uncertainty information of the 2D detector as condition. Further keys to success are a learned 3D pose prior and a generalization of the best-of-M loss. We evaluate our approach on the two benchmark datasets Human3.6M and MPI-INF-3DHP, outperforming all comparable methods in most metrics. The implementation is available on GitHub 1 . |
---|---|
AbstractList | 3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore these ambiguities and only estimate a single solution. In contrast, we generate a diverse set of hypotheses that represents the full posterior distribution of feasible 3D poses. To this end, we propose a normalizing flow based method that exploits the deterministic 3D-to-2D mapping to solve the ambiguous inverse 2D-to-3D problem. Additionally, uncertain detections and occlusions are effectively modeled by incorporating uncertainty information of the 2D detector as condition. Further keys to success are a learned 3D pose prior and a generalization of the best-of-M loss. We evaluate our approach on the two benchmark datasets Human3.6M and MPI-INF-3DHP, outperforming all comparable methods in most metrics. The implementation is available on GitHub 1 . |
Author | Rudolph, Marco Wandt, Bastian Wehrbein, Tom Rosenhahn, Bodo |
Author_xml | – sequence: 1 givenname: Tom surname: Wehrbein fullname: Wehrbein, Tom email: wehrbein@tnt.uni-hannover.de organization: Leibniz University Hannover – sequence: 2 givenname: Marco surname: Rudolph fullname: Rudolph, Marco organization: Leibniz University Hannover – sequence: 3 givenname: Bodo surname: Rosenhahn fullname: Rosenhahn, Bodo organization: Leibniz University Hannover – sequence: 4 givenname: Bastian surname: Wandt fullname: Wandt, Bastian organization: University of British Columbia |
BookMark | eNotjs1KAzEURqMo2NY-gS7yAlPvzU0myVLG_kHVLtRtSWYyGplOZGZK0ae3oKsPzoHDN2YXbWoDY7cIM0Swd-uieJPGCjETIHAGJ4hnbGq1wTxXUhgU6pyNBBnItAJ5xcZ9_wlAVph8xJbbLnnnYxP7IZb8MbWpPDSu4_TAV4e9a_k29YHPT3bvhphafozDB39K3d418Se273zRpGN_zS5r1_Rh-r8T9rqYvxSrbPO8XBf3m6xEI4fMo7LWqNJ4DaSh1pXRkpC0UVLWtZW-tB6cplxVShFpMo50LqvgS4RK0YTd_HVjCGH31Z1edd87qxGlAfoFYLRNJQ |
CODEN | IEEPAD |
CitedBy_id | crossref_primary_10_3390_s24123823 crossref_primary_10_1016_j_jvcir_2023_103890 crossref_primary_10_1109_TMI_2024_3371948 crossref_primary_10_1016_j_imavis_2023_104649 crossref_primary_10_1109_TPAMI_2024_3364185 crossref_primary_10_1109_TIP_2022_3154606 crossref_primary_10_1109_TMM_2023_3240455 crossref_primary_10_1007_s00530_022_01019_0 crossref_primary_10_1109_TIP_2022_3182269 crossref_primary_10_1016_j_patcog_2023_109908 crossref_primary_10_1109_TPAMI_2022_3199449 crossref_primary_10_1109_TRO_2023_3332224 crossref_primary_10_1109_THMS_2022_3219242 crossref_primary_10_3390_s24030829 crossref_primary_10_1007_s11760_024_03028_0 crossref_primary_10_1007_s10489_022_03766_z crossref_primary_10_3389_fcomp_2023_1153160 crossref_primary_10_3390_s24134422 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV48922.2021.01101 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781665428125 1665428120 |
EISSN | 2380-7504 |
EndPage | 11188 |
ExternalDocumentID | 9711480 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education funderid: 10.13039/501100002701 |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-c184t-b159985c8b70370f7d87431378544ff94bc9b0a7365d5533738a3764debc10d53 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:14 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c184t-b159985c8b70370f7d87431378544ff94bc9b0a7365d5533738a3764debc10d53 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9711480 |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct. |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct. |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE/CVF International Conference on Computer Vision (ICCV) |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.2403626 |
Snippet | 3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 11179 |
SubjectTerms | Computer vision Gestures and body pose; 3D from a single image and shape-from-x; Detection and localization in 2D and 3D; Motion and tracking; Vision applications and systems Heating systems Inverse problems Measurement Three-dimensional displays Training Uncertainty |
Title | Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows |
URI | https://ieeexplore.ieee.org/document/9711480 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7ak6eqrfgmB49uu7tJNsm5D-ulFHzgreS1IJSuuC2Cv96Z7FoRvHgJS3bJwoTJ92Uy34SQG6YUs8aKpMih4VybxKSyTABtjRHeAKRhHHL2IOcvajzBMjm3Oy1MCCEmn4UBPsazfF-5LYbKhloie4cN-r7UqtFqfa-6APOqaKVxWaqH96PRM1c6R61Vng0Q5bJfF6hE_Jh2__fnQ9L_EeLRxQ5ijsheWB-TbsscaeuXdY_cwUc21srFsssUHLWK-aWUjWkM09NFVQc6gbeNVJFi_JXOkbCuXj9hbDpdVR91nzxNJ4-jWdJekZA42JptEgtsRCvhlAXPlWkpvUJKwKQSnJel5tZpmxrJCuEFMDvJlIElhftgXZZ6wU5IZ12twymh4Iom50E6BYhvgDgWQO4ch5FSk4N9z0gP7bJ8a6pgLFuTnP_dfUEO0PBN2tsl6Wzet-GK7Nd-ex3n7QuHlZaR |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D3qauonf5uDRzrZJmuS8DzecY-AUbyNfBWGsYjcE_3pf0joRvHgpoS0JvPDy--Xl_V4QuiZCEK00i7IUHpRKFamY5xGgrVLMKoA0H4ccPvLJi-j1fZmcm40WxjkXks9cxzfDWb4tzNqHym4l9-wdNug7jPKMV2qt73UXgF5ktTguieXtqNt9pkKmXm2VJh2Pc8mvK1QCggya_xt7H7V_pHh4ugGZA7TlloeoWXNHXHtm2UJ38JMO1XJ94WUMrlqEDFNMejgE6vG0KB3uw9dKrIh9BBZPPGVdvH5C33iwKD7KNnoa9GfdYVRfkhAZ2JytIg18RApmhAbf5XHOrfCkgHDBKM1zSbWROlacZMwy4HacCAWLCrVOmyS2jByhxrJYumOEwRlVSh03AjBfAXXMgN4ZCj3FKgX7nqCWt8v8raqDMa9Ncvr36yu0O5w9jOfj0eT-DO35SaiS4M5RY_W-dhdou7TryzCHX6lbmeI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FCVF+International+Conference+on+Computer+Vision+%28ICCV%29&rft.atitle=Probabilistic+Monocular+3D+Human+Pose+Estimation+with+Normalizing+Flows&rft.au=Wehrbein%2C+Tom&rft.au=Rudolph%2C+Marco&rft.au=Rosenhahn%2C+Bodo&rft.au=Wandt%2C+Bastian&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=11179&rft.epage=11188&rft_id=info:doi/10.1109%2FICCV48922.2021.01101&rft.externalDocID=9711480 |