Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows

3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore these ambiguities and only estimate a single solution. In contrast, we generate a diverse set of hypotheses that represents the full posterior...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 11179 - 11188
Main Authors: Wehrbein, Tom, Rudolph, Marco, Rosenhahn, Bodo, Wandt, Bastian
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore these ambiguities and only estimate a single solution. In contrast, we generate a diverse set of hypotheses that represents the full posterior distribution of feasible 3D poses. To this end, we propose a normalizing flow based method that exploits the deterministic 3D-to-2D mapping to solve the ambiguous inverse 2D-to-3D problem. Additionally, uncertain detections and occlusions are effectively modeled by incorporating uncertainty information of the 2D detector as condition. Further keys to success are a learned 3D pose prior and a generalization of the best-of-M loss. We evaluate our approach on the two benchmark datasets Human3.6M and MPI-INF-3DHP, outperforming all comparable methods in most metrics. The implementation is available on GitHub 1 .
AbstractList 3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore these ambiguities and only estimate a single solution. In contrast, we generate a diverse set of hypotheses that represents the full posterior distribution of feasible 3D poses. To this end, we propose a normalizing flow based method that exploits the deterministic 3D-to-2D mapping to solve the ambiguous inverse 2D-to-3D problem. Additionally, uncertain detections and occlusions are effectively modeled by incorporating uncertainty information of the 2D detector as condition. Further keys to success are a learned 3D pose prior and a generalization of the best-of-M loss. We evaluate our approach on the two benchmark datasets Human3.6M and MPI-INF-3DHP, outperforming all comparable methods in most metrics. The implementation is available on GitHub 1 .
Author Rudolph, Marco
Wandt, Bastian
Wehrbein, Tom
Rosenhahn, Bodo
Author_xml – sequence: 1
  givenname: Tom
  surname: Wehrbein
  fullname: Wehrbein, Tom
  email: wehrbein@tnt.uni-hannover.de
  organization: Leibniz University Hannover
– sequence: 2
  givenname: Marco
  surname: Rudolph
  fullname: Rudolph, Marco
  organization: Leibniz University Hannover
– sequence: 3
  givenname: Bodo
  surname: Rosenhahn
  fullname: Rosenhahn, Bodo
  organization: Leibniz University Hannover
– sequence: 4
  givenname: Bastian
  surname: Wandt
  fullname: Wandt, Bastian
  organization: University of British Columbia
BookMark eNotjs1KAzEURqMo2NY-gS7yAlPvzU0myVLG_kHVLtRtSWYyGplOZGZK0ae3oKsPzoHDN2YXbWoDY7cIM0Swd-uieJPGCjETIHAGJ4hnbGq1wTxXUhgU6pyNBBnItAJ5xcZ9_wlAVph8xJbbLnnnYxP7IZb8MbWpPDSu4_TAV4e9a_k29YHPT3bvhphafozDB39K3d418Se273zRpGN_zS5r1_Rh-r8T9rqYvxSrbPO8XBf3m6xEI4fMo7LWqNJ4DaSh1pXRkpC0UVLWtZW-tB6cplxVShFpMo50LqvgS4RK0YTd_HVjCGH31Z1edd87qxGlAfoFYLRNJQ
CODEN IEEPAD
CitedBy_id crossref_primary_10_3390_s24123823
crossref_primary_10_1016_j_jvcir_2023_103890
crossref_primary_10_1109_TMI_2024_3371948
crossref_primary_10_1016_j_imavis_2023_104649
crossref_primary_10_1109_TPAMI_2024_3364185
crossref_primary_10_1109_TIP_2022_3154606
crossref_primary_10_1109_TMM_2023_3240455
crossref_primary_10_1007_s00530_022_01019_0
crossref_primary_10_1109_TIP_2022_3182269
crossref_primary_10_1016_j_patcog_2023_109908
crossref_primary_10_1109_TPAMI_2022_3199449
crossref_primary_10_1109_TRO_2023_3332224
crossref_primary_10_1109_THMS_2022_3219242
crossref_primary_10_3390_s24030829
crossref_primary_10_1007_s11760_024_03028_0
crossref_primary_10_1007_s10489_022_03766_z
crossref_primary_10_3389_fcomp_2023_1153160
crossref_primary_10_3390_s24134422
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV48922.2021.01101
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665428125
1665428120
EISSN 2380-7504
EndPage 11188
ExternalDocumentID 9711480
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education
  funderid: 10.13039/501100002701
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-c184t-b159985c8b70370f7d87431378544ff94bc9b0a7365d5533738a3764debc10d53
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:14 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c184t-b159985c8b70370f7d87431378544ff94bc9b0a7365d5533738a3764debc10d53
PageCount 10
ParticipantIDs ieee_primary_9711480
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle 2021 IEEE/CVF International Conference on Computer Vision (ICCV)
PublicationTitleAbbrev ICCV
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.2403626
Snippet 3D human pose estimation from monocular images is a highly ill-posed problem due to depth ambiguities and occlusions. Nonetheless, most existing works ignore...
SourceID ieee
SourceType Publisher
StartPage 11179
SubjectTerms Computer vision
Gestures and body pose; 3D from a single image and shape-from-x; Detection and localization in 2D and 3D; Motion and tracking; Vision applications and systems
Heating systems
Inverse problems
Measurement
Three-dimensional displays
Training
Uncertainty
Title Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows
URI https://ieeexplore.ieee.org/document/9711480
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7ak6eqrfgmB49uu7tJNsm5D-ulFHzgreS1IJSuuC2Cv96Z7FoRvHgJS3bJwoTJ92Uy34SQG6YUs8aKpMih4VybxKSyTABtjRHeAKRhHHL2IOcvajzBMjm3Oy1MCCEmn4UBPsazfF-5LYbKhloie4cN-r7UqtFqfa-6APOqaKVxWaqH96PRM1c6R61Vng0Q5bJfF6hE_Jh2__fnQ9L_EeLRxQ5ijsheWB-TbsscaeuXdY_cwUc21srFsssUHLWK-aWUjWkM09NFVQc6gbeNVJFi_JXOkbCuXj9hbDpdVR91nzxNJ4-jWdJekZA42JptEgtsRCvhlAXPlWkpvUJKwKQSnJel5tZpmxrJCuEFMDvJlIElhftgXZZ6wU5IZ12twymh4Iom50E6BYhvgDgWQO4ch5FSk4N9z0gP7bJ8a6pgLFuTnP_dfUEO0PBN2tsl6Wzet-GK7Nd-ex3n7QuHlZaR
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D3qauonf5uDRzrZJmuS8DzecY-AUbyNfBWGsYjcE_3pf0joRvHgpoS0JvPDy--Xl_V4QuiZCEK00i7IUHpRKFamY5xGgrVLMKoA0H4ccPvLJi-j1fZmcm40WxjkXks9cxzfDWb4tzNqHym4l9-wdNug7jPKMV2qt73UXgF5ktTguieXtqNt9pkKmXm2VJh2Pc8mvK1QCggya_xt7H7V_pHh4ugGZA7TlloeoWXNHXHtm2UJ38JMO1XJ94WUMrlqEDFNMejgE6vG0KB3uw9dKrIh9BBZPPGVdvH5C33iwKD7KNnoa9GfdYVRfkhAZ2JytIg18RApmhAbf5XHOrfCkgHDBKM1zSbWROlacZMwy4HacCAWLCrVOmyS2jByhxrJYumOEwRlVSh03AjBfAXXMgN4ZCj3FKgX7nqCWt8v8raqDMa9Ncvr36yu0O5w9jOfj0eT-DO35SaiS4M5RY_W-dhdou7TryzCHX6lbmeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FCVF+International+Conference+on+Computer+Vision+%28ICCV%29&rft.atitle=Probabilistic+Monocular+3D+Human+Pose+Estimation+with+Normalizing+Flows&rft.au=Wehrbein%2C+Tom&rft.au=Rudolph%2C+Marco&rft.au=Rosenhahn%2C+Bodo&rft.au=Wandt%2C+Bastian&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=11179&rft.epage=11188&rft_id=info:doi/10.1109%2FICCV48922.2021.01101&rft.externalDocID=9711480