Method of the Nonlinear Monotonic Tangent in the Solution of Transcendental Equations

The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for the mentioned tangent, a regulating relation, which is a straight line with a control parameter, is used. An algorithm for solving the problem...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical models and computer simulations Vol. 15; no. 4; pp. 698 - 706
Main Author: Lipanov, A. M.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-08-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for the mentioned tangent, a regulating relation, which is a straight line with a control parameter, is used. An algorithm for solving the problem is described. Three examples of solving transcendental equations are performed. The efficiency of using the proposed method is shown.
AbstractList The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for the mentioned tangent, a regulating relation, which is a straight line with a control parameter, is used. An algorithm for solving the problem is described. Three examples of solving transcendental equations are performed. The efficiency of using the proposed method is shown.
Author Lipanov, A. M.
Author_xml – sequence: 1
  givenname: A. M.
  surname: Lipanov
  fullname: Lipanov, A. M.
  email: aml35@yandex.ru
  organization: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
BookMark eNp1kEtPAjEQgBuDiYj8AG9NPK_OdAvdPRqCjwT0AJw3pQ9ZsrbQ7h7893bF6MHYQzvpfN9MZi7JwHlnCLlGuEXM-d2KgQDgBWM5cECYnJFh_5UBL2HwExfsgoxj3EM6ORNFXgzJZmnandfUW9ruDH3xrqmdkYEuvfOtd7Wia-nejGtp7b6QlW-6tvauV9ZBuqiM0ykvGzo_drJPxStybmUTzfj7HZHNw3w9e8oWr4_Ps_tFprDIJ5ndTgG1RaU1U1aWmk9RqS2TojRC53wrmAacKhQWOUeBEhIhJqa_FJf5iNyc6h6CP3YmttXed8GllhUreHJKBjxReKJU8DEGY6tDqN9l-KgQqn6B1Z8FJoednJjYNH_4rfy_9AmWZnK5
Cites_doi 10.1007/978-94-011-3776-8
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 4, pp. 698–706. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 2, pp. 3–14.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 4, pp. 698–706. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 2, pp. 3–14.
DBID AAYXX
CITATION
DOI 10.1134/S2070048223040105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2070-0490
EndPage 706
ExternalDocumentID 10_1134_S2070048223040105
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
29M
2JY
2KG
2VQ
2~H
30V
4.4
408
409
40D
40E
6NX
8TC
96X
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESTI
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
BA0
BAPOH
BGNMA
CAG
COF
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
SJYHP
ID FETCH-LOGICAL-c1835-fb601df1cdd2cfa9d461ccb2a79e7d34b72d016c17f144171a046175e6175c4a3
IEDL.DBID AEJHL
ISSN 2070-0482
IngestDate Wed Nov 06 08:11:07 EST 2024
Fri Nov 22 00:15:27 EST 2024
Sat Dec 16 12:05:39 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords numerical solution
control parameter
monotonicity
nonlinear tangent
transcendental equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1835-fb601df1cdd2cfa9d461ccb2a79e7d34b72d016c17f144171a046175e6175c4a3
PQID 2841449204
PQPubID 2044391
PageCount 9
ParticipantIDs proquest_journals_2841449204
crossref_primary_10_1134_S2070048223040105
springer_journals_10_1134_S2070048223040105
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Mathematical models and computer simulations
PublicationTitleAbbrev Math Models Comput Simul
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References LipanovA. M.The multiparametric trajectory method for solving systems of functional equationsDokl. Akad. Nauk19953431531551354278
G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, Englewood Cliffs, NJ, 1977).
E. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics (Nauka, Moscow, 1988; Springer, Dordrecht, 1991). https://doi.org/10.1007/978-94-011-3776-8
BronshteinI. N.SemendyaevK. A.Handbook of Mathematics1986MoscowNauka
VoskoboinikovYu. E.OchkovV. F.Programming and Solving Problems in Mathcad2002NovosibirskNovosib. Gos. Arkhit.-Stroit. Univ.
4468_CR4
Yu. E. Voskoboinikov (4468_CR5) 2002
A. M. Lipanov (4468_CR2) 1995; 343
I. N. Bronshtein (4468_CR3) 1986
4468_CR1
References_xml – volume: 343
  start-page: 153
  year: 1995
  ident: 4468_CR2
  publication-title: Dokl. Akad. Nauk
  contributor:
    fullname: A. M. Lipanov
– volume-title: Programming and Solving Problems in Mathcad
  year: 2002
  ident: 4468_CR5
  contributor:
    fullname: Yu. E. Voskoboinikov
– volume-title: Handbook of Mathematics
  year: 1986
  ident: 4468_CR3
  contributor:
    fullname: I. N. Bronshtein
– ident: 4468_CR1
  doi: 10.1007/978-94-011-3776-8
– ident: 4468_CR4
SSID ssj0000327838
Score 2.2984016
Snippet The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 698
SubjectTerms Algorithms
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Simulation and Modeling
Straight lines
Title Method of the Nonlinear Monotonic Tangent in the Solution of Transcendental Equations
URI https://link.springer.com/article/10.1134/S2070048223040105
https://www.proquest.com/docview/2841449204
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWDgjSgU5IEJFEgcJ47HClJViHZpK7FFjh8SQkqhaf8_ZydpeQ6wREpiW5Z9l7vPdr4PoUsRmUQKgKmSMt-jMk68xFDjRb7xI0J1FMZOxHbMRk_JfWppcshq6aJ4uWl2JN2HupIdobdj4lsmdohnAMCtrOMmakPoicC22730YfC4WlnxQ6se4aTofKuqAnXq7cwf2_kckNZZ5peNURdv-rv_6eke2qmzS9yrzGEfbejiAG1_4ByEu-GKqLU8RNOhU5DGM4PhKR5VxBlijsHXZwtLm4snwv1-hZ8LV6RZR7NVXKCTTkQXcnicvlW84eURmvbTyd3Aq5UWPAkuHXkmB1ymTCCVItIIrmgcSJkTwbhmKqQ5IwpyQxkwYwEYC4TlaWeRthdJRXiMWsWs0CcIG804CUScA_ilXJnccA6AXfs8VJB7kg66aoY7e60INTIHREKafRu5Duo2E5LVvlVmEFChE5z4tIOumxlYv_61sdM_lT5DW1ZZvjrr10WtxXypz9FmqZYXtcG9Aw1vy3c
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH6i7QAM3IhyemACReRw4nqsoKUVbZemElvk2LHE0kLT_n-enaTlHGCJlPiQ5SPvfX729wFci1C3pECYKilzHSqjltPSVDuhq93Qp1kYRFbEdsxGz62HjqHJCaq7MPa0exWStH_qQneE3o1911Cxo0FDBG50HWvQoDyiOJUb7X782F1trbiBkY-wWnSukVXBMmU888d6PluktZv5JTJqDU53919N3YOd0r8k7WJC7MNGNj2A7Q-sg_g2XFG15ocwGVoNaTLTBL-SUUGdIeYEV_tsYYhzSSzsBSzyMrVZqp00U8SaOmlldNGLJ523gjk8P4JJtxPf95xSa8GRuKhDR6eIzJT2pFK-1IIrGnlSpr5gPGMqoCnzFXqH0mPaQDDmCcPUzsLMPCQVwTHUp7NpdgJEZ4z7nohShL-UK51qzhGyZy4PFHqffhNuqv5OXgtKjcRCkYAm33quCefViCTl6soTNKnYCO67tAm31Qisk3-t7PRPua9gsxcPB8mgP3o6gy2jM1-c_DuH-mK-zC6glqvlZTn73gFi189n
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sCMKBXzgBIqaxYmbE6poqgJthdRW4hY5dixxSUuX_2fsJC3rAXGJlHiR5SUzz2O_B3DNfdUUHGGqoMy2qAiaVlNRZfm2sn2Xpr4XGBHbIRu8NNuRpsm5K-_CmNPuZUgyv9OgWZqyRWMqVaFBQhtD19a07GjcEI1rjcdNqFIEMjjRq63osdtbbbPYnpaSMLp0tpZYwTJFbPPHej5bp7XL-SVKaoxPZ-_fzd6H3cLvJK18ohzARpodws4HNkJ8668oXOdHMO4bbWkyUQS_kkFOqcFnBP8Ck4Um1CUjbi5mkdfMZCl32HQRYwKFkddF755Ebzmj-PwYxp1odN-1Cg0GS-Bi9y2VIGKTyhFSukLxUNLAESJxOQtTJj2aMFei1ygcpjQ0Yw7XDO7MT_VDUO6dQCWbZOkpEJWy0HV4kCAspqFUiQpDhPKpHXoSvVK3Bjdl38fTnGojNhDFo_G3nqtBvRyduFh18xhNLTYidG1ag9tyNNbJv1Z29qfcV7D13O7EvYfB0zlsa_n5_EBgHSqL2TK9gM25XF4WE_EdFtHYKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+of+the+Nonlinear+Monotonic+Tangent+in+the+Solution+of+Transcendental+Equations&rft.jtitle=Mathematical+models+and+computer+simulations&rft.au=Lipanov%2C+A.+M.&rft.date=2023-08-01&rft.pub=Pleiades+Publishing&rft.issn=2070-0482&rft.eissn=2070-0490&rft.volume=15&rft.issue=4&rft.spage=698&rft.epage=706&rft_id=info:doi/10.1134%2FS2070048223040105&rft.externalDocID=10_1134_S2070048223040105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2070-0482&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2070-0482&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2070-0482&client=summon