Method of the Nonlinear Monotonic Tangent in the Solution of Transcendental Equations
The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for the mentioned tangent, a regulating relation, which is a straight line with a control parameter, is used. An algorithm for solving the problem...
Saved in:
Published in: | Mathematical models and computer simulations Vol. 15; no. 4; pp. 698 - 706 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
01-08-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for the mentioned tangent, a regulating relation, which is a straight line with a control parameter, is used. An algorithm for solving the problem is described. Three examples of solving transcendental equations are performed. The efficiency of using the proposed method is shown. |
---|---|
AbstractList | The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for the mentioned tangent, a regulating relation, which is a straight line with a control parameter, is used. An algorithm for solving the problem is described. Three examples of solving transcendental equations are performed. The efficiency of using the proposed method is shown. |
Author | Lipanov, A. M. |
Author_xml | – sequence: 1 givenname: A. M. surname: Lipanov fullname: Lipanov, A. M. email: aml35@yandex.ru organization: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences |
BookMark | eNp1kEtPAjEQgBuDiYj8AG9NPK_OdAvdPRqCjwT0AJw3pQ9ZsrbQ7h7893bF6MHYQzvpfN9MZi7JwHlnCLlGuEXM-d2KgQDgBWM5cECYnJFh_5UBL2HwExfsgoxj3EM6ORNFXgzJZmnandfUW9ruDH3xrqmdkYEuvfOtd7Wia-nejGtp7b6QlW-6tvauV9ZBuqiM0ykvGzo_drJPxStybmUTzfj7HZHNw3w9e8oWr4_Ps_tFprDIJ5ndTgG1RaU1U1aWmk9RqS2TojRC53wrmAacKhQWOUeBEhIhJqa_FJf5iNyc6h6CP3YmttXed8GllhUreHJKBjxReKJU8DEGY6tDqN9l-KgQqn6B1Z8FJoednJjYNH_4rfy_9AmWZnK5 |
Cites_doi | 10.1007/978-94-011-3776-8 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2023. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 4, pp. 698–706. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 2, pp. 3–14. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 4, pp. 698–706. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 2, pp. 3–14. |
DBID | AAYXX CITATION |
DOI | 10.1134/S2070048223040105 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 2070-0490 |
EndPage | 706 |
ExternalDocumentID | 10_1134_S2070048223040105 |
GroupedDBID | -5D -5G -BR -EM -~C 06D 0R~ 0VY 1N0 29M 2JY 2KG 2VQ 2~H 30V 4.4 408 409 40D 40E 6NX 8TC 96X AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEOHA AEPYU AESTI AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD BA0 BAPOH BGNMA CAG COF DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IZIGR I~X J-C J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM P9R PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SHX SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 ZMTXR ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c1835-fb601df1cdd2cfa9d461ccb2a79e7d34b72d016c17f144171a046175e6175c4a3 |
IEDL.DBID | AEJHL |
ISSN | 2070-0482 |
IngestDate | Wed Nov 06 08:11:07 EST 2024 Fri Nov 22 00:15:27 EST 2024 Sat Dec 16 12:05:39 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | numerical solution control parameter monotonicity nonlinear tangent transcendental equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1835-fb601df1cdd2cfa9d461ccb2a79e7d34b72d016c17f144171a046175e6175c4a3 |
PQID | 2841449204 |
PQPubID | 2044391 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2841449204 crossref_primary_10_1134_S2070048223040105 springer_journals_10_1134_S2070048223040105 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Mathematical models and computer simulations |
PublicationTitleAbbrev | Math Models Comput Simul |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | LipanovA. M.The multiparametric trajectory method for solving systems of functional equationsDokl. Akad. Nauk19953431531551354278 G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, Englewood Cliffs, NJ, 1977). E. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics (Nauka, Moscow, 1988; Springer, Dordrecht, 1991). https://doi.org/10.1007/978-94-011-3776-8 BronshteinI. N.SemendyaevK. A.Handbook of Mathematics1986MoscowNauka VoskoboinikovYu. E.OchkovV. F.Programming and Solving Problems in Mathcad2002NovosibirskNovosib. Gos. Arkhit.-Stroit. Univ. 4468_CR4 Yu. E. Voskoboinikov (4468_CR5) 2002 A. M. Lipanov (4468_CR2) 1995; 343 I. N. Bronshtein (4468_CR3) 1986 4468_CR1 |
References_xml | – volume: 343 start-page: 153 year: 1995 ident: 4468_CR2 publication-title: Dokl. Akad. Nauk contributor: fullname: A. M. Lipanov – volume-title: Programming and Solving Problems in Mathcad year: 2002 ident: 4468_CR5 contributor: fullname: Yu. E. Voskoboinikov – volume-title: Handbook of Mathematics year: 1986 ident: 4468_CR3 contributor: fullname: I. N. Bronshtein – ident: 4468_CR1 doi: 10.1007/978-94-011-3776-8 – ident: 4468_CR4 |
SSID | ssj0000327838 |
Score | 2.2984016 |
Snippet | The method of a curvilinear monotonic tangent in solving transcendental equations is proposed. In the denominator of the nonlinear term of the expression for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 698 |
SubjectTerms | Algorithms Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Simulation and Modeling Straight lines |
Title | Method of the Nonlinear Monotonic Tangent in the Solution of Transcendental Equations |
URI | https://link.springer.com/article/10.1134/S2070048223040105 https://www.proquest.com/docview/2841449204 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWDgjSgU5IEJFEgcJ47HClJViHZpK7FFjh8SQkqhaf8_ZydpeQ6wREpiW5Z9l7vPdr4PoUsRmUQKgKmSMt-jMk68xFDjRb7xI0J1FMZOxHbMRk_JfWppcshq6aJ4uWl2JN2HupIdobdj4lsmdohnAMCtrOMmakPoicC22730YfC4WlnxQ6se4aTofKuqAnXq7cwf2_kckNZZ5peNURdv-rv_6eke2qmzS9yrzGEfbejiAG1_4ByEu-GKqLU8RNOhU5DGM4PhKR5VxBlijsHXZwtLm4snwv1-hZ8LV6RZR7NVXKCTTkQXcnicvlW84eURmvbTyd3Aq5UWPAkuHXkmB1ymTCCVItIIrmgcSJkTwbhmKqQ5IwpyQxkwYwEYC4TlaWeRthdJRXiMWsWs0CcIG804CUScA_ilXJnccA6AXfs8VJB7kg66aoY7e60INTIHREKafRu5Duo2E5LVvlVmEFChE5z4tIOumxlYv_61sdM_lT5DW1ZZvjrr10WtxXypz9FmqZYXtcG9Aw1vy3c |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH6i7QAM3IhyemACReRw4nqsoKUVbZemElvk2LHE0kLT_n-enaTlHGCJlPiQ5SPvfX729wFci1C3pECYKilzHSqjltPSVDuhq93Qp1kYRFbEdsxGz62HjqHJCaq7MPa0exWStH_qQneE3o1911Cxo0FDBG50HWvQoDyiOJUb7X782F1trbiBkY-wWnSukVXBMmU888d6PluktZv5JTJqDU53919N3YOd0r8k7WJC7MNGNj2A7Q-sg_g2XFG15ocwGVoNaTLTBL-SUUGdIeYEV_tsYYhzSSzsBSzyMrVZqp00U8SaOmlldNGLJ523gjk8P4JJtxPf95xSa8GRuKhDR6eIzJT2pFK-1IIrGnlSpr5gPGMqoCnzFXqH0mPaQDDmCcPUzsLMPCQVwTHUp7NpdgJEZ4z7nohShL-UK51qzhGyZy4PFHqffhNuqv5OXgtKjcRCkYAm33quCefViCTl6soTNKnYCO67tAm31Qisk3-t7PRPua9gsxcPB8mgP3o6gy2jM1-c_DuH-mK-zC6glqvlZTn73gFi189n |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sCMKBXzgBIqaxYmbE6poqgJthdRW4hY5dixxSUuX_2fsJC3rAXGJlHiR5SUzz2O_B3DNfdUUHGGqoMy2qAiaVlNRZfm2sn2Xpr4XGBHbIRu8NNuRpsm5K-_CmNPuZUgyv9OgWZqyRWMqVaFBQhtD19a07GjcEI1rjcdNqFIEMjjRq63osdtbbbPYnpaSMLp0tpZYwTJFbPPHej5bp7XL-SVKaoxPZ-_fzd6H3cLvJK18ohzARpodws4HNkJ8668oXOdHMO4bbWkyUQS_kkFOqcFnBP8Ck4Um1CUjbi5mkdfMZCl32HQRYwKFkddF755Ebzmj-PwYxp1odN-1Cg0GS-Bi9y2VIGKTyhFSukLxUNLAESJxOQtTJj2aMFei1ygcpjQ0Yw7XDO7MT_VDUO6dQCWbZOkpEJWy0HV4kCAspqFUiQpDhPKpHXoSvVK3Bjdl38fTnGojNhDFo_G3nqtBvRyduFh18xhNLTYidG1ag9tyNNbJv1Z29qfcV7D13O7EvYfB0zlsa_n5_EBgHSqL2TK9gM25XF4WE_EdFtHYKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+of+the+Nonlinear+Monotonic+Tangent+in+the+Solution+of+Transcendental+Equations&rft.jtitle=Mathematical+models+and+computer+simulations&rft.au=Lipanov%2C+A.+M.&rft.date=2023-08-01&rft.pub=Pleiades+Publishing&rft.issn=2070-0482&rft.eissn=2070-0490&rft.volume=15&rft.issue=4&rft.spage=698&rft.epage=706&rft_id=info:doi/10.1134%2FS2070048223040105&rft.externalDocID=10_1134_S2070048223040105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2070-0482&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2070-0482&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2070-0482&client=summon |