Analysis of Strenght Properties of Carbon Fibre-Reinforced Composites

Tensile tests were carried out on three series of composite samples according to the ASTM (American Society for testing and Materials). The materials tested were characterised by using the same manufacturing method. The specimens were hand-laminated using MGS L285/H285 epoxy resin. The feature that...

Full description

Saved in:
Bibliographic Details
Published in:Transactions on aerospace research Vol. 2023; no. 1; pp. 45 - 66
Main Authors: Bondyra, Agnieszka, Łusiak, Tomasz
Format: Journal Article
Language:English
Published: 01-03-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tensile tests were carried out on three series of composite samples according to the ASTM (American Society for testing and Materials). The materials tested were characterised by using the same manufacturing method. The specimens were hand-laminated using MGS L285/H285 epoxy resin. The feature that differentiates the structure of each laminate series is the type of reinforcement. A biaxial fabric IMS65 CtLX with a 0/90 arrangement was used to reinforce the C-series composite specimens; for the D-series, a symmetrical fabric Interglass 02037 with a 0/90 weave was used, and for the E-series specimens, a modular fabric IMS65 with a 45 weave was used. The share of composites in the manufacture of construction products is steadily increasing. This is due to the development of new technologies for manufacturing composite elements and composites, with properties that are more and more in line with the requirements of the industry resulting from technological progress. Composite products have to meet many performance requirements. Tensile testing is used to determine some of the key mechanical properties of laminates. Fibre-reinforced polymer (FRP) composites have been used in various engineering structures for many decades. Their unique physical and mechanical properties make them a well-known, most produced and most widely used type of composite materials. In the case of fibre composites, it is the fibres that take over the basic stresses and are responsible for achieving the appropriate stiffness and strength, while the matrix ensures optimum use of the properties of the fibres and gives shape to the manufactured element. The mechanical properties of the composite and its failure process are fundamentally dependent on the high strength of the fibres, the stiffness of the matrix and the strength of the fibre-matrix interface.
ISSN:2545-2835
2545-2835
DOI:10.2478/tar-2023-0005