Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups

The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI...

Full description

Saved in:
Bibliographic Details
Published in:Applied and computational harmonic analysis Vol. 74; p. 101708
Main Authors: Redhu, Navneet, Gumber, Anupam, Shukla, Niraj K.
Format: Journal Article
Language:English
Published: Elsevier Inc 01-01-2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in L2(G) satisfying the local integrability condition (LIC) and having the Calderón sum one, where G is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing N numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in L2(R) and L2(G), using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.
ISSN:1063-5203
DOI:10.1016/j.acha.2024.101708