K-classes for matroids and equivariant localization

To every matroid, we associate a class in the K-theory of the Grassmannian. We study this class using the method of equivariant localization. In particular, we provide a geometric interpretation of the Tutte polynomial. We also extend results of the second author concerning the behavior of such clas...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Mathematics and Theoretical Computer Science Vol. DMTCS Proceedings vol. AO,...; no. Proceedings; pp. 339 - 350
Main Authors: Fink, Alex, Speyer, David
Format: Journal Article Conference Proceeding
Language:English
Published: DMTCS 01-01-2011
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Series:DMTCS Proceedings
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To every matroid, we associate a class in the K-theory of the Grassmannian. We study this class using the method of equivariant localization. In particular, we provide a geometric interpretation of the Tutte polynomial. We also extend results of the second author concerning the behavior of such classes under direct sum, series and parallel connection and two-sum; these results were previously only established for realizable matroids, and their earlier proofs were more difficult. À chaque matroïde, nous associons une classe dans la K-théorie de la grassmannienne. Nous étudions cette classe en utilisant la méthode de localisation équivariante. En particulier, nous fournissons une interprétation géométrique du polynôme de Tutte. Nous étendons également les résultats du second auteur concernant le comportement de ces classes pour la somme directe, les connexions série et parallèle et la 2-somme; ces résultats n'ont été déjà établis que pour les matroïdes réalisables, et leurs preuves précédentes étaient plus difficiles.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.2915