Atmospheric CO 2 inversion reveals the Amazon as a minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions
Tropical forests such as the Amazonian rainforests play an important role for climate, are large carbon stores and are a treasure of biodiversity. Amazonian forests have been exposed to large-scale deforestation and degradation for many decades. Deforestation declined between 2005 and 2012 but more...
Saved in:
Published in: | Atmospheric chemistry and physics Vol. 23; no. 17; pp. 9685 - 9723 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-09-2023
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Tropical forests such as the Amazonian rainforests play an important role for climate, are large carbon stores and are a treasure of biodiversity. Amazonian forests have been exposed to large-scale deforestation and degradation for many decades. Deforestation declined between 2005 and 2012 but more recently has again increased with similar rates as in 2007–2008. The resulting forest fragments are exposed to substantially elevated temperatures in an already warming world. These temperature and land cover changes are expected to affect the forests, and an important diagnostic of their health and sensitivity to climate variation is
their carbon balance. In a recent study based on CO2 atmospheric
vertical profile observations between 2010 and 2018, and an air column
budgeting technique used to estimate fluxes, we reported the Amazon region
as a carbon source to the atmosphere, mainly due to fire emissions. Instead
of an air column budgeting technique, we use an inverse of the global
atmospheric transport model, TOMCAT, to assimilate CO2 observations
from Amazon vertical profiles and global flask measurements. We thus
estimate inter- and intra-annual variability in the carbon fluxes, trends
over time and controls for the period of 2010–2018. This is the longest period covered by a Bayesian inversion of these atmospheric CO2 profile observations to date. Our analyses indicate that the Amazon is a small net source of carbon to the atmosphere (mean
2010–2018 = 0.13 ± 0.17 Pg C yr−1, where 0.17 is the 1σ uncertainty), with the majority of
the emissions coming from the eastern region (77 % of total Amazon
emissions). Fire is the primary driver of the Amazonian source (0.26 ± 0.13 Pg C yr−1), while forest carbon uptake removes around half of the fire emissions to the atmosphere (−0.13 ± 0.20 Pg C yr−1). The largest net carbon sink was observed in the western-central Amazon region (72 % of the fire emissions). We find larger carbon emissions during the
extreme drought years (such as 2010, 2015 and 2016), correlated with
increases in temperature, cumulative water deficit and burned area. Despite
the increase in total carbon emissions during drought years, we do not
observe a significant trend over time in our carbon total, fire and net
biome exchange estimates between 2010 and 2018. Our analysis thus cannot
provide clear evidence for a weakening of the carbon uptake by Amazonian
tropical forests. |
---|---|
AbstractList | Tropical forests such as the Amazonian rainforests play an important role for climate, are large carbon stores and are a treasure of biodiversity. Amazonian forests have been exposed to large-scale deforestation and degradation for many decades. Deforestation declined between 2005 and 2012 but more recently has again increased with similar rates as in 2007–2008. The resulting forest fragments are exposed to substantially elevated temperatures in an already warming world. These temperature and land cover changes are expected to affect the forests, and an important diagnostic of their health and sensitivity to climate variation is
their carbon balance. In a recent study based on CO2 atmospheric
vertical profile observations between 2010 and 2018, and an air column
budgeting technique used to estimate fluxes, we reported the Amazon region
as a carbon source to the atmosphere, mainly due to fire emissions. Instead
of an air column budgeting technique, we use an inverse of the global
atmospheric transport model, TOMCAT, to assimilate CO2 observations
from Amazon vertical profiles and global flask measurements. We thus
estimate inter- and intra-annual variability in the carbon fluxes, trends
over time and controls for the period of 2010–2018. This is the longest period covered by a Bayesian inversion of these atmospheric CO2 profile observations to date. Our analyses indicate that the Amazon is a small net source of carbon to the atmosphere (mean
2010–2018 = 0.13 ± 0.17 Pg C yr−1, where 0.17 is the 1σ uncertainty), with the majority of
the emissions coming from the eastern region (77 % of total Amazon
emissions). Fire is the primary driver of the Amazonian source (0.26 ± 0.13 Pg C yr−1), while forest carbon uptake removes around half of the fire emissions to the atmosphere (−0.13 ± 0.20 Pg C yr−1). The largest net carbon sink was observed in the western-central Amazon region (72 % of the fire emissions). We find larger carbon emissions during the
extreme drought years (such as 2010, 2015 and 2016), correlated with
increases in temperature, cumulative water deficit and burned area. Despite
the increase in total carbon emissions during drought years, we do not
observe a significant trend over time in our carbon total, fire and net
biome exchange estimates between 2010 and 2018. Our analysis thus cannot
provide clear evidence for a weakening of the carbon uptake by Amazonian
tropical forests. |
Author | Cassol, Henrique L. G. Tejada, Graciela Wilson, Chris Naus, Stijn Williams, Mathew Arai, Egídio Basso, Luana S. Miller, John B. Gloor, Manuel Chipperfield, Martyn P. Smallman, T. Luke Peters, Wouter |
Author_xml | – sequence: 1 givenname: Luana S. orcidid: 0000-0002-4208-6039 surname: Basso fullname: Basso, Luana S. – sequence: 2 givenname: Chris orcidid: 0000-0001-8494-0697 surname: Wilson fullname: Wilson, Chris – sequence: 3 givenname: Martyn P. orcidid: 0000-0002-6803-4149 surname: Chipperfield fullname: Chipperfield, Martyn P. – sequence: 4 givenname: Graciela orcidid: 0000-0002-8389-0269 surname: Tejada fullname: Tejada, Graciela – sequence: 5 givenname: Henrique L. G. surname: Cassol fullname: Cassol, Henrique L. G. – sequence: 6 givenname: Egídio surname: Arai fullname: Arai, Egídio – sequence: 7 givenname: Mathew surname: Williams fullname: Williams, Mathew – sequence: 8 givenname: T. Luke orcidid: 0000-0002-0835-1003 surname: Smallman fullname: Smallman, T. Luke – sequence: 9 givenname: Wouter orcidid: 0000-0001-8166-2070 surname: Peters fullname: Peters, Wouter – sequence: 10 givenname: Stijn orcidid: 0000-0003-4879-9379 surname: Naus fullname: Naus, Stijn – sequence: 11 givenname: John B. orcidid: 0000-0001-8630-1610 surname: Miller fullname: Miller, John B. – sequence: 12 givenname: Manuel surname: Gloor fullname: Gloor, Manuel |
BookMark | eNpNkM9OwzAMxiM0JLbBnaMfgEKatF17nCb-SUi7wLlyE4cG1mZK0qHxLDwsreCwk-3P8vdZvwWb9a4nxq5TfpunVXaHap8ImVRFmSeCC3nG5mlR8mQlRTY76S_YIoQPzkXO02zOftaxc2HfkrcKNlsQYPsD-WBdD54OhLsAsSVYd_g9ShgAobO986DQN6MS3OAVjdMQSENzBGM9AXU2TB7hBr5sbME4TyHCsI_4SeCMCRSj7d8BGzdEaHFnRnVKCifHl-zcjA_Q1X9dsreH-9fNU_KyfXzerF8Sla5kTExp8jSXmnSjDVYoVS6kRl2VRdVgSsIYxEKrcce5Ic0ranKdNcgVlpUs5JLxP1_lXQieTL33tkN_rFNeT3TrkW4tZD3RrSe68hcteHUY |
CitedBy_id | crossref_primary_10_3390_su151814012 crossref_primary_10_1038_s43247_024_01205_0 |
Cites_doi | 10.1002/qj.3803 10.5194/essd-9-697-2017 10.1007/s00704-019-03085-3 10.1098/rstb.2018.0084 10.5194/essd-14-1917-2022 10.1111/gcb.13305 10.1016/j.dsr2.2008.12.009 10.1175/JCLI-D-17-0523.1 10.1002/2014GB005008 10.1038/s41586-020-2035-0 10.1088/1748-9326/abb62c 10.1111/j.1600-0870.1986.tb00459.x 10.1186/s13021-016-0069-2 10.1002/qj.2495 10.1038/s43247-022-00533-3 10.1175/JCLI-D-17-0208.1 10.1002/2014GB005082 10.1016/S0034-4257(02)00089-5 10.1029/2006GL029213 10.55161/ZGJG8060 10.1126/science.1244693 10.5194/gmd-10-639-2017 10.1098/rstb.2017.0408 10.5194/acp-21-10643-2021 10.1038/s41586-021-03629-6 10.1126/science.1137004 10.5194/acp-10-11707-2010 10.5194/acp-22-14735-2022 10.1073/pnas.1515160113 10.2307/1313568 10.1029/93GB02725 10.5194/esd-12-1191-2021 10.1038/nature14283 10.1038/s41467-017-02771-y 10.1098/rstb.2017.0411 10.1016/j.rse.2009.08.016 10.5194/acp-11-12813-2011 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 10.55161/VNBV7494 10.1090/S0025-5718-1980-0572855-7 10.1016/j.flora.2020.151609 10.3390/atmos11070734 10.1029/2019JD031339 10.1098/rstb.2017.0302 10.1126/science.1164033 10.18174/573967 10.1111/gcb.15425 10.1111/gcb.15905 10.1016/S0034-4257(02)00084-6 10.5194/gmd-7-2485-2014 10.1016/j.rse.2018.08.005 10.1038/nature08526 10.3389/ffgc.2021.645282 10.5194/essd-12-3269-2020 10.1890/05-0404 10.1111/gcb.16513 10.1002/grl.50377 10.5194/gmd-11-369-2018 10.5194/bg-9-527-2012 10.1002/qj.828 10.5194/amt-12-4561-2019 10.1038/nature12957 10.3389/feart.2019.00097 10.1002/2015GB005300 10.5194/essd-11-1411-2019 10.1029/2018GB005925 10.21203/rs.3.rs-2023624/v1 10.1256/qj.05.51 10.1126/science.abp8622 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.5194/acp-23-9685-2023 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 9723 |
ExternalDocumentID | 10_5194_acp_23_9685_2023 |
GroupedDBID | 23N 2WC 3V. 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AFKRA AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 M~E OK1 P2P P62 PATMY PCBAR PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 |
ID | FETCH-LOGICAL-c173t-f8f5153dedbdfa9a3c523dad9869ba1e2ffaa6dcfa900fed09eb5d4ba0ca89363 |
ISSN | 1680-7324 |
IngestDate | Thu Nov 21 21:48:40 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c173t-f8f5153dedbdfa9a3c523dad9869ba1e2ffaa6dcfa900fed09eb5d4ba0ca89363 |
ORCID | 0000-0002-4208-6039 0000-0001-8630-1610 0000-0001-8166-2070 0000-0002-6803-4149 0000-0002-0835-1003 0000-0002-8389-0269 0000-0001-8494-0697 0000-0003-4879-9379 |
PageCount | 39 |
ParticipantIDs | crossref_primary_10_5194_acp_23_9685_2023 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2023 |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref38 doi: 10.1002/qj.3803 – ident: ref83 doi: 10.5194/essd-9-697-2017 – ident: ref36 doi: 10.1007/s00704-019-03085-3 – ident: ref84 doi: 10.1098/rstb.2018.0084 – ident: ref27 doi: 10.5194/essd-14-1917-2022 – ident: ref1 doi: 10.1111/gcb.13305 – ident: ref79 doi: 10.1016/j.dsr2.2008.12.009 – ident: ref45 doi: 10.1175/JCLI-D-17-0523.1 – ident: ref2 doi: 10.1002/2014GB005008 – ident: ref41 doi: 10.1038/s41586-020-2035-0 – ident: ref75 doi: 10.1088/1748-9326/abb62c – ident: ref57 – ident: ref59 doi: 10.1111/j.1600-0870.1986.tb00459.x – ident: ref69 doi: 10.1186/s13021-016-0069-2 – ident: ref13 doi: 10.1002/qj.2495 – ident: ref23 doi: 10.1038/s43247-022-00533-3 – ident: ref53 – ident: ref17 – ident: ref60 doi: 10.1175/JCLI-D-17-0208.1 – ident: ref30 – ident: ref81 doi: 10.1002/2014GB005082 – ident: ref61 – ident: ref85 doi: 10.1016/S0034-4257(02)00089-5 – ident: ref6 – ident: ref63 doi: 10.1029/2006GL029213 – ident: ref62 doi: 10.55161/ZGJG8060 – ident: ref37 doi: 10.1126/science.1244693 – ident: ref50 – ident: ref65 doi: 10.5194/gmd-10-639-2017 – ident: ref47 doi: 10.1098/rstb.2017.0408 – ident: ref88 doi: 10.5194/acp-21-10643-2021 – ident: ref29 doi: 10.1038/s41586-021-03629-6 – ident: ref78 doi: 10.1126/science.1137004 – ident: ref54 – ident: ref82 doi: 10.5194/acp-10-11707-2010 – ident: ref66 doi: 10.5194/acp-22-14735-2022 – ident: ref9 doi: 10.1073/pnas.1515160113 – ident: ref39 – ident: ref64 – ident: ref71 doi: 10.2307/1313568 – ident: ref58 – ident: ref7 – ident: ref72 doi: 10.1029/93GB02725 – ident: ref77 doi: 10.5194/esd-12-1191-2021 – ident: ref15 doi: 10.1038/nature14283 – ident: ref4 doi: 10.1038/s41467-017-02771-y – ident: ref3 doi: 10.1098/rstb.2017.0411 – ident: ref25 doi: 10.1016/j.rse.2009.08.016 – ident: ref68 doi: 10.5194/acp-11-12813-2011 – ident: ref42 doi: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 – ident: ref31 doi: 10.55161/VNBV7494 – ident: ref67 doi: 10.1090/S0025-5718-1980-0572855-7 – ident: ref55 – ident: ref14 doi: 10.1016/j.flora.2020.151609 – ident: ref20 doi: 10.3390/atmos11070734 – ident: ref5 doi: 10.1029/2019JD031339 – ident: ref34 doi: 10.1098/rstb.2017.0302 – ident: ref70 doi: 10.1126/science.1164033 – ident: ref12 doi: 10.18174/573967 – ident: ref8 doi: 10.1111/gcb.15425 – ident: ref11 doi: 10.1111/gcb.15905 – ident: ref43 doi: 10.1016/S0034-4257(02)00084-6 – ident: ref86 doi: 10.5194/gmd-7-2485-2014 – ident: ref33 doi: 10.1016/j.rse.2018.08.005 – ident: ref80 – ident: ref46 doi: 10.1038/nature08526 – ident: ref48 doi: 10.3389/ffgc.2021.645282 – ident: ref26 doi: 10.5194/essd-12-3269-2020 – ident: ref21 – ident: ref74 doi: 10.1890/05-0404 – ident: ref24 doi: 10.1111/gcb.16513 – ident: ref35 doi: 10.1002/grl.50377 – ident: ref40 doi: 10.5194/gmd-11-369-2018 – ident: ref49 – ident: ref44 doi: 10.5194/bg-9-527-2012 – ident: ref52 – ident: ref73 – ident: ref18 doi: 10.1002/qj.828 – ident: ref19 doi: 10.5194/amt-12-4561-2019 – ident: ref28 doi: 10.1038/nature12957 – ident: ref76 doi: 10.3389/feart.2019.00097 – ident: ref87 doi: 10.1002/2015GB005300 – ident: ref56 – ident: ref89 doi: 10.5194/essd-11-1411-2019 – ident: ref22 doi: 10.1029/2018GB005925 – ident: ref32 doi: 10.21203/rs.3.rs-2023624/v1 – ident: ref10 – ident: ref16 doi: 10.1256/qj.05.51 – ident: ref51 doi: 10.1126/science.abp8622 |
SSID | ssj0025014 |
Score | 2.4822295 |
Snippet | Tropical forests such as the Amazonian rainforests play an important role for climate, are large carbon stores and are a treasure of biodiversity. Amazonian... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 9685 |
Title | Atmospheric CO 2 inversion reveals the Amazon as a minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l5cIF8RTlpTkgJGRcnPUj62MVgnoAemiQuFlj765qSJ0oTpDKb-HHMuP1S1WR6IGLZY-9o03m0-zs7DyEeG2siYs8Ql_bMPYjJXM_T-LYV0mkyEA2aWzZD3l6PvvyTX1YRIvJpOsTOtD-q6SJRrLmzNlbSLtnSgS6J5nTlaRO13-S-8nucl1zrYCy8OZnnvTK6qfziXGaiuFqyS6bBH9xIHLtoXdZVust16jOieK8-fS0r51xakkpetwVjnk0Um98t2Ts0oLi7Tc7_MF-B1sbF0LtQp0vcGXb-IN6NHxsC49nWnR951zhggY8gwOfDPzGo_tpjxV658cjZ1HdRQ1sy_77-UW52Yy6b3OphCvS9f24pfmOGl2KDpJyW-HY-SHDPrqr09eJCvxZ6NKwj80NtFbJu6TmDsyzkcpOE9czqF3-uQvbTUsLWboRr5vFxqdp8CCfJzQso13owLXVtY95pN0W88iIQybDjDlkzOFA3JGkJHt3QOss4PNedhZ0P8YdsTOH99fnMDKpRrbR8r64125q4MSh8YGYmOqhOPpM-7H1tjm2gTcwX5W0OWqeHonfI9nD_Awk9CiFFqVAyAGHUsAaEBqUgkMpOJSCQynkV8AohR5m74AxCg6j4DAKA0ahwSgwRokKDUaHwY_F14-L5fzUb_uE-MV0Fu58qyxZ5aE2OtcWUwyLWIYadaqSNMepkdYiJrqgd0FgjQ5Sk8c6yjEokMz1JHwiDqt1ZZ4KsMVUGZnHNgyiSNmID7GVVKTRUqIbeSTedn91tnHlYLK_CfbZLb59Lu4O8H4hDnfbvXkpDmq9f9XA4g81XrMs |
link.rule.ids | 315,782,786,866,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+CO+2+inversion+reveals+the+Amazon+as+a+minor+carbon+source+caused+by+fire+emissions%2C+with+forest+uptake+offsetting+about+half+of+these+emissions&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Basso%2C+Luana+S.&rft.au=Wilson%2C+Chris&rft.au=Chipperfield%2C+Martyn+P.&rft.au=Tejada%2C+Graciela&rft.date=2023-09-01&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=23&rft.issue=17&rft.spage=9685&rft.epage=9723&rft_id=info:doi/10.5194%2Facp-23-9685-2023&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_23_9685_2023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |