Effect of oxygen content on structural, magnetic and magnetocaloric properties of (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ

•Increasing the oxygen content lowers the temperature of polymorphic phase transitions.•Oxygen non-stoichiometry has little effect on TC and MCE.•All the compositions have high values of |SMmax| and RCP.•The FM-PM transition broadens and shifts to higher T with increasing magnetic field.•The critica...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials Vol. 476; pp. 199 - 206
Main Authors: Mitrofanov, V.Ya, Estemirova, S.Kh, Kozhina, G.A.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15-04-2019
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Increasing the oxygen content lowers the temperature of polymorphic phase transitions.•Oxygen non-stoichiometry has little effect on TC and MCE.•All the compositions have high values of |SMmax| and RCP.•The FM-PM transition broadens and shifts to higher T with increasing magnetic field.•The critical exponents matched well with the isotropic short range 3D-Heisenberg model. The present study reports the effect of oxygen content on the structural, magnetic and magnetocaloric properties in the (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ (δ = +0.02, +0.01, −0.03) in the temperature range of 5–723 К. It has been found that the temperatures of structural phase transitions vary significantly depending on the oxygen index value, δ. In oxygen-deficient samples (δ = −0.03), two structural phase transitions are observed: O′ → O and O → R (O′ – Orbitally ordered orthorhombic phase, O – Orbitally disordered orthorhombic phase, R – Rhombohedral phase). In excess oxygen samples (δ = +0.02, +0.01), the O′-phase is not formed. The O → R transition temperature increases with decreasing δ from TO→R = 353 K (δ = +0.02) to TO→R = 623 K (δ = −0.03). Magnetic measurements show that all our compounds exhibit a paramagnetic-ferromagnetic transition at TC ∼ 205 K. The Arrott plots reveal the occurrence of a second order phase transition. It was found that the transition temperature TC depends on the magnitude of the applied magnetic field, which rarely happens for materials with phase transitions of the second order. It has been shown from evaluation of the Temperature averaged Entropy Change (TEC) that a wide temperature range of MCE does not satisfies the requirements of using the compounds studied as an effective magnetocaloric material for magnetic refrigeration. The substitutions in cation sublattices and oxygen non-stoichiometry have negligible effect on TC and magnetocaloric effect (MCE). To investigate the magnetic interactions responsible for the magnetic transitions, the analysis was done by using the modified Arrott plot (MAP) method. The obtained values of the critical exponents matched well with those predicted for the isotropic short range 3D-Heisenberg model.
AbstractList •Increasing the oxygen content lowers the temperature of polymorphic phase transitions.•Oxygen non-stoichiometry has little effect on TC and MCE.•All the compositions have high values of |SMmax| and RCP.•The FM-PM transition broadens and shifts to higher T with increasing magnetic field.•The critical exponents matched well with the isotropic short range 3D-Heisenberg model. The present study reports the effect of oxygen content on the structural, magnetic and magnetocaloric properties in the (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ (δ = +0.02, +0.01, −0.03) in the temperature range of 5–723 К. It has been found that the temperatures of structural phase transitions vary significantly depending on the oxygen index value, δ. In oxygen-deficient samples (δ = −0.03), two structural phase transitions are observed: O′ → O and O → R (O′ – Orbitally ordered orthorhombic phase, O – Orbitally disordered orthorhombic phase, R – Rhombohedral phase). In excess oxygen samples (δ = +0.02, +0.01), the O′-phase is not formed. The O → R transition temperature increases with decreasing δ from TO→R = 353 K (δ = +0.02) to TO→R = 623 K (δ = −0.03). Magnetic measurements show that all our compounds exhibit a paramagnetic-ferromagnetic transition at TC ∼ 205 K. The Arrott plots reveal the occurrence of a second order phase transition. It was found that the transition temperature TC depends on the magnitude of the applied magnetic field, which rarely happens for materials with phase transitions of the second order. It has been shown from evaluation of the Temperature averaged Entropy Change (TEC) that a wide temperature range of MCE does not satisfies the requirements of using the compounds studied as an effective magnetocaloric material for magnetic refrigeration. The substitutions in cation sublattices and oxygen non-stoichiometry have negligible effect on TC and magnetocaloric effect (MCE). To investigate the magnetic interactions responsible for the magnetic transitions, the analysis was done by using the modified Arrott plot (MAP) method. The obtained values of the critical exponents matched well with those predicted for the isotropic short range 3D-Heisenberg model.
The present study reports the effect of oxygen content on the structural, magnetic and magnetocaloric properties in the (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ (δ = +0.02, +0.01, −0.03) in the temperature range of 5–723 К. It has been found that the temperatures of structural phase transitions vary significantly depending on the oxygen index value, δ. In oxygen-deficient samples (δ = −0.03), two structural phase transitions are observed: O′ → O and O → R (O′ – Orbitally ordered orthorhombic phase, O – Orbitally disordered orthorhombic phase, R – Rhombohedral phase). In excess oxygen samples (δ = +0.02, +0.01), the O′-phase is not formed. The O → R transition temperature increases with decreasing δ from TO→R = 353 K (δ = +0.02) to TO→R = 623 K (δ = −0.03). Magnetic measurements show that all our compounds exhibit a paramagnetic-ferromagnetic transition at TC ~ 205 K. The Arrott plots reveal the occurrence of a second order phase transition. It was found that the transition temperature TC depends on the magnitude of the applied magnetic field, which rarely happens for materials with phase transitions of the second order. It has been shown from evaluation of the Temperature averaged Entropy Change (TEC) that a wide temperature range of MCE does not satisfies the requirements of using the compounds studied as an effective magnetocaloric material for magnetic refrigeration. The substitutions in cation sublattices and oxygen non-stoichiometry have negligible effect on TC and magnetocaloric effect (MCE). To investigate the magnetic interactions responsible for the magnetic transitions, the analysis was done by using the modified Arrott plot (MAP) method. The obtained values of the critical exponents matched well with those predicted for the isotropic short range 3D-Heisenberg model.
Author Mitrofanov, V.Ya
Estemirova, S.Kh
Kozhina, G.A.
Author_xml – sequence: 1
  givenname: V.Ya
  surname: Mitrofanov
  fullname: Mitrofanov, V.Ya
  email: vyam@mail.ru
  organization: Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 101 Amundsen St., Ekaterinburg 620016, Russia
– sequence: 2
  givenname: S.Kh
  surname: Estemirova
  fullname: Estemirova, S.Kh
  email: esveta100@mail.ru
  organization: Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 101 Amundsen St., Ekaterinburg 620016, Russia
– sequence: 3
  givenname: G.A.
  surname: Kozhina
  fullname: Kozhina, G.A.
  email: gakozhina@yandex.ru
  organization: Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 101 Amundsen St., Ekaterinburg 620016, Russia
BookMark eNp9kM1q3DAUhUVJoJM0L5CVoZsWauVKsiUZuilD_mDKBJKshSxLwWYsTSVP6DxWoE-QB8gzRWay7ur-cM69h-8EHfngLULnBDABwi8GPIzjiCkQiQnF0IhPaEGkYGUlOD9CC2BQlVLW7DM6SWkAAFJJvkDPl85ZMxXBFeHv_sn6wgQ_WZ83vkhT3JlpF_XmRzHqJ2-n3hTadx9DMHoTYl5tY9jaOPU2zXe-rTRgcRcBs--A5X1u6G8PuFmGnHbNXl_e_n1Bx05vkj37qKfo8eryYXlTrtbXt8tfq9IQwaCkWotacNk0bUXqxoDQDSVc1LwzTDpNXMdb51xFAAS10DBaZ6WjLa_btgZ2ir4e7uaIf3Y2TWoIu-jzS0VJI6SkIGcVPahMDClF69Q29qOOe0VAzXzVoGa-auarCFWZbzb9PJhszv_c26iS6a03tutjJqq60P_P_g6bF4Qs
CitedBy_id crossref_primary_10_1016_j_jmmm_2023_171334
crossref_primary_10_1016_j_jmmm_2022_170162
crossref_primary_10_1039_D2CP00559J
crossref_primary_10_1140_epjp_s13360_022_03153_0
crossref_primary_10_1039_D4RA01086H
crossref_primary_10_1016_j_jallcom_2023_169986
crossref_primary_10_1039_D0RA03982A
crossref_primary_10_1016_j_chemphys_2021_111205
crossref_primary_10_1021_acs_inorgchem_3c02136
crossref_primary_10_1016_j_jmmm_2022_169481
crossref_primary_10_20964_2021_06_31
crossref_primary_10_1016_j_solidstatesciences_2022_106806
crossref_primary_10_1016_j_jmmm_2020_166998
crossref_primary_10_3390_ma16103629
crossref_primary_10_1007_s10854_019_02680_4
crossref_primary_10_1007_s10948_022_06188_7
crossref_primary_10_1134_S0036023622070117
crossref_primary_10_1016_j_jmmm_2020_167158
crossref_primary_10_1007_s10854_022_08073_4
crossref_primary_10_1007_s10948_023_06517_4
crossref_primary_10_1016_j_inoche_2023_111707
crossref_primary_10_1016_j_jmmm_2021_168807
crossref_primary_10_1016_j_jallcom_2023_171330
Cites_doi 10.1016/S0921-4526(02)01733-7
10.1063/1.4739262
10.1002/aenm.201200167
10.1088/0034-4885/68/6/R04
10.1016/j.ceramint.2015.02.034
10.1016/j.jallcom.2018.04.072
10.1103/PhysRevB.54.6172
10.1016/j.jmmm.2013.01.012
10.1016/j.jmmm.2009.06.044
10.1016/0011-2275(85)90187-0
10.1088/0953-8984/8/50/003
10.1016/S0370-1573(00)00111-3
10.1103/PhysRevB.54.7328
10.3938/jkps.57.1893
10.1103/PhysRevB.60.12191
10.1016/j.jnoncrysol.2008.06.112
10.1103/PhysRevB.60.7006
10.1007/BF01022459
10.1103/PhysRev.108.1394
10.1016/S0370-1573(00)00121-6
10.1016/0031-9163(64)91158-8
10.1088/1367-2630/7/1/067
10.1103/PhysRev.100.675
10.1063/1.3063666
10.1063/1.4892406
10.1107/S0021889801002242
10.1016/j.pmatsci.2017.10.005
10.1016/j.jmmm.2012.02.059
10.1016/j.jallcom.2012.10.087
10.1063/1.5004173
10.1080/000187399243455
10.1103/PhysRevLett.98.137203
10.1063/1.2840121
10.1016/j.jmmm.2006.07.025
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2018.12.097
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
EndPage 206
ExternalDocumentID 10_1016_j_jmmm_2018_12_097
S030488531832660X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
AAQFI
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
D-I
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
XXG
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1730-2aa7576899b4159c07a9216756dc38fa1fd6bfff410072e09325b41f2b65bb503
ISSN 0304-8853
IngestDate Thu Oct 10 20:33:36 EDT 2024
Thu Sep 26 19:03:41 EDT 2024
Fri Feb 23 02:29:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords X-ray diffraction
Magnetic measurements
Magnetocaloric effect
Oxide materials
Phase transitions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1730-2aa7576899b4159c07a9216756dc38fa1fd6bfff410072e09325b41f2b65bb503
PQID 2197882080
PQPubID 2045450
PageCount 8
ParticipantIDs proquest_journals_2197882080
crossref_primary_10_1016_j_jmmm_2018_12_097
elsevier_sciencedirect_doi_10_1016_j_jmmm_2018_12_097
PublicationCentury 2000
PublicationDate 20190415
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 20190415
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Dabrowski, Xiong, Bukowski, Dybzinski, Klamut, Siewenie, Chmaissem, Shaffer, Kimball (b0055) 1999; 60
Dagotto (b0145) 2005; 7
Nagaev (b0015) 2001; 346
Dhiman, Das, Nigam, Kremer (b0045) 2013; 334
Zainullina, Bebenin, Burkhanov, Ustinov, Mukovskii (b0085) 2002; 66
Nam, Dai, Hong, Phuc, Yu, Tachibana, Takayama-Muromachi (b0160) 2008; 103
Franco, Conde, Kuz’min, Romero-Enrique (b0140) 2009; 105
Anderson, Hasegava (b0150) 1955; 100
Dagotto, Hotta, Moreo (b0010) 2001; 344
Stanley (b0185) 1971
Martin, Maignan, Hervieu, Raveau (b0040) 1999; 60
Toby (b0065) 2001; 34
Mitchell, Argyriou, Potter, Hinks, Jorgensen, Bader (b0075) 1996; 54
Wood, Potter (b0165) 1985; 25
Franco, Blázquez, Ipus, Law, Moreno-Ramírez, Conde (b0005) 2018; 93
Moskvin, Ovanesyan, Trukhtanov (b0110) 1975; 1
Banerjee (b0125) 1964; 12
Guillou, Yibole, Porcari, Zhang, van Dijk, Brück (b0170) 2014; 116
Griffith, Mudryk, Slaughter, Pecharsky (b0175) 2018; 123
Pękała, Pękała, Drozd, Staszkiewicz, Fagnard, Vanderbemden (b0030) 2012; 112
Bozin, Schmidt, DeConinck, Paglia, Mitchell, Chatterji, Radaelli, Proffen, Billinge (b0070) 2007; 98
Varma (b0095) 1996; 54
Garcia-Munoz, Fontcuberta, Suaaidi, Obradors (b0105) 1996; 8
Harrison (b0115) 1980
Gschneidner, Pecharsky, Tsokol (b0135) 2005; 68
Phan, Yu (b0025) 2007; 308
Heo, Lee, Yu, Kim, Kim, Lee (b0090) 2010; 57
Bouderbala, Makni-Chakroun, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou, Nowak, Ammar-Merah (b0035) 2015; 41
Ghodhbane, Dhahri, Dhahri, Hlil, Dhahri (b0050) 2013; 550
Tishin, Spichkin (b0130) 2003
Arrott (b0190) 2010; 322
Pekała, Drozd (b0080) 2008; 354
Arrott (b0120) 1957; 108
Estemirova, Mitrofanov, Uporov, Kozhina (b0060) 2018; 751
Ryzhov, Lazuta, Molkanov, Khavronin, Kurbakov, Runov, Ya, Mukovskii, Privezentsev (b0155) 2012; 324
Tian, Phan, Yu, Hur (b0020) 2003; 327
J. M. D. Coey, M. Viret, S. von Molna′r, Mixed-valence manganites, 48 (1999) 167 293. doi: 10.1080/000187399243455.
Smith, Bahl, Bjørk, Engelbrecht, Nielsen, Pryds (b0180) 2012; 2
Nam (10.1016/j.jmmm.2018.12.097_b0160) 2008; 103
Wood (10.1016/j.jmmm.2018.12.097_b0165) 1985; 25
Ghodhbane (10.1016/j.jmmm.2018.12.097_b0050) 2013; 550
Pękała (10.1016/j.jmmm.2018.12.097_b0030) 2012; 112
Toby (10.1016/j.jmmm.2018.12.097_b0065) 2001; 34
Dagotto (10.1016/j.jmmm.2018.12.097_b0145) 2005; 7
Ryzhov (10.1016/j.jmmm.2018.12.097_b0155) 2012; 324
Tian (10.1016/j.jmmm.2018.12.097_b0020) 2003; 327
Guillou (10.1016/j.jmmm.2018.12.097_b0170) 2014; 116
Moskvin (10.1016/j.jmmm.2018.12.097_b0110) 1975; 1
Dabrowski (10.1016/j.jmmm.2018.12.097_b0055) 1999; 60
Anderson (10.1016/j.jmmm.2018.12.097_b0150) 1955; 100
Tishin (10.1016/j.jmmm.2018.12.097_b0130) 2003
Nagaev (10.1016/j.jmmm.2018.12.097_b0015) 2001; 346
Banerjee (10.1016/j.jmmm.2018.12.097_b0125) 1964; 12
Garcia-Munoz (10.1016/j.jmmm.2018.12.097_b0105) 1996; 8
Zainullina (10.1016/j.jmmm.2018.12.097_b0085) 2002; 66
Heo (10.1016/j.jmmm.2018.12.097_b0090) 2010; 57
Bouderbala (10.1016/j.jmmm.2018.12.097_b0035) 2015; 41
Griffith (10.1016/j.jmmm.2018.12.097_b0175) 2018; 123
Arrott (10.1016/j.jmmm.2018.12.097_b0120) 1957; 108
Gschneidner (10.1016/j.jmmm.2018.12.097_b0135) 2005; 68
Dhiman (10.1016/j.jmmm.2018.12.097_b0045) 2013; 334
Martin (10.1016/j.jmmm.2018.12.097_b0040) 1999; 60
Stanley (10.1016/j.jmmm.2018.12.097_b0185) 1971
Phan (10.1016/j.jmmm.2018.12.097_b0025) 2007; 308
Varma (10.1016/j.jmmm.2018.12.097_b0095) 1996; 54
10.1016/j.jmmm.2018.12.097_b0100
Harrison (10.1016/j.jmmm.2018.12.097_b0115) 1980
Smith (10.1016/j.jmmm.2018.12.097_b0180) 2012; 2
Estemirova (10.1016/j.jmmm.2018.12.097_b0060) 2018; 751
Pekała (10.1016/j.jmmm.2018.12.097_b0080) 2008; 354
Franco (10.1016/j.jmmm.2018.12.097_b0140) 2009; 105
Dagotto (10.1016/j.jmmm.2018.12.097_b0010) 2001; 344
Bozin (10.1016/j.jmmm.2018.12.097_b0070) 2007; 98
Mitchell (10.1016/j.jmmm.2018.12.097_b0075) 1996; 54
Franco (10.1016/j.jmmm.2018.12.097_b0005) 2018; 93
Arrott (10.1016/j.jmmm.2018.12.097_b0190) 2010; 322
References_xml – volume: 54
  start-page: 6172
  year: 1996
  end-page: 6183
  ident: b0075
  article-title: Structural phase diagram of La
  publication-title: Phys. Rev. B
  contributor:
    fullname: Bader
– volume: 308
  start-page: 325
  year: 2007
  end-page: 340
  ident: b0025
  article-title: Review of the magnetocaloric effect in manganite materials
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Yu
– volume: 60
  start-page: 7006
  year: 1999
  end-page: 7017
  ident: b0055
  article-title: Structure-properties phase diagram for La
  publication-title: Phys. Rev. B
  contributor:
    fullname: Kimball
– volume: 57
  start-page: 1893
  year: 2010
  end-page: 1896
  ident: b0090
  article-title: Magnetocaloric effect of perovskite manganites of La0.8A0.2MnO3 (A = Ca, Sr, Ba)
  publication-title: J. Korean Phys. Soc.
  contributor:
    fullname: Lee
– year: 1980
  ident: b0115
  article-title: The Electronic Structure and Properties of Solids
  contributor:
    fullname: Harrison
– volume: 112
  start-page: 023906
  year: 2012
  ident: b0030
  article-title: Magnetocaloric and transport study of poly- and nanocrystalline composite manganites La
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Vanderbemden
– volume: 354
  start-page: 5308
  year: 2008
  end-page: 5314
  ident: b0080
  article-title: Magnetocaloric effect in nano- and polycrystalline La
  publication-title: J. Non-Cryst. Solids
  contributor:
    fullname: Drozd
– volume: 108
  start-page: 1394
  year: 1957
  end-page: 1396
  ident: b0120
  article-title: Criterion for ferromagnetism from observations of magnetic isotherms
  publication-title: Phys. Rev.
  contributor:
    fullname: Arrott
– volume: 123
  year: 2018
  ident: b0175
  article-title: Material-based figure of merit for caloric materials
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Pecharsky
– volume: 346
  start-page: 387
  year: 2001
  end-page: 531
  ident: b0015
  article-title: Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors
  publication-title: Phys. Rep.
  contributor:
    fullname: Nagaev
– volume: 34
  start-page: 210
  year: 2001
  end-page: 213
  ident: b0065
  article-title: EXPGUI, a graphical user interface for GSAS
  publication-title: J. Appl. Cryst.
  contributor:
    fullname: Toby
– year: 1971
  ident: b0185
  article-title: Introduction to Phase Transitions and Critical Phenomena
  contributor:
    fullname: Stanley
– volume: 7
  start-page: 67
  year: 2005
  ident: b0145
  article-title: Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates
  publication-title: New J. Phys.
  contributor:
    fullname: Dagotto
– volume: 751
  start-page: 96
  year: 2018
  end-page: 106
  ident: b0060
  article-title: Structural and magnetic properties, magnetocaloric effect in (La
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Kozhina
– volume: 344
  start-page: 1
  year: 2001
  end-page: 153
  ident: b0010
  article-title: Colossal magnetoresistant materials: the key role of phase separation
  publication-title: Phys. Rep.
  contributor:
    fullname: Moreo
– volume: 100
  start-page: 675
  year: 1955
  end-page: 681
  ident: b0150
  article-title: Considerations on double exchange
  publication-title: Phys. Rev.
  contributor:
    fullname: Hasegava
– volume: 41
  start-page: 7337
  year: 2015
  end-page: 7344
  ident: b0035
  article-title: Structural, magnetic and magnetocaloric study of La
  publication-title: J. Ceram. Int.
  contributor:
    fullname: Ammar-Merah
– volume: 550
  start-page: 358
  year: 2013
  end-page: 364
  ident: b0050
  article-title: Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1-xFexO3 compounds with 0 ≤ x ≤0.1
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Dhahri
– volume: 98
  year: 2007
  ident: b0070
  article-title: Understanding the Insulating Phase in Colossal Magnetoresistance Manganites: Shortening of the Jahn-Teller Long-Bond across the Phase Diagram of La
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Billinge
– volume: 1
  start-page: 265
  year: 1975
  end-page: 281
  ident: b0110
  article-title: Angular dependence of the superexchange interaction
  publication-title: Hyperfine Interact.
  contributor:
    fullname: Trukhtanov
– volume: 93
  start-page: 112
  year: 2018
  end-page: 232
  ident: b0005
  article-title: Magnetocaloric effect: from materials research to refrigeration devices
  publication-title: Prog. Mater. Sci.
  contributor:
    fullname: Conde
– volume: 327
  start-page: 221
  year: 2003
  end-page: 224
  ident: b0020
  article-title: Magnetocaloric effect in a La
  publication-title: Phys. B
  contributor:
    fullname: Hur
– volume: 54
  start-page: 7328
  year: 1996
  end-page: 7333
  ident: b0095
  article-title: Electronic and magnetic states in the giant magnetoresistive compounds
  publication-title: Phys. Rev. B
  contributor:
    fullname: Varma
– start-page: 480
  year: 2003
  ident: b0130
  article-title: The Magnetocaloric Effect and Its Applications
  contributor:
    fullname: Spichkin
– volume: 2
  start-page: 1288
  year: 2012
  end-page: 1318
  ident: b0180
  article-title: Materials challenges for high performance magnetocaloric refrigeration devices
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Pryds
– volume: 25
  start-page: 667
  year: 1985
  ident: b0165
  article-title: General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity
  publication-title: Cryogenics
  contributor:
    fullname: Potter
– volume: 105
  start-page: 07A917
  year: 2009
  ident: b0140
  article-title: The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Romero-Enrique
– volume: 60
  start-page: 12191
  year: 1999
  end-page: 12199
  ident: b0040
  article-title: Magnetic phase diagrams of L
  publication-title: Phys. Rev. B
  contributor:
    fullname: Raveau
– volume: 334
  start-page: 21
  year: 2013
  end-page: 30
  ident: b0045
  article-title: Effect of B-site doping in (La
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Kremer
– volume: 12
  start-page: 16
  year: 1964
  end-page: 17
  ident: b0125
  article-title: On a generalised approach to first and second order magnetic transitions
  publication-title: Phys. Lett.
  contributor:
    fullname: Banerjee
– volume: 116
  year: 2014
  ident: b0170
  article-title: Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P Si, B) system
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Brück
– volume: 66
  year: 2002
  ident: b0085
  article-title: Effect of yttrium doping on magnetic and elastic properties of La0.8Sr0.2MnO3 single crystal
  publication-title: Phys. Rev. B.
  contributor:
    fullname: Mukovskii
– volume: 8
  start-page: L787
  year: 1996
  end-page: L793
  ident: b0105
  article-title: Bandwidth narrowing in bulk L
  publication-title: J. Phys. Condens. Matter.
  contributor:
    fullname: Obradors
– volume: 103
  year: 2008
  ident: b0160
  article-title: Room-temperature magnetocaloric effect in La
  publication-title: J. Appl. Phys
  contributor:
    fullname: Takayama-Muromachi
– volume: 322
  start-page: 1047
  year: 2010
  end-page: 1051
  ident: b0190
  article-title: Equations of state along the road to Arrott's last plot
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Arrott
– volume: 68
  start-page: 1479
  year: 2005
  end-page: 1539
  ident: b0135
  article-title: Recent developments in magnetocaloric materials
  publication-title: Rep. Prog. Phys.
  contributor:
    fullname: Tsokol
– volume: 324
  start-page: 3432
  year: 2012
  end-page: 3438
  ident: b0155
  article-title: Comparative study of heterogeneous magnetic state above
  publication-title: J. Magn. Magn. Mater
  contributor:
    fullname: Privezentsev
– volume: 327
  start-page: 221
  year: 2003
  ident: 10.1016/j.jmmm.2018.12.097_b0020
  article-title: Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal
  publication-title: Phys. B
  doi: 10.1016/S0921-4526(02)01733-7
  contributor:
    fullname: Tian
– volume: 112
  start-page: 023906
  year: 2012
  ident: 10.1016/j.jmmm.2018.12.097_b0030
  article-title: Magnetocaloric and transport study of poly- and nanocrystalline composite manganites La0.7Ca0.3MnO3/La0.8Sr0.2MnO3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4739262
  contributor:
    fullname: Pękała
– volume: 2
  start-page: 1288
  year: 2012
  ident: 10.1016/j.jmmm.2018.12.097_b0180
  article-title: Materials challenges for high performance magnetocaloric refrigeration devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200167
  contributor:
    fullname: Smith
– volume: 68
  start-page: 1479
  year: 2005
  ident: 10.1016/j.jmmm.2018.12.097_b0135
  article-title: Recent developments in magnetocaloric materials
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/6/R04
  contributor:
    fullname: Gschneidner
– volume: 41
  start-page: 7337
  year: 2015
  ident: 10.1016/j.jmmm.2018.12.097_b0035
  article-title: Structural, magnetic and magnetocaloric study of La0.7-xEuxSr0.3MnO3 (x=0.1, 0.2 and 0.3) manganites
  publication-title: J. Ceram. Int.
  doi: 10.1016/j.ceramint.2015.02.034
  contributor:
    fullname: Bouderbala
– volume: 751
  start-page: 96
  year: 2018
  ident: 10.1016/j.jmmm.2018.12.097_b0060
  article-title: Structural and magnetic properties, magnetocaloric effect in (La0.7Pr0.3)0.8Sr0.2Mn0.9Ti0.1O3±δ (δ=0.03, 0.02, -0.03)
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.04.072
  contributor:
    fullname: Estemirova
– volume: 54
  start-page: 6172
  year: 1996
  ident: 10.1016/j.jmmm.2018.12.097_b0075
  article-title: Structural phase diagram of La1-xSrxMnO3-δ: Relationship to magnetic and transport properties
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.6172
  contributor:
    fullname: Mitchell
– volume: 66
  year: 2002
  ident: 10.1016/j.jmmm.2018.12.097_b0085
  article-title: Effect of yttrium doping on magnetic and elastic properties of La0.8Sr0.2MnO3 single crystal
  publication-title: Phys. Rev. B.
  contributor:
    fullname: Zainullina
– year: 1980
  ident: 10.1016/j.jmmm.2018.12.097_b0115
  contributor:
    fullname: Harrison
– volume: 334
  start-page: 21
  year: 2013
  ident: 10.1016/j.jmmm.2018.12.097_b0045
  article-title: Effect of B-site doping in (La0.3Pr0.7)0.65Ca0.35Mn1-xBxO3 (B=Fe, Cr, Ru and Al) manganites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.01.012
  contributor:
    fullname: Dhiman
– volume: 322
  start-page: 1047
  year: 2010
  ident: 10.1016/j.jmmm.2018.12.097_b0190
  article-title: Equations of state along the road to Arrott's last plot
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.06.044
  contributor:
    fullname: Arrott
– volume: 25
  start-page: 667
  year: 1985
  ident: 10.1016/j.jmmm.2018.12.097_b0165
  article-title: General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(85)90187-0
  contributor:
    fullname: Wood
– volume: 8
  start-page: L787
  year: 1996
  ident: 10.1016/j.jmmm.2018.12.097_b0105
  article-title: Bandwidth narrowing in bulk L2/3A1/3MnO3 magnetoresistive oxides
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/8/50/003
  contributor:
    fullname: Garcia-Munoz
– volume: 346
  start-page: 387
  year: 2001
  ident: 10.1016/j.jmmm.2018.12.097_b0015
  article-title: Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00111-3
  contributor:
    fullname: Nagaev
– volume: 54
  start-page: 7328
  year: 1996
  ident: 10.1016/j.jmmm.2018.12.097_b0095
  article-title: Electronic and magnetic states in the giant magnetoresistive compounds
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.7328
  contributor:
    fullname: Varma
– volume: 57
  start-page: 1893
  year: 2010
  ident: 10.1016/j.jmmm.2018.12.097_b0090
  article-title: Magnetocaloric effect of perovskite manganites of La0.8A0.2MnO3 (A = Ca, Sr, Ba)
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.57.1893
  contributor:
    fullname: Heo
– volume: 60
  start-page: 12191
  year: 1999
  ident: 10.1016/j.jmmm.2018.12.097_b0040
  article-title: Magnetic phase diagrams of L1-xAxMnO3 manganites (L=Pr, Sm; A=Ca, Sr)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.12191
  contributor:
    fullname: Martin
– volume: 354
  start-page: 5308
  year: 2008
  ident: 10.1016/j.jmmm.2018.12.097_b0080
  article-title: Magnetocaloric effect in nano- and polycrystalline La0.8Sr0.2MnO3 manganites
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2008.06.112
  contributor:
    fullname: Pekała
– volume: 60
  start-page: 7006
  year: 1999
  ident: 10.1016/j.jmmm.2018.12.097_b0055
  article-title: Structure-properties phase diagram for La1-xSrxMnO3 0.1≤x≤0.2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.7006
  contributor:
    fullname: Dabrowski
– volume: 1
  start-page: 265
  year: 1975
  ident: 10.1016/j.jmmm.2018.12.097_b0110
  article-title: Angular dependence of the superexchange interaction
  publication-title: Hyperfine Interact.
  doi: 10.1007/BF01022459
  contributor:
    fullname: Moskvin
– volume: 108
  start-page: 1394
  year: 1957
  ident: 10.1016/j.jmmm.2018.12.097_b0120
  article-title: Criterion for ferromagnetism from observations of magnetic isotherms
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.1394
  contributor:
    fullname: Arrott
– volume: 344
  start-page: 1
  year: 2001
  ident: 10.1016/j.jmmm.2018.12.097_b0010
  article-title: Colossal magnetoresistant materials: the key role of phase separation
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00121-6
  contributor:
    fullname: Dagotto
– volume: 12
  start-page: 16
  year: 1964
  ident: 10.1016/j.jmmm.2018.12.097_b0125
  article-title: On a generalised approach to first and second order magnetic transitions
  publication-title: Phys. Lett.
  doi: 10.1016/0031-9163(64)91158-8
  contributor:
    fullname: Banerjee
– volume: 7
  start-page: 67
  year: 2005
  ident: 10.1016/j.jmmm.2018.12.097_b0145
  article-title: Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/7/1/067
  contributor:
    fullname: Dagotto
– year: 1971
  ident: 10.1016/j.jmmm.2018.12.097_b0185
  contributor:
    fullname: Stanley
– volume: 100
  start-page: 675
  year: 1955
  ident: 10.1016/j.jmmm.2018.12.097_b0150
  article-title: Considerations on double exchange
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.100.675
  contributor:
    fullname: Anderson
– start-page: 480
  year: 2003
  ident: 10.1016/j.jmmm.2018.12.097_b0130
  contributor:
    fullname: Tishin
– volume: 105
  start-page: 07A917
  year: 2009
  ident: 10.1016/j.jmmm.2018.12.097_b0140
  article-title: The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3063666
  contributor:
    fullname: Franco
– volume: 116
  year: 2014
  ident: 10.1016/j.jmmm.2018.12.097_b0170
  article-title: Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P Si, B) system
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4892406
  contributor:
    fullname: Guillou
– volume: 34
  start-page: 210
  year: 2001
  ident: 10.1016/j.jmmm.2018.12.097_b0065
  article-title: EXPGUI, a graphical user interface for GSAS
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889801002242
  contributor:
    fullname: Toby
– volume: 93
  start-page: 112
  year: 2018
  ident: 10.1016/j.jmmm.2018.12.097_b0005
  article-title: Magnetocaloric effect: from materials research to refrigeration devices
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.005
  contributor:
    fullname: Franco
– volume: 324
  start-page: 3432
  year: 2012
  ident: 10.1016/j.jmmm.2018.12.097_b0155
  article-title: Comparative study of heterogeneous magnetic state above TC in La0.82Sr0.18CoO3 cobaltite and La0.83Sr0.17MnO3 manganite
  publication-title: J. Magn. Magn. Mater
  doi: 10.1016/j.jmmm.2012.02.059
  contributor:
    fullname: Ryzhov
– volume: 550
  start-page: 358
  year: 2013
  ident: 10.1016/j.jmmm.2018.12.097_b0050
  article-title: Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1-xFexO3 compounds with 0 ≤ x ≤0.1
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.10.087
  contributor:
    fullname: Ghodhbane
– volume: 123
  year: 2018
  ident: 10.1016/j.jmmm.2018.12.097_b0175
  article-title: Material-based figure of merit for caloric materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5004173
  contributor:
    fullname: Griffith
– ident: 10.1016/j.jmmm.2018.12.097_b0100
  doi: 10.1080/000187399243455
– volume: 98
  year: 2007
  ident: 10.1016/j.jmmm.2018.12.097_b0070
  article-title: Understanding the Insulating Phase in Colossal Magnetoresistance Manganites: Shortening of the Jahn-Teller Long-Bond across the Phase Diagram of La1-xCaxMnO3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.137203
  contributor:
    fullname: Bozin
– volume: 103
  year: 2008
  ident: 10.1016/j.jmmm.2018.12.097_b0160
  article-title: Room-temperature magnetocaloric effect in La0.75Sr0.3Mn1−xM’xO3 (M’=Al Ti)
  publication-title: J. Appl. Phys
  doi: 10.1063/1.2840121
  contributor:
    fullname: Nam
– volume: 308
  start-page: 325
  year: 2007
  ident: 10.1016/j.jmmm.2018.12.097_b0025
  article-title: Review of the magnetocaloric effect in manganite materials
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.07.025
  contributor:
    fullname: Phan
SSID ssj0001486
ssib019626450
Score 2.3212576
Snippet •Increasing the oxygen content lowers the temperature of polymorphic phase transitions.•Oxygen non-stoichiometry has little effect on TC and MCE.•All the...
The present study reports the effect of oxygen content on the structural, magnetic and magnetocaloric properties in the (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ (δ =...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 199
SubjectTerms Ferromagnetism
Heisenberg theory
Magnetic materials
Magnetic measurement
Magnetic measurements
Magnetic properties
Magnetic transitions
Magnetocaloric effect
Orthorhombic phase
Oxide materials
Oxygen
Oxygen content
Phase transitions
Refrigeration
Statistical models
Stoichiometry
Temperature
Three dimensional models
Transition temperature
X-ray diffraction
Title Effect of oxygen content on structural, magnetic and magnetocaloric properties of (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ
URI https://dx.doi.org/10.1016/j.jmmm.2018.12.097
https://www.proquest.com/docview/2197882080
Volume 476
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB62LYIv4hWrVebBgFITMpP743aNVIsX2Arr0zCTzEgXNinddlH_leAv8Af4mzxzSVK3VlTwJWSH2Uw438m5zZlzEHpUUx4SKbmfxQX1QUNIXwilgzgkV1yESW26NexPs9ez_FkZl6NR17VsGPuvSMMYYK1Pzv4F2v1DYQDuAXO4Aupw_SPcXTlisAHbj59glklGNxv-za4tFqsLbWjKLviHRnb1Wu0Prdh00RCdtnWsM65tSVrd9oOHQfb2BLxvjxZhkE_hlr5qwqCYtCAR30TehHp7xJuU3l58icXrFnRdOfrlwWa2hOnBPzoF7cCbdmWycIP3veooddnpo5N2ZUzeaXDQB7MP2s-6E7gJ8wfj4Hwwg5h9GXuc00bYLpyysSe7YFae26LCndSOs_Nyl9guS06FU1PE4KJ2sIGKeTBfLHQRApKbSLDND16ruj3Vi-o1tchL03C2gbYoyDIQpVvjF-XsZa_uwZ-0G-LuJd3JLJtEuL7SZdbPmh1gjJvD6-iawwiPLTvdQCPZ3ERXTHZwtbyFVpapcKuwZSrsmAq3DR6Y6inuMMUAMP6ZpfDAUvo5jweGevIrdvr25fvX2-jd8_Jwsu-7hh1-RUBT-JTzTPuvRSHgqy-qMOMFJeCSpnUVwadPVJ0KpVSsU3OoDMF3SGCmoiJNhEjC6A7abNpG3kUYzPYqSgSvqazjMFIgNRJaKAEOv0orqbbRbkdIdmzrsrAuYXHONNmZJjsjlAHZt1HS0Zo5y9JajAxY47f_2-mAYe4bXzLQ8Rn4peBq3fvHx95HVwfm30GbgJN8gDaW9dlDx10_AKWioKk
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+oxygen+content+on+structural%2C+magnetic+and+magnetocaloric+properties+of+%28La0.7Pr0.3%290.8Sr0.2Mn0.9Co0.1O3%C2%B1%CE%B4&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Mitrofanov%2C+V.Ya&rft.au=Estemirova%2C+S.Kh&rft.au=Kozhina%2C+G.A.&rft.date=2019-04-15&rft.pub=Elsevier+B.V&rft.issn=0304-8853&rft.volume=476&rft.spage=199&rft.epage=206&rft_id=info:doi/10.1016%2Fj.jmmm.2018.12.097&rft.externalDocID=S030488531832660X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon