3D‐Printed MOF‐Derived Hierarchically Porous Frameworks for Practical High‐Energy Density Li–O 2 Batteries

Abstract Aprotic Li–O 2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 29; no. 1
Main Authors: Lyu, Zhiyang, Lim, Gwendolyn J. H., Guo, Rui, Kou, Zongkui, Wang, Tingting, Guan, Cao, Ding, Jun, Chen, Wei, Wang, John
Format: Journal Article
Language:English
Published: 04-01-2019
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Aprotic Li–O 2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li 2 O 2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li 2 O 2 particles and facilitate their decomposition due to the confinement of insulating Li 2 O 2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg −1 cell . This study provides an effective approach to increase the practical specific energy for Li–O 2 batteries by constructing 3D‐printed framework cathodes.
AbstractList Abstract Aprotic Li–O 2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li 2 O 2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li 2 O 2 particles and facilitate their decomposition due to the confinement of insulating Li 2 O 2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg −1 cell . This study provides an effective approach to increase the practical specific energy for Li–O 2 batteries by constructing 3D‐printed framework cathodes.
Author Wang, Tingting
Chen, Wei
Wang, John
Guo, Rui
Guan, Cao
Ding, Jun
Lim, Gwendolyn J. H.
Lyu, Zhiyang
Kou, Zongkui
Author_xml – sequence: 1
  givenname: Zhiyang
  orcidid: 0000-0002-4305-4047
  surname: Lyu
  fullname: Lyu, Zhiyang
  organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore
– sequence: 2
  givenname: Gwendolyn J. H.
  surname: Lim
  fullname: Lim, Gwendolyn J. H.
  organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore
– sequence: 3
  givenname: Rui
  surname: Guo
  fullname: Guo, Rui
  organization: Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore
– sequence: 4
  givenname: Zongkui
  surname: Kou
  fullname: Kou, Zongkui
  organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore
– sequence: 5
  givenname: Tingting
  surname: Wang
  fullname: Wang, Tingting
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
– sequence: 6
  givenname: Cao
  surname: Guan
  fullname: Guan, Cao
  organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore
– sequence: 7
  givenname: Jun
  surname: Ding
  fullname: Ding, Jun
  organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore
– sequence: 8
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore, Department of Physics National University of Singapore 2 Science Drive 3 117542 Singapore
– sequence: 9
  givenname: John
  surname: Wang
  fullname: Wang, John
  organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore
BookMark eNo9kM1OwzAQhC1UJNrClbNfIMU_jR0foT8UqSg9gMQtcpxNa2gTtA6g3PoISLxhn4RUoJ5mRzszh29AelVdASHXnI04Y-LGFuVuJBhPmFJxckb6XHEVSSaS3unmLxdkEMIrY1xrOe4TlNPD_nuFvmqgoI_pvHNTQP_ZuYUHtOg23tnttqWrGuuPQOdod_BV41ugZY10hdY1x0QXX2-69qwCXLd0ClXwTUuX_rD_Samgd7ZpumEIl-S8tNsAV_86JM_z2dNkES3T-4fJ7TJyXJkmEkY5yKUulMtzLQwzhhdizKWI8-4nQcUqcVYpozi4ojBCc2GtdToWWmgph2T0t-uwDgGhzN7R7yy2GWfZkVh2JJadiMlfymFkuQ
CitedBy_id crossref_primary_10_1016_j_cej_2020_126346
crossref_primary_10_1016_j_carbon_2021_03_002
crossref_primary_10_1016_j_joule_2020_11_010
crossref_primary_10_1002_ente_202201200
crossref_primary_10_1016_j_dyepig_2021_109730
crossref_primary_10_1002_cey2_114
crossref_primary_10_1002_ange_201914461
crossref_primary_10_26599_NRE_2023_9120052
crossref_primary_10_1016_j_ijoes_2024_100602
crossref_primary_10_2139_ssrn_3582691
crossref_primary_10_1002_eem2_12175
crossref_primary_10_1002_admt_202100672
crossref_primary_10_1002_anie_202311739
crossref_primary_10_1002_wnan_1674
crossref_primary_10_1016_j_compscitech_2023_110147
crossref_primary_10_1002_adfm_202105045
crossref_primary_10_1039_D1TA08777K
crossref_primary_10_3762_bjnano_11_163
crossref_primary_10_1016_j_mtener_2023_101255
crossref_primary_10_1016_j_matlet_2019_126812
crossref_primary_10_1002_smll_202105999
crossref_primary_10_1021_acsanm_9b01370
crossref_primary_10_1039_D2CS01011A
crossref_primary_10_1016_j_cattod_2023_114138
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1016_j_elecom_2020_106881
crossref_primary_10_1016_j_nantod_2024_102227
crossref_primary_10_1088_2631_7990_acf172
crossref_primary_10_1002_celc_201900843
crossref_primary_10_1016_j_electacta_2022_140279
crossref_primary_10_1039_D4IM00033A
crossref_primary_10_1080_03067319_2023_2170752
crossref_primary_10_1016_j_cej_2022_136852
crossref_primary_10_1002_admt_202200023
crossref_primary_10_1039_D1NR04850C
crossref_primary_10_1016_j_jpowsour_2024_234512
crossref_primary_10_1016_j_cej_2020_125392
crossref_primary_10_1016_j_ensm_2021_04_021
crossref_primary_10_1007_s40820_024_01341_4
crossref_primary_10_1016_j_jpowsour_2020_228866
crossref_primary_10_1039_D1TA06683H
crossref_primary_10_1016_j_xcrp_2021_100506
crossref_primary_10_1002_adma_202000556
crossref_primary_10_1016_j_oceram_2020_100047
crossref_primary_10_1002_aesr_202000111
crossref_primary_10_1093_nsr_nwz170
crossref_primary_10_1039_D1TA02617H
crossref_primary_10_1007_s12274_020_3230_x
crossref_primary_10_3390_app11188298
crossref_primary_10_1016_j_mtener_2022_101098
crossref_primary_10_1016_j_mattod_2022_07_016
crossref_primary_10_1039_D3CS00572K
crossref_primary_10_1021_acs_nanolett_2c03545
crossref_primary_10_1016_j_cej_2020_124765
crossref_primary_10_1039_D1MA00023C
crossref_primary_10_1002_chem_202002259
crossref_primary_10_1021_acsami_1c19755
crossref_primary_10_1002_admt_202300377
crossref_primary_10_1039_C9CS00871C
crossref_primary_10_1021_jacs_9b01561
crossref_primary_10_1002_adfm_202203732
crossref_primary_10_1016_S1872_5805_22_60634_6
crossref_primary_10_3390_catal10080897
crossref_primary_10_1021_acsami_3c05944
crossref_primary_10_1021_acsami_0c08880
crossref_primary_10_1080_09506608_2022_2086388
crossref_primary_10_1039_D0TA02099K
crossref_primary_10_1007_s12274_021_3693_4
crossref_primary_10_1016_j_ijhydene_2021_01_194
crossref_primary_10_1088_2515_7655_acdf1d
crossref_primary_10_37349_emed_2024_00203
crossref_primary_10_1002_batt_201900174
crossref_primary_10_1016_j_nanoen_2023_108247
crossref_primary_10_1021_acsami_1c15738
crossref_primary_10_1016_j_ensm_2022_05_028
crossref_primary_10_1002_admt_202001301
crossref_primary_10_1002_batt_202300190
crossref_primary_10_1002_idm2_12110
crossref_primary_10_1039_D0TA00209G
crossref_primary_10_1002_aenm_202304272
crossref_primary_10_1002_smll_202303473
crossref_primary_10_3390_ma13194403
crossref_primary_10_1021_acs_chemrev_1c00978
crossref_primary_10_1016_j_memsci_2020_118138
crossref_primary_10_1002_solr_202200552
crossref_primary_10_1016_j_jechem_2020_06_063
crossref_primary_10_1016_j_addma_2022_102939
crossref_primary_10_1149_1945_7111_ac5794
crossref_primary_10_1557_s43581_022_00049_5
crossref_primary_10_1007_s12274_022_4200_2
crossref_primary_10_1002_adfm_202002223
crossref_primary_10_1039_C9TA08676E
crossref_primary_10_1016_j_matt_2020_07_002
crossref_primary_10_1016_j_joule_2019_06_010
crossref_primary_10_1002_adfm_202103092
crossref_primary_10_1557_s43579_022_00267_5
crossref_primary_10_1007_s40820_024_01373_w
crossref_primary_10_1016_j_jallcom_2022_164203
crossref_primary_10_1016_j_ensm_2024_103454
crossref_primary_10_1002_celc_202400206
crossref_primary_10_1002_aenm_201902494
crossref_primary_10_1016_j_jmst_2021_04_033
crossref_primary_10_1016_j_mtnano_2020_100094
crossref_primary_10_1016_j_mtphys_2020_100289
crossref_primary_10_1016_j_jpowsour_2019_226986
crossref_primary_10_1007_s40820_020_00543_w
crossref_primary_10_1002_adfm_202104909
crossref_primary_10_1002_cey2_199
crossref_primary_10_1039_D1CE00438G
crossref_primary_10_1039_D1MA00630D
crossref_primary_10_1007_s40820_021_00726_z
crossref_primary_10_1016_j_apsusc_2022_155331
crossref_primary_10_1016_j_electacta_2020_137490
crossref_primary_10_1039_D0RA01887B
crossref_primary_10_1016_j_ensm_2023_102768
crossref_primary_10_1021_acsami_0c03959
crossref_primary_10_1016_j_ensm_2021_10_026
crossref_primary_10_1002_batt_202000115
crossref_primary_10_1016_j_jmsy_2022_01_002
crossref_primary_10_1007_s40820_021_00656_w
crossref_primary_10_1016_j_seppur_2023_124806
crossref_primary_10_1016_j_ceja_2022_100271
crossref_primary_10_1016_j_matdes_2022_110704
crossref_primary_10_1002_smll_202402266
crossref_primary_10_1021_acssuschemeng_1c01554
crossref_primary_10_1016_j_jallcom_2023_169870
crossref_primary_10_1002_sstr_202200159
crossref_primary_10_1021_acs_chemmater_9b05360
crossref_primary_10_1002_asia_202300845
crossref_primary_10_1002_smtd_202101280
crossref_primary_10_1016_j_matt_2019_05_008
crossref_primary_10_1039_D3NR03098A
crossref_primary_10_1021_acsami_3c19446
crossref_primary_10_1016_j_mtsust_2022_100174
crossref_primary_10_1002_smll_202311449
crossref_primary_10_1021_acssuschemeng_4c02904
crossref_primary_10_1002_adma_202005967
crossref_primary_10_1016_j_apmt_2019_05_013
crossref_primary_10_1016_j_jallcom_2020_157945
crossref_primary_10_1002_adfm_201906244
crossref_primary_10_1007_s10853_020_04574_x
crossref_primary_10_1038_s41578_021_00291_2
crossref_primary_10_1016_j_ensm_2023_01_024
crossref_primary_10_1016_j_jelechem_2023_117663
crossref_primary_10_1016_j_cej_2021_132489
crossref_primary_10_1021_acsami_1c22582
crossref_primary_10_1039_D3FD00078H
crossref_primary_10_1007_s40843_022_2226_6
crossref_primary_10_1016_j_mtener_2020_100407
crossref_primary_10_1080_17452759_2023_2273949
crossref_primary_10_1002_advs_201901317
crossref_primary_10_1007_s12274_021_3938_2
crossref_primary_10_1016_j_elecom_2022_107312
crossref_primary_10_1016_j_mssp_2021_106331
crossref_primary_10_1038_s41467_020_15416_4
crossref_primary_10_1016_j_cartre_2022_100222
crossref_primary_10_1016_j_cclet_2019_08_021
crossref_primary_10_1016_j_cej_2022_135945
crossref_primary_10_1002_cctc_202101807
crossref_primary_10_1016_j_jeurceramsoc_2021_08_043
crossref_primary_10_1016_j_mssp_2022_106500
crossref_primary_10_1039_D0MA00753F
crossref_primary_10_1016_j_ccr_2022_214520
crossref_primary_10_1039_D0SE01154A
crossref_primary_10_1002_adma_202002559
crossref_primary_10_1039_D2CS00585A
crossref_primary_10_1016_j_ensm_2019_07_041
crossref_primary_10_1002_adma_202314204
crossref_primary_10_1039_D3SC06999K
crossref_primary_10_1002_anie_201914461
crossref_primary_10_1021_acs_energyfuels_2c00605
crossref_primary_10_1016_j_apmt_2021_101220
crossref_primary_10_1016_j_cej_2022_135953
crossref_primary_10_1016_j_cej_2023_147230
crossref_primary_10_1016_j_cej_2022_136804
crossref_primary_10_1016_j_mattod_2022_03_014
crossref_primary_10_1002_batt_202200223
crossref_primary_10_1016_j_seppur_2024_127523
crossref_primary_10_1016_j_addma_2020_101774
crossref_primary_10_1016_j_ensm_2020_03_012
crossref_primary_10_1016_j_trac_2022_116545
crossref_primary_10_3390_batteries10030110
crossref_primary_10_1002_ange_202311739
crossref_primary_10_1016_j_apmt_2019_04_011
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1002_bte2_20220014
crossref_primary_10_1021_acsami_1c15349
crossref_primary_10_1002_celc_202101522
crossref_primary_10_1016_j_cej_2022_137591
crossref_primary_10_1016_j_ensm_2021_12_031
crossref_primary_10_1039_D0NR00291G
crossref_primary_10_1016_j_electacta_2020_136331
crossref_primary_10_1021_acs_energyfuels_1c03426
crossref_primary_10_1007_s12598_021_01886_y
Cites_doi 10.1016/j.nanoen.2016.08.066
10.1039/C6CS00929H
10.1021/acsami.5b01727
10.1038/ncomms3438
10.1038/nchem.2101
10.1021/cr400573b
10.1039/C6TA03820D
10.1002/adfm.201603178
10.1039/c3ee41632a
10.1149/2.0021414jes
10.1002/smll.201702641
10.1038/srep00715
10.1016/j.nanoen.2017.08.037
10.1021/acsami.7b17795
10.1002/aenm.201701527
10.1021/am504463b
10.1002/anie.201801399
10.1039/c3ee23966g
10.1002/adma.201705651
10.1016/j.nanoen.2016.08.057
10.1016/j.compositesb.2016.11.034
10.1038/s41467-017-02727-2
10.1039/c3ee40697k
10.1021/acs.nanolett.5b05006
10.1126/science.aac7730
10.1002/adma.201603454
10.1002/adma.201300264
10.1039/C4TA01078G
10.1002/aenm.201701021
10.1021/acsnano.7b03794
10.1002/aenm.201602391
10.1039/C7CS00255F
10.1016/j.nanoen.2017.04.022
10.1039/c1ee02365a
10.1038/nchem.2132
10.1002/smll.201602952
10.1039/c1ee01496j
10.1002/adma.201301036
10.1016/j.nanoen.2017.11.070
10.1002/adfm.201603088
10.1039/C4NR07571D
10.1039/c3ee43437k
10.1002/aenm.201500294
10.1021/cr500054y
10.1038/nmat3191
10.1021/nn505337p
10.1021/ja504431k
10.1021/acscatal.6b00676
10.1002/aenm.201401030
10.1002/advs.201700187
10.1016/j.carbon.2016.12.014
10.1002/aenm.201701203
10.1021/jp014221i
10.1039/C3CC47149G
10.1038/nature25984
10.1002/adma.201704117
10.1038/nature16484
10.1021/acsami.5b07003
10.1073/pnas.1505728112
10.1039/C4AN01972E
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adfm.201806658
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_201806658
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-LOGICAL-c169t-296ceb37d6cbb7290991d241325b2963e6568ca66961ecdd92712aaac75272733
ISSN 1616-301X
IngestDate Fri Aug 23 02:45:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c169t-296ceb37d6cbb7290991d241325b2963e6568ca66961ecdd92712aaac75272733
ORCID 0000-0002-4305-4047
ParticipantIDs crossref_primary_10_1002_adfm_201806658
PublicationCentury 2000
PublicationDate 2019-01-04
PublicationDateYYYYMMDD 2019-01-04
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-04
  day: 04
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationYear 2019
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – ident: e_1_2_7_53_1
  doi: 10.1016/j.nanoen.2016.08.066
– ident: e_1_2_7_12_1
  doi: 10.1039/C6CS00929H
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.5b01727
– ident: e_1_2_7_55_1
  doi: 10.1038/ncomms3438
– ident: e_1_2_7_54_1
  doi: 10.1038/nchem.2101
– ident: e_1_2_7_2_1
  doi: 10.1021/cr400573b
– ident: e_1_2_7_47_1
  doi: 10.1039/C6TA03820D
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201603178
– ident: e_1_2_7_14_1
  doi: 10.1039/c3ee41632a
– ident: e_1_2_7_17_1
  doi: 10.1149/2.0021414jes
– ident: e_1_2_7_43_1
  doi: 10.1002/smll.201702641
– ident: e_1_2_7_59_1
  doi: 10.1038/srep00715
– ident: e_1_2_7_40_1
  doi: 10.1016/j.nanoen.2017.08.037
– ident: e_1_2_7_33_1
  doi: 10.1021/acsami.7b17795
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.201701527
– ident: e_1_2_7_23_1
  doi: 10.1021/am504463b
– ident: e_1_2_7_35_1
  doi: 10.1002/anie.201801399
– ident: e_1_2_7_4_1
  doi: 10.1039/c3ee23966g
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201705651
– ident: e_1_2_7_20_1
  doi: 10.1016/j.nanoen.2016.08.057
– ident: e_1_2_7_46_1
  doi: 10.1016/j.compositesb.2016.11.034
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-017-02727-2
– ident: e_1_2_7_58_1
  doi: 10.1039/c3ee40697k
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.nanolett.5b05006
– ident: e_1_2_7_29_1
  doi: 10.1126/science.aac7730
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201603454
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201300264
– ident: e_1_2_7_48_1
  doi: 10.1039/C4TA01078G
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201701021
– ident: e_1_2_7_52_1
  doi: 10.1021/acsnano.7b03794
– ident: e_1_2_7_42_1
  doi: 10.1002/aenm.201602391
– ident: e_1_2_7_13_1
  doi: 10.1039/C7CS00255F
– ident: e_1_2_7_5_1
  doi: 10.1016/j.nanoen.2017.04.022
– ident: e_1_2_7_22_1
  doi: 10.1039/c1ee02365a
– ident: e_1_2_7_9_1
  doi: 10.1038/nchem.2132
– ident: e_1_2_7_60_1
  doi: 10.1002/smll.201602952
– ident: e_1_2_7_28_1
  doi: 10.1039/c1ee01496j
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201301036
– ident: e_1_2_7_39_1
  doi: 10.1016/j.nanoen.2017.11.070
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201603088
– ident: e_1_2_7_49_1
  doi: 10.1039/C4NR07571D
– ident: e_1_2_7_56_1
  doi: 10.1039/c3ee43437k
– ident: e_1_2_7_57_1
  doi: 10.1002/aenm.201500294
– ident: e_1_2_7_3_1
  doi: 10.1021/cr500054y
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat3191
– ident: e_1_2_7_8_1
  doi: 10.1021/nn505337p
– ident: e_1_2_7_27_1
  doi: 10.1021/ja504431k
– ident: e_1_2_7_51_1
  doi: 10.1021/acscatal.6b00676
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201401030
– ident: e_1_2_7_36_1
  doi: 10.1002/advs.201700187
– ident: e_1_2_7_34_1
  doi: 10.1016/j.carbon.2016.12.014
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.201701203
– ident: e_1_2_7_44_1
  doi: 10.1021/jp014221i
– ident: e_1_2_7_50_1
  doi: 10.1039/C3CC47149G
– ident: e_1_2_7_30_1
  doi: 10.1038/nature25984
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201704117
– ident: e_1_2_7_21_1
  doi: 10.1038/nature16484
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.5b07003
– ident: e_1_2_7_10_1
  doi: 10.1073/pnas.1505728112
– ident: e_1_2_7_45_1
  doi: 10.1039/C4AN01972E
SSID ssj0017734
Score 2.6718192
Snippet Abstract Aprotic Li–O 2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities....
SourceID crossref
SourceType Aggregation Database
Title 3D‐Printed MOF‐Derived Hierarchically Porous Frameworks for Practical High‐Energy Density Li–O 2 Batteries
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6ywUOK57iLR-QOERZsJ3azRGRlgottIJF4lYlsQMRVYK6G1Bv-xOQ-If7S5iJH80Ch-XAJWontRtlPnlm7G9mCHmiWTFWQlWxLDWPE5PwuIBAJGZMVjrNwaQozB2ev1dvP06yaTIdjXwHwp3sv2oaZKBrzJz9B22HSUEAn0HncAWtw_VSehdZ4C8sN1gMQkdvFrMgy-AZvoFsXmPmcd8IZb3eRst2g1zYmadq9VUaXDEj1CLSQcIcU5svmCH3HXz4o9rfEYuIR7Zip-cm-gK3nmqAdtRtP4KvbF9IIAVtu_6s5HO9zZ1BRant9_zqu2l0u9420evDaH4YeENdv9f7rquD6WjtLG3z6YuTul0NTKRise1D7BZiyZCT17fTATs1lLlkcrd6u_2SAUr_MAq2yGyuK6w8wCZ42DTZmT9_5P-bVQxcRVvXma9w_CqM3yNXOCxtSCIVYhnOrZSyPAb_9L5M6HP-7OL_D9yggT9zfJ0cuECEvrAIukFGprlJrg3KU94iG5Gdn_1wKKKAIvjm8EMv4oda_NAdfijghwb8UMQPjLbIoQ459Kg-P_u5oJwGzNwmH2bT45fz2PXoiEsm09OYp7I0hVBalkUBgRoEHEzjWS0fF3BPGIgXJmUuZSqZKbVOuWI8z_NSjTm6zuIO2W_axtwlVBgwLyzhpkyLRGkBrruExUMIkcDYqrpHnvpXtvpqS7Gs_q6c-5f-5QNydYe-h2T_dNOZR2TvRHePe8X-Aj8Ke0w
link.rule.ids 315,782,786,27935,27936
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D%E2%80%90Printed+MOF%E2%80%90Derived+Hierarchically+Porous+Frameworks+for+Practical+High%E2%80%90Energy+Density+Li%E2%80%93O+2+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Lyu%2C+Zhiyang&rft.au=Lim%2C+Gwendolyn+J.+H.&rft.au=Guo%2C+Rui&rft.au=Kou%2C+Zongkui&rft.date=2019-01-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201806658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201806658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon