3D‐Printed MOF‐Derived Hierarchically Porous Frameworks for Practical High‐Energy Density Li–O 2 Batteries
Abstract Aprotic Li–O 2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the...
Saved in:
Published in: | Advanced functional materials Vol. 29; no. 1 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
04-01-2019
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract
Aprotic Li–O
2
batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li
2
O
2
product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li
2
O
2
particles and facilitate their decomposition due to the confinement of insulating Li
2
O
2
within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg
−1
cell
. This study provides an effective approach to increase the practical specific energy for Li–O
2
batteries by constructing 3D‐printed framework cathodes. |
---|---|
AbstractList | Abstract
Aprotic Li–O
2
batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li
2
O
2
product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li
2
O
2
particles and facilitate their decomposition due to the confinement of insulating Li
2
O
2
within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg
−1
cell
. This study provides an effective approach to increase the practical specific energy for Li–O
2
batteries by constructing 3D‐printed framework cathodes. |
Author | Wang, Tingting Chen, Wei Wang, John Guo, Rui Guan, Cao Ding, Jun Lim, Gwendolyn J. H. Lyu, Zhiyang Kou, Zongkui |
Author_xml | – sequence: 1 givenname: Zhiyang orcidid: 0000-0002-4305-4047 surname: Lyu fullname: Lyu, Zhiyang organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore – sequence: 2 givenname: Gwendolyn J. H. surname: Lim fullname: Lim, Gwendolyn J. H. organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore – sequence: 3 givenname: Rui surname: Guo fullname: Guo, Rui organization: Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore – sequence: 4 givenname: Zongkui surname: Kou fullname: Kou, Zongkui organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore – sequence: 5 givenname: Tingting surname: Wang fullname: Wang, Tingting organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China – sequence: 6 givenname: Cao surname: Guan fullname: Guan, Cao organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore – sequence: 7 givenname: Jun surname: Ding fullname: Ding, Jun organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore – sequence: 8 givenname: Wei surname: Chen fullname: Chen, Wei organization: Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore, Department of Physics National University of Singapore 2 Science Drive 3 117542 Singapore – sequence: 9 givenname: John surname: Wang fullname: Wang, John organization: Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 117575 Singapore |
BookMark | eNo9kM1OwzAQhC1UJNrClbNfIMU_jR0foT8UqSg9gMQtcpxNa2gTtA6g3PoISLxhn4RUoJ5mRzszh29AelVdASHXnI04Y-LGFuVuJBhPmFJxckb6XHEVSSaS3unmLxdkEMIrY1xrOe4TlNPD_nuFvmqgoI_pvHNTQP_ZuYUHtOg23tnttqWrGuuPQOdod_BV41ugZY10hdY1x0QXX2-69qwCXLd0ClXwTUuX_rD_Samgd7ZpumEIl-S8tNsAV_86JM_z2dNkES3T-4fJ7TJyXJkmEkY5yKUulMtzLQwzhhdizKWI8-4nQcUqcVYpozi4ojBCc2GtdToWWmgph2T0t-uwDgGhzN7R7yy2GWfZkVh2JJadiMlfymFkuQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_126346 crossref_primary_10_1016_j_carbon_2021_03_002 crossref_primary_10_1016_j_joule_2020_11_010 crossref_primary_10_1002_ente_202201200 crossref_primary_10_1016_j_dyepig_2021_109730 crossref_primary_10_1002_cey2_114 crossref_primary_10_1002_ange_201914461 crossref_primary_10_26599_NRE_2023_9120052 crossref_primary_10_1016_j_ijoes_2024_100602 crossref_primary_10_2139_ssrn_3582691 crossref_primary_10_1002_eem2_12175 crossref_primary_10_1002_admt_202100672 crossref_primary_10_1002_anie_202311739 crossref_primary_10_1002_wnan_1674 crossref_primary_10_1016_j_compscitech_2023_110147 crossref_primary_10_1002_adfm_202105045 crossref_primary_10_1039_D1TA08777K crossref_primary_10_3762_bjnano_11_163 crossref_primary_10_1016_j_mtener_2023_101255 crossref_primary_10_1016_j_matlet_2019_126812 crossref_primary_10_1002_smll_202105999 crossref_primary_10_1021_acsanm_9b01370 crossref_primary_10_1039_D2CS01011A crossref_primary_10_1016_j_cattod_2023_114138 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1016_j_elecom_2020_106881 crossref_primary_10_1016_j_nantod_2024_102227 crossref_primary_10_1088_2631_7990_acf172 crossref_primary_10_1002_celc_201900843 crossref_primary_10_1016_j_electacta_2022_140279 crossref_primary_10_1039_D4IM00033A crossref_primary_10_1080_03067319_2023_2170752 crossref_primary_10_1016_j_cej_2022_136852 crossref_primary_10_1002_admt_202200023 crossref_primary_10_1039_D1NR04850C crossref_primary_10_1016_j_jpowsour_2024_234512 crossref_primary_10_1016_j_cej_2020_125392 crossref_primary_10_1016_j_ensm_2021_04_021 crossref_primary_10_1007_s40820_024_01341_4 crossref_primary_10_1016_j_jpowsour_2020_228866 crossref_primary_10_1039_D1TA06683H crossref_primary_10_1016_j_xcrp_2021_100506 crossref_primary_10_1002_adma_202000556 crossref_primary_10_1016_j_oceram_2020_100047 crossref_primary_10_1002_aesr_202000111 crossref_primary_10_1093_nsr_nwz170 crossref_primary_10_1039_D1TA02617H crossref_primary_10_1007_s12274_020_3230_x crossref_primary_10_3390_app11188298 crossref_primary_10_1016_j_mtener_2022_101098 crossref_primary_10_1016_j_mattod_2022_07_016 crossref_primary_10_1039_D3CS00572K crossref_primary_10_1021_acs_nanolett_2c03545 crossref_primary_10_1016_j_cej_2020_124765 crossref_primary_10_1039_D1MA00023C crossref_primary_10_1002_chem_202002259 crossref_primary_10_1021_acsami_1c19755 crossref_primary_10_1002_admt_202300377 crossref_primary_10_1039_C9CS00871C crossref_primary_10_1021_jacs_9b01561 crossref_primary_10_1002_adfm_202203732 crossref_primary_10_1016_S1872_5805_22_60634_6 crossref_primary_10_3390_catal10080897 crossref_primary_10_1021_acsami_3c05944 crossref_primary_10_1021_acsami_0c08880 crossref_primary_10_1080_09506608_2022_2086388 crossref_primary_10_1039_D0TA02099K crossref_primary_10_1007_s12274_021_3693_4 crossref_primary_10_1016_j_ijhydene_2021_01_194 crossref_primary_10_1088_2515_7655_acdf1d crossref_primary_10_37349_emed_2024_00203 crossref_primary_10_1002_batt_201900174 crossref_primary_10_1016_j_nanoen_2023_108247 crossref_primary_10_1021_acsami_1c15738 crossref_primary_10_1016_j_ensm_2022_05_028 crossref_primary_10_1002_admt_202001301 crossref_primary_10_1002_batt_202300190 crossref_primary_10_1002_idm2_12110 crossref_primary_10_1039_D0TA00209G crossref_primary_10_1002_aenm_202304272 crossref_primary_10_1002_smll_202303473 crossref_primary_10_3390_ma13194403 crossref_primary_10_1021_acs_chemrev_1c00978 crossref_primary_10_1016_j_memsci_2020_118138 crossref_primary_10_1002_solr_202200552 crossref_primary_10_1016_j_jechem_2020_06_063 crossref_primary_10_1016_j_addma_2022_102939 crossref_primary_10_1149_1945_7111_ac5794 crossref_primary_10_1557_s43581_022_00049_5 crossref_primary_10_1007_s12274_022_4200_2 crossref_primary_10_1002_adfm_202002223 crossref_primary_10_1039_C9TA08676E crossref_primary_10_1016_j_matt_2020_07_002 crossref_primary_10_1016_j_joule_2019_06_010 crossref_primary_10_1002_adfm_202103092 crossref_primary_10_1557_s43579_022_00267_5 crossref_primary_10_1007_s40820_024_01373_w crossref_primary_10_1016_j_jallcom_2022_164203 crossref_primary_10_1016_j_ensm_2024_103454 crossref_primary_10_1002_celc_202400206 crossref_primary_10_1002_aenm_201902494 crossref_primary_10_1016_j_jmst_2021_04_033 crossref_primary_10_1016_j_mtnano_2020_100094 crossref_primary_10_1016_j_mtphys_2020_100289 crossref_primary_10_1016_j_jpowsour_2019_226986 crossref_primary_10_1007_s40820_020_00543_w crossref_primary_10_1002_adfm_202104909 crossref_primary_10_1002_cey2_199 crossref_primary_10_1039_D1CE00438G crossref_primary_10_1039_D1MA00630D crossref_primary_10_1007_s40820_021_00726_z crossref_primary_10_1016_j_apsusc_2022_155331 crossref_primary_10_1016_j_electacta_2020_137490 crossref_primary_10_1039_D0RA01887B crossref_primary_10_1016_j_ensm_2023_102768 crossref_primary_10_1021_acsami_0c03959 crossref_primary_10_1016_j_ensm_2021_10_026 crossref_primary_10_1002_batt_202000115 crossref_primary_10_1016_j_jmsy_2022_01_002 crossref_primary_10_1007_s40820_021_00656_w crossref_primary_10_1016_j_seppur_2023_124806 crossref_primary_10_1016_j_ceja_2022_100271 crossref_primary_10_1016_j_matdes_2022_110704 crossref_primary_10_1002_smll_202402266 crossref_primary_10_1021_acssuschemeng_1c01554 crossref_primary_10_1016_j_jallcom_2023_169870 crossref_primary_10_1002_sstr_202200159 crossref_primary_10_1021_acs_chemmater_9b05360 crossref_primary_10_1002_asia_202300845 crossref_primary_10_1002_smtd_202101280 crossref_primary_10_1016_j_matt_2019_05_008 crossref_primary_10_1039_D3NR03098A crossref_primary_10_1021_acsami_3c19446 crossref_primary_10_1016_j_mtsust_2022_100174 crossref_primary_10_1002_smll_202311449 crossref_primary_10_1021_acssuschemeng_4c02904 crossref_primary_10_1002_adma_202005967 crossref_primary_10_1016_j_apmt_2019_05_013 crossref_primary_10_1016_j_jallcom_2020_157945 crossref_primary_10_1002_adfm_201906244 crossref_primary_10_1007_s10853_020_04574_x crossref_primary_10_1038_s41578_021_00291_2 crossref_primary_10_1016_j_ensm_2023_01_024 crossref_primary_10_1016_j_jelechem_2023_117663 crossref_primary_10_1016_j_cej_2021_132489 crossref_primary_10_1021_acsami_1c22582 crossref_primary_10_1039_D3FD00078H crossref_primary_10_1007_s40843_022_2226_6 crossref_primary_10_1016_j_mtener_2020_100407 crossref_primary_10_1080_17452759_2023_2273949 crossref_primary_10_1002_advs_201901317 crossref_primary_10_1007_s12274_021_3938_2 crossref_primary_10_1016_j_elecom_2022_107312 crossref_primary_10_1016_j_mssp_2021_106331 crossref_primary_10_1038_s41467_020_15416_4 crossref_primary_10_1016_j_cartre_2022_100222 crossref_primary_10_1016_j_cclet_2019_08_021 crossref_primary_10_1016_j_cej_2022_135945 crossref_primary_10_1002_cctc_202101807 crossref_primary_10_1016_j_jeurceramsoc_2021_08_043 crossref_primary_10_1016_j_mssp_2022_106500 crossref_primary_10_1039_D0MA00753F crossref_primary_10_1016_j_ccr_2022_214520 crossref_primary_10_1039_D0SE01154A crossref_primary_10_1002_adma_202002559 crossref_primary_10_1039_D2CS00585A crossref_primary_10_1016_j_ensm_2019_07_041 crossref_primary_10_1002_adma_202314204 crossref_primary_10_1039_D3SC06999K crossref_primary_10_1002_anie_201914461 crossref_primary_10_1021_acs_energyfuels_2c00605 crossref_primary_10_1016_j_apmt_2021_101220 crossref_primary_10_1016_j_cej_2022_135953 crossref_primary_10_1016_j_cej_2023_147230 crossref_primary_10_1016_j_cej_2022_136804 crossref_primary_10_1016_j_mattod_2022_03_014 crossref_primary_10_1002_batt_202200223 crossref_primary_10_1016_j_seppur_2024_127523 crossref_primary_10_1016_j_addma_2020_101774 crossref_primary_10_1016_j_ensm_2020_03_012 crossref_primary_10_1016_j_trac_2022_116545 crossref_primary_10_3390_batteries10030110 crossref_primary_10_1002_ange_202311739 crossref_primary_10_1016_j_apmt_2019_04_011 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1002_bte2_20220014 crossref_primary_10_1021_acsami_1c15349 crossref_primary_10_1002_celc_202101522 crossref_primary_10_1016_j_cej_2022_137591 crossref_primary_10_1016_j_ensm_2021_12_031 crossref_primary_10_1039_D0NR00291G crossref_primary_10_1016_j_electacta_2020_136331 crossref_primary_10_1021_acs_energyfuels_1c03426 crossref_primary_10_1007_s12598_021_01886_y |
Cites_doi | 10.1016/j.nanoen.2016.08.066 10.1039/C6CS00929H 10.1021/acsami.5b01727 10.1038/ncomms3438 10.1038/nchem.2101 10.1021/cr400573b 10.1039/C6TA03820D 10.1002/adfm.201603178 10.1039/c3ee41632a 10.1149/2.0021414jes 10.1002/smll.201702641 10.1038/srep00715 10.1016/j.nanoen.2017.08.037 10.1021/acsami.7b17795 10.1002/aenm.201701527 10.1021/am504463b 10.1002/anie.201801399 10.1039/c3ee23966g 10.1002/adma.201705651 10.1016/j.nanoen.2016.08.057 10.1016/j.compositesb.2016.11.034 10.1038/s41467-017-02727-2 10.1039/c3ee40697k 10.1021/acs.nanolett.5b05006 10.1126/science.aac7730 10.1002/adma.201603454 10.1002/adma.201300264 10.1039/C4TA01078G 10.1002/aenm.201701021 10.1021/acsnano.7b03794 10.1002/aenm.201602391 10.1039/C7CS00255F 10.1016/j.nanoen.2017.04.022 10.1039/c1ee02365a 10.1038/nchem.2132 10.1002/smll.201602952 10.1039/c1ee01496j 10.1002/adma.201301036 10.1016/j.nanoen.2017.11.070 10.1002/adfm.201603088 10.1039/C4NR07571D 10.1039/c3ee43437k 10.1002/aenm.201500294 10.1021/cr500054y 10.1038/nmat3191 10.1021/nn505337p 10.1021/ja504431k 10.1021/acscatal.6b00676 10.1002/aenm.201401030 10.1002/advs.201700187 10.1016/j.carbon.2016.12.014 10.1002/aenm.201701203 10.1021/jp014221i 10.1039/C3CC47149G 10.1038/nature25984 10.1002/adma.201704117 10.1038/nature16484 10.1021/acsami.5b07003 10.1073/pnas.1505728112 10.1039/C4AN01972E |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/adfm.201806658 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_201806658 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT |
ID | FETCH-LOGICAL-c169t-296ceb37d6cbb7290991d241325b2963e6568ca66961ecdd92712aaac75272733 |
ISSN | 1616-301X |
IngestDate | Fri Aug 23 02:45:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c169t-296ceb37d6cbb7290991d241325b2963e6568ca66961ecdd92712aaac75272733 |
ORCID | 0000-0002-4305-4047 |
ParticipantIDs | crossref_primary_10_1002_adfm_201806658 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-04 |
PublicationDateYYYYMMDD | 2019-01-04 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-04 day: 04 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – ident: e_1_2_7_53_1 doi: 10.1016/j.nanoen.2016.08.066 – ident: e_1_2_7_12_1 doi: 10.1039/C6CS00929H – ident: e_1_2_7_26_1 doi: 10.1021/acsami.5b01727 – ident: e_1_2_7_55_1 doi: 10.1038/ncomms3438 – ident: e_1_2_7_54_1 doi: 10.1038/nchem.2101 – ident: e_1_2_7_2_1 doi: 10.1021/cr400573b – ident: e_1_2_7_47_1 doi: 10.1039/C6TA03820D – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201603178 – ident: e_1_2_7_14_1 doi: 10.1039/c3ee41632a – ident: e_1_2_7_17_1 doi: 10.1149/2.0021414jes – ident: e_1_2_7_43_1 doi: 10.1002/smll.201702641 – ident: e_1_2_7_59_1 doi: 10.1038/srep00715 – ident: e_1_2_7_40_1 doi: 10.1016/j.nanoen.2017.08.037 – ident: e_1_2_7_33_1 doi: 10.1021/acsami.7b17795 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201701527 – ident: e_1_2_7_23_1 doi: 10.1021/am504463b – ident: e_1_2_7_35_1 doi: 10.1002/anie.201801399 – ident: e_1_2_7_4_1 doi: 10.1039/c3ee23966g – ident: e_1_2_7_32_1 doi: 10.1002/adma.201705651 – ident: e_1_2_7_20_1 doi: 10.1016/j.nanoen.2016.08.057 – ident: e_1_2_7_46_1 doi: 10.1016/j.compositesb.2016.11.034 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-017-02727-2 – ident: e_1_2_7_58_1 doi: 10.1039/c3ee40697k – ident: e_1_2_7_6_1 doi: 10.1021/acs.nanolett.5b05006 – ident: e_1_2_7_29_1 doi: 10.1126/science.aac7730 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201603454 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201300264 – ident: e_1_2_7_48_1 doi: 10.1039/C4TA01078G – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201701021 – ident: e_1_2_7_52_1 doi: 10.1021/acsnano.7b03794 – ident: e_1_2_7_42_1 doi: 10.1002/aenm.201602391 – ident: e_1_2_7_13_1 doi: 10.1039/C7CS00255F – ident: e_1_2_7_5_1 doi: 10.1016/j.nanoen.2017.04.022 – ident: e_1_2_7_22_1 doi: 10.1039/c1ee02365a – ident: e_1_2_7_9_1 doi: 10.1038/nchem.2132 – ident: e_1_2_7_60_1 doi: 10.1002/smll.201602952 – ident: e_1_2_7_28_1 doi: 10.1039/c1ee01496j – ident: e_1_2_7_37_1 doi: 10.1002/adma.201301036 – ident: e_1_2_7_39_1 doi: 10.1016/j.nanoen.2017.11.070 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201603088 – ident: e_1_2_7_49_1 doi: 10.1039/C4NR07571D – ident: e_1_2_7_56_1 doi: 10.1039/c3ee43437k – ident: e_1_2_7_57_1 doi: 10.1002/aenm.201500294 – ident: e_1_2_7_3_1 doi: 10.1021/cr500054y – ident: e_1_2_7_1_1 doi: 10.1038/nmat3191 – ident: e_1_2_7_8_1 doi: 10.1021/nn505337p – ident: e_1_2_7_27_1 doi: 10.1021/ja504431k – ident: e_1_2_7_51_1 doi: 10.1021/acscatal.6b00676 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201401030 – ident: e_1_2_7_36_1 doi: 10.1002/advs.201700187 – ident: e_1_2_7_34_1 doi: 10.1016/j.carbon.2016.12.014 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.201701203 – ident: e_1_2_7_44_1 doi: 10.1021/jp014221i – ident: e_1_2_7_50_1 doi: 10.1039/C3CC47149G – ident: e_1_2_7_30_1 doi: 10.1038/nature25984 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201704117 – ident: e_1_2_7_21_1 doi: 10.1038/nature16484 – ident: e_1_2_7_24_1 doi: 10.1021/acsami.5b07003 – ident: e_1_2_7_10_1 doi: 10.1073/pnas.1505728112 – ident: e_1_2_7_45_1 doi: 10.1039/C4AN01972E |
SSID | ssj0017734 |
Score | 2.6718192 |
Snippet | Abstract
Aprotic Li–O
2
batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities.... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | 3D‐Printed MOF‐Derived Hierarchically Porous Frameworks for Practical High‐Energy Density Li–O 2 Batteries |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6ywUOK57iLR-QOERZsJ3azRGRlgottIJF4lYlsQMRVYK6G1Bv-xOQ-If7S5iJH80Ch-XAJWontRtlPnlm7G9mCHmiWTFWQlWxLDWPE5PwuIBAJGZMVjrNwaQozB2ev1dvP06yaTIdjXwHwp3sv2oaZKBrzJz9B22HSUEAn0HncAWtw_VSehdZ4C8sN1gMQkdvFrMgy-AZvoFsXmPmcd8IZb3eRst2g1zYmadq9VUaXDEj1CLSQcIcU5svmCH3HXz4o9rfEYuIR7Zip-cm-gK3nmqAdtRtP4KvbF9IIAVtu_6s5HO9zZ1BRant9_zqu2l0u9420evDaH4YeENdv9f7rquD6WjtLG3z6YuTul0NTKRise1D7BZiyZCT17fTATs1lLlkcrd6u_2SAUr_MAq2yGyuK6w8wCZ42DTZmT9_5P-bVQxcRVvXma9w_CqM3yNXOCxtSCIVYhnOrZSyPAb_9L5M6HP-7OL_D9yggT9zfJ0cuECEvrAIukFGprlJrg3KU94iG5Gdn_1wKKKAIvjm8EMv4oda_NAdfijghwb8UMQPjLbIoQ459Kg-P_u5oJwGzNwmH2bT45fz2PXoiEsm09OYp7I0hVBalkUBgRoEHEzjWS0fF3BPGIgXJmUuZSqZKbVOuWI8z_NSjTm6zuIO2W_axtwlVBgwLyzhpkyLRGkBrruExUMIkcDYqrpHnvpXtvpqS7Gs_q6c-5f-5QNydYe-h2T_dNOZR2TvRHePe8X-Aj8Ke0w |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D%E2%80%90Printed+MOF%E2%80%90Derived+Hierarchically+Porous+Frameworks+for+Practical+High%E2%80%90Energy+Density+Li%E2%80%93O+2+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Lyu%2C+Zhiyang&rft.au=Lim%2C+Gwendolyn+J.+H.&rft.au=Guo%2C+Rui&rft.au=Kou%2C+Zongkui&rft.date=2019-01-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201806658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201806658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |