Bayesian optimization of radical polymerization reactions in a flow synthesis system

Proportions of monomers in a copolymer will greatly affect the properties of materials. However, due to a phenomenon known as composition drift, the proportions of monomers in a copolymer can deviate from the value expected from the raw monomer ratio because of differences in monomer reactivity. It...

Full description

Saved in:
Bibliographic Details
Published in:Science and technology of advanced materials. Methods
Main Authors: Takasuka, Shogo, Ito, Sho, Oikawa, Shunto, Harashima, Yosuke, Takayama, Tomoaki, Nag, Aniruddha, Wakiuchi, Araki, Ando, Tsuyoshi, Sugawara, Tetsunori, Hatanaka, Miho, Miyao, Tomoyuki, Matsubara, Takamitsu, Ohnishi, Yu-Ya, Ajiro, Hiroharu, Fujii, Mikiya
Format: Journal Article
Language:English
Published: Taylor & Francis Group 13-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Proportions of monomers in a copolymer will greatly affect the properties of materials. However, due to a phenomenon known as composition drift, the proportions of monomers in a copolymer can deviate from the value expected from the raw monomer ratio because of differences in monomer reactivity. It is therefore necessary to optimize the polymerization process to account for such composition drift. In the present study, styrene-methyl methacrylate copolymers were generated using a flow synthesis system and the processing variables were tuned employing Bayesian optimization (BO) to obtain a target composition. First trials of BO with generation of four candidate points per cycle, completed the optimization within five cycles. Subsequent Bayesian Optimization (BO) trial, using 40 points per cycle, identified several sets of processing conditions that could achieve the desired copolymer composition, accompanied by variations in other physical properties. To optimize the monomer composition ratio in the polymer, it was discovered from a data science perspective that the solvent-to-monomer ratio was as crucial as the styrene proportions. The role of each variable in the radical polymerization reaction was elucidated by assessing the extensive array of processing conditions while evaluating several broad trends. The proposed model confirms that specific monomer proportions can be produced in a copolymer using machine learning while investigating the reaction mechanism. In the future, the use of multi-objective BO to fine-tune the processing conditions is expected to allow optimization of the copolymer composition together with adjustment of physical properties.
AbstractList Proportions of monomers in a copolymer will greatly affect the properties of materials. However, due to a phenomenon known as composition drift, the proportions of monomers in a copolymer can deviate from the value expected from the raw monomer ratio because of differences in monomer reactivity. It is therefore necessary to optimize the polymerization process to account for such composition drift. In the present study, styrene-methyl methacrylate copolymers were generated using a flow synthesis system and the processing variables were tuned employing Bayesian optimization (BO) to obtain a target composition. First trials of BO with generation of four candidate points per cycle, completed the optimization within five cycles. Subsequent Bayesian Optimization (BO) trial, using 40 points per cycle, identified several sets of processing conditions that could achieve the desired copolymer composition, accompanied by variations in other physical properties. To optimize the monomer composition ratio in the polymer, it was discovered from a data science perspective that the solvent-to-monomer ratio was as crucial as the styrene proportions. The role of each variable in the radical polymerization reaction was elucidated by assessing the extensive array of processing conditions while evaluating several broad trends. The proposed model confirms that specific monomer proportions can be produced in a copolymer using machine learning while investigating the reaction mechanism. In the future, the use of multi-objective BO to fine-tune the processing conditions is expected to allow optimization of the copolymer composition together with adjustment of physical properties.
Author Sugawara, Tetsunori
Miyao, Tomoyuki
Oikawa, Shunto
Wakiuchi, Araki
Matsubara, Takamitsu
Hatanaka, Miho
Takayama, Tomoaki
Ito, Sho
Fujii, Mikiya
Takasuka, Shogo
Nag, Aniruddha
Harashima, Yosuke
Ando, Tsuyoshi
Ohnishi, Yu-Ya
Ajiro, Hiroharu
Author_xml – sequence: 1
  givenname: Shogo
  orcidid: 0000-0002-4601-2432
  surname: Takasuka
  fullname: Takasuka, Shogo
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 2
  givenname: Sho
  surname: Ito
  fullname: Ito, Sho
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 3
  givenname: Shunto
  surname: Oikawa
  fullname: Oikawa, Shunto
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 4
  givenname: Yosuke
  surname: Harashima
  fullname: Harashima, Yosuke
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Data Science Center, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 5
  givenname: Tomoaki
  surname: Takayama
  fullname: Takayama, Tomoaki
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Data Science Center, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 6
  givenname: Aniruddha
  surname: Nag
  fullname: Nag, Aniruddha
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 7
  givenname: Araki
  surname: Wakiuchi
  fullname: Wakiuchi, Araki
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Materials Informatics Initiative, RD technology and digital transformation center, JSR Corporation, Kawasaki-ku, Kawasaki, Kanagawa, Japan
– sequence: 8
  givenname: Tsuyoshi
  surname: Ando
  fullname: Ando, Tsuyoshi
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 9
  givenname: Tetsunori
  surname: Sugawara
  fullname: Sugawara, Tetsunori
  organization: Fine Chemical Process Dept, JSR Corporation, Yokkaichi, Japan
– sequence: 10
  givenname: Miho
  surname: Hatanaka
  fullname: Hatanaka, Miho
  organization: Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
– sequence: 11
  givenname: Tomoyuki
  surname: Miyao
  fullname: Miyao, Tomoyuki
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Data Science Center, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Center for Material Research Platform, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan
– sequence: 12
  givenname: Takamitsu
  surname: Matsubara
  fullname: Matsubara, Takamitsu
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
– sequence: 13
  givenname: Yu-Ya
  surname: Ohnishi
  fullname: Ohnishi, Yu-Ya
  organization: Materials Informatics Initiative, RD technology and digital transformation center, JSR Corporation, Kawasaki-ku, Kawasaki, Kanagawa, Japan
– sequence: 14
  givenname: Hiroharu
  surname: Ajiro
  fullname: Ajiro, Hiroharu
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Data Science Center, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Center for Material Research Platform, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan
– sequence: 15
  givenname: Mikiya
  orcidid: 0000-0002-3728-3097
  surname: Fujii
  fullname: Fujii, Mikiya
  organization: Data Science Center, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan, Center for Material Research Platform, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan
BookMark eNpNkMtOwzAQRS1UJErpJyDlB1rGdhwnS6h4VKrEpqytiR_gKokrOxIKX09CKWI1d-5ozuJck1kXOkvILYU1hRLumCwKyAHWDFi-ZjkTVJYXZD71q-kw-5evyDKlAwCwUnLGYU72DzjY5LHLwrH3rf_C3odxcVlE4zU22TE0Q2vj-RIt6imkzHcZZq4Jn1kauv5jpKQxpd62N-TSYZPs8ncuyNvT437zstq9Pm8397uVpqIqV7wwtuZaSGGF5rXgJYfaMOsA0TijLRdOlDJnhlMnJM0LaTlnBQJFlKD5gmxPXBPwoI7RtxgHFdCrnyLEd4Wx97qxSsjxubDgDMe8cnVlcl0IW1EsqDY5jCxxYukYUorW_fEoqMm0OptWk2n1a5p_A5u-c9Q
Cites_doi 10.1021/acspolymersau.1c00050
10.3390/polym10010103
10.1063/5.0087392
10.1038/s41598-022-05784-w
10.1002/cjoc.202100544
10.1016/j.commatsci.2021.110815
10.1016/j.commatsci.2020.110244
10.1073/pnas.2106042118
10.1080/27660400.2022.2123263
10.1007/s11426-020-9969-y
10.1016/S0014-3057(01)00242-7
10.1016/j.polymer.2022.124577
10.1021/acsami.1c24715
10.1016/j.cej.2022.138443
10.1021/acscentsci.2c00207
10.1021/acsomega.2c04919
10.1038/s41428-018-0165-0
10.1002/ange.202214511
10.1214/aos/1013203451
10.1002/app.12161
10.1021/acs.oprd.5b00210
10.1016/j.nimb.2021.11.014
10.1021/acscentsci.3c00050
10.1002/macp.202300039
10.1016/j.actamat.2022.117751
10.1016/j.patter.2021.100238
10.1002/app.35234
10.1021/acsmacrolett.9b00933
10.1080/1023666X.2021.2004012
10.1002/advs.202200164
10.1021/acs.macromol.7b01890
10.1002/anie.202308838
10.1021/acs.macromol.1c00728
10.1017/9781108348973
10.1002/ange.201810384
10.1021/acs.jcim.1c01031
10.1039/C7RE00063D
10.1016/j.commatsci.2019.109286
10.1016/j.eurpolymj.2019.109225
10.1039/d2py00040g
10.1016/j.isci.2021.102781
10.1109/JPROC.2015.2494218
10.26434/chemrxiv-2022-tlz53
10.3390/electronicmat3020017
10.1021/acs.analchem.1c04585
10.1021/acsami.1c23610
10.1038/s41524-022-00859-8
10.1039/D3PY01372C
10.1038/s41467-020-16874-6
10.3762/bjoc.18.182
10.1039/D2DD00144F
10.1021/acsomega.2c06008
10.1039/c9py00982e
10.1002/mame.202200626
10.1021/acsnano.1c07298
10.1039/D2SC02839E
10.1021/ma980294x
10.1021/acsabm.2c00346
10.1039/D2RE00054G
10.1016/j.slasd.2022.01.002
10.1021/acs.analchem.1c04224
10.48550/arXiv.1910.06403
10.1021/acsapm.0c00921
10.1021/jacs.1c08181
10.1016/j.progpolymsci.2020.101256
10.1002/mats.1993.040020313
10.1016/j.commatsci.2022.111417
10.1016/j.mtcomm.2022.103440
10.1021/acs.macromol.9b00846
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/27660400.2024.2425178
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2766-0400
ExternalDocumentID oai_doaj_org_article_5767e6e0fd3a49fb9d4c65e91a61cd40
10_1080_27660400_2024_2425178
GroupedDBID 0YH
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
TDBHL
ID FETCH-LOGICAL-c1598-36deb3c575e5c3b53830bd2ef0aadfdce35f58742d31f571467e3326a01aa70c3
IEDL.DBID DOA
ISSN 2766-0400
IngestDate Mon Nov 18 19:22:22 EST 2024
Wed Nov 20 13:22:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1598-36deb3c575e5c3b53830bd2ef0aadfdce35f58742d31f571467e3326a01aa70c3
ORCID 0000-0002-3728-3097
0000-0002-4601-2432
OpenAccessLink https://doaj.org/article/5767e6e0fd3a49fb9d4c65e91a61cd40
ParticipantIDs doaj_primary_oai_doaj_org_article_5767e6e0fd3a49fb9d4c65e91a61cd40
crossref_primary_10_1080_27660400_2024_2425178
PublicationCentury 2000
PublicationDate 2024-11-13
PublicationDateYYYYMMDD 2024-11-13
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-13
  day: 13
PublicationDecade 2020
PublicationTitle Science and technology of advanced materials. Methods
PublicationYear 2024
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
e_1_3_4_29_1
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_60_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_66_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_68_1
Brandrup J (e_1_3_4_63_1) 1999
Garnett R. (e_1_3_4_62_1) 2023
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_71_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_18_1
References_xml – volume-title: Polymer Handbook Fourth Edition
  year: 1999
  ident: e_1_3_4_63_1
  contributor:
    fullname: Brandrup J
– ident: e_1_3_4_25_1
  doi: 10.1021/acspolymersau.1c00050
– ident: e_1_3_4_21_1
  doi: 10.3390/polym10010103
– ident: e_1_3_4_23_1
  doi: 10.1063/5.0087392
– ident: e_1_3_4_32_1
  doi: 10.1038/s41598-022-05784-w
– ident: e_1_3_4_45_1
  doi: 10.1002/cjoc.202100544
– ident: e_1_3_4_15_1
  doi: 10.1016/j.commatsci.2021.110815
– ident: e_1_3_4_16_1
  doi: 10.1016/j.commatsci.2020.110244
– ident: e_1_3_4_37_1
  doi: 10.1073/pnas.2106042118
– ident: e_1_3_4_71_1
  doi: 10.1080/27660400.2022.2123263
– ident: e_1_3_4_54_1
  doi: 10.1007/s11426-020-9969-y
– ident: e_1_3_4_9_1
  doi: 10.1016/S0014-3057(01)00242-7
– ident: e_1_3_4_11_1
  doi: 10.1016/j.polymer.2022.124577
– ident: e_1_3_4_17_1
  doi: 10.1021/acsami.1c24715
– ident: e_1_3_4_69_1
  doi: 10.1016/j.cej.2022.138443
– ident: e_1_3_4_40_1
  doi: 10.1021/acscentsci.2c00207
– ident: e_1_3_4_67_1
  doi: 10.1021/acsomega.2c04919
– ident: e_1_3_4_3_1
  doi: 10.1038/s41428-018-0165-0
– ident: e_1_3_4_57_1
  doi: 10.1002/ange.202214511
– ident: e_1_3_4_66_1
  doi: 10.1214/aos/1013203451
– ident: e_1_3_4_7_1
  doi: 10.1002/app.12161
– ident: e_1_3_4_58_1
  doi: 10.1021/acs.oprd.5b00210
– ident: e_1_3_4_30_1
  doi: 10.1016/j.nimb.2021.11.014
– ident: e_1_3_4_56_1
  doi: 10.1021/acscentsci.3c00050
– ident: e_1_3_4_55_1
  doi: 10.1002/macp.202300039
– ident: e_1_3_4_10_1
  doi: 10.1016/j.actamat.2022.117751
– ident: e_1_3_4_24_1
  doi: 10.1016/j.patter.2021.100238
– ident: e_1_3_4_8_1
  doi: 10.1002/app.35234
– ident: e_1_3_4_48_1
  doi: 10.1021/acsmacrolett.9b00933
– ident: e_1_3_4_4_1
  doi: 10.1080/1023666X.2021.2004012
– ident: e_1_3_4_12_1
  doi: 10.1002/advs.202200164
– ident: e_1_3_4_43_1
  doi: 10.1021/acs.macromol.7b01890
– ident: e_1_3_4_46_1
  doi: 10.1002/anie.202308838
– ident: e_1_3_4_14_1
  doi: 10.1021/acs.macromol.1c00728
– volume-title: Bayesian Optimization
  year: 2023
  ident: e_1_3_4_62_1
  doi: 10.1017/9781108348973
  contributor:
    fullname: Garnett R.
– ident: e_1_3_4_47_1
  doi: 10.1002/ange.201810384
– ident: e_1_3_4_22_1
  doi: 10.1021/acs.jcim.1c01031
– ident: e_1_3_4_35_1
  doi: 10.1039/C7RE00063D
– ident: e_1_3_4_18_1
  doi: 10.1016/j.commatsci.2019.109286
– ident: e_1_3_4_2_1
  doi: 10.1016/j.eurpolymj.2019.109225
– ident: e_1_3_4_59_1
  doi: 10.1039/d2py00040g
– ident: e_1_3_4_27_1
  doi: 10.1016/j.isci.2021.102781
– ident: e_1_3_4_31_1
  doi: 10.1109/JPROC.2015.2494218
– ident: e_1_3_4_53_1
  doi: 10.26434/chemrxiv-2022-tlz53
– ident: e_1_3_4_68_1
  doi: 10.3390/electronicmat3020017
– ident: e_1_3_4_38_1
  doi: 10.1021/acs.analchem.1c04585
– ident: e_1_3_4_13_1
  doi: 10.1021/acsami.1c23610
– ident: e_1_3_4_26_1
  doi: 10.1038/s41524-022-00859-8
– ident: e_1_3_4_64_1
  doi: 10.1039/D3PY01372C
– ident: e_1_3_4_51_1
  doi: 10.1038/s41467-020-16874-6
– ident: e_1_3_4_36_1
  doi: 10.3762/bjoc.18.182
– ident: e_1_3_4_61_1
  doi: 10.1039/D2DD00144F
– ident: e_1_3_4_42_1
  doi: 10.1021/acsomega.2c06008
– ident: e_1_3_4_49_1
  doi: 10.1039/c9py00982e
– ident: e_1_3_4_60_1
  doi: 10.1002/mame.202200626
– ident: e_1_3_4_28_1
  doi: 10.1021/acsnano.1c07298
– ident: e_1_3_4_19_1
  doi: 10.1039/D2SC02839E
– ident: e_1_3_4_5_1
  doi: 10.1021/ma980294x
– ident: e_1_3_4_41_1
  doi: 10.1021/acsabm.2c00346
– ident: e_1_3_4_34_1
  doi: 10.1039/D2RE00054G
– ident: e_1_3_4_33_1
  doi: 10.1016/j.slasd.2022.01.002
– ident: e_1_3_4_39_1
  doi: 10.1021/acs.analchem.1c04224
– ident: e_1_3_4_65_1
  doi: 10.48550/arXiv.1910.06403
– ident: e_1_3_4_20_1
  doi: 10.1021/acsapm.0c00921
– ident: e_1_3_4_52_1
  doi: 10.1021/jacs.1c08181
– ident: e_1_3_4_50_1
  doi: 10.1016/j.progpolymsci.2020.101256
– ident: e_1_3_4_6_1
  doi: 10.1002/mats.1993.040020313
– ident: e_1_3_4_29_1
  doi: 10.1016/j.commatsci.2022.111417
– ident: e_1_3_4_70_1
  doi: 10.1016/j.mtcomm.2022.103440
– ident: e_1_3_4_44_1
  doi: 10.1021/acs.macromol.9b00846
SSID ssj0002873230
Score 2.3246546
Snippet Proportions of monomers in a copolymer will greatly affect the properties of materials. However, due to a phenomenon known as composition drift, the...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
SubjectTerms bayesian optimization
flow synthesis
methyl methacrylate
Polymer
radical polymerization
Styrene
Title Bayesian optimization of radical polymerization reactions in a flow synthesis system
URI https://doaj.org/article/5767e6e0fd3a49fb9d4c65e91a61cd40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwyIT1G-5IE1JY4T2x0ptGJioUhs0cUfUlFJqoYK9d9zl6RVNxbWxImsd479np17x9i9FB5C6nxkAlgqYaYjAGGjYKwCJOQw9M3WxZt-_TDPY7LJ2Zb6on_CWnvgFjgU7Ep75ePgJD4biqFLrcr8UIAS1qWtWo_Vjpj6bLaMtERyvUnZMfFDopWiAYuSMEkHRLQFlVbbWYx2PPubxWVyzI46Vsgf296csD1fnrLDHa_AMzYdwdpTxiOv8Cv_6tIneRX4EpqzFr6o5ms6f-nuIBtschZqPis58DCvfni9LpHw1bOatw7O5-x9Mp4-vURdSYTIIu8wkVQO1a9FjuUzKwucrWRcuMSHGMAFZ73MQmZQ7jopQqZpGvQSGRrEAkDHVl6wXlmV_pLxkKaZKYS3jtpDMEpAkoSgDfnFuKTPBhts8kXrfJGLzlB0A2ZOYOYdmH02IgS3jcm4urmA4cy7cOZ_hfPqP15yzQ6oY5QyKOQN630vV_6W7dduddcMk1-HDMFn
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+of+radical+polymerization+reactions+in+a+flow+synthesis+system&rft.jtitle=Science+and+technology+of+advanced+materials.+Methods&rft.au=Takasuka%2C+Shogo&rft.au=Ito%2C+Sho&rft.au=Oikawa%2C+Shunto&rft.au=Harashima%2C+Yosuke&rft.date=2024-11-13&rft.issn=2766-0400&rft.eissn=2766-0400&rft_id=info:doi/10.1080%2F27660400.2024.2425178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_27660400_2024_2425178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2766-0400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2766-0400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2766-0400&client=summon