FuseLinker: Leveraging LLM’s pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs

[Display omitted] To develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph’s structural, textual and domain knowledge information. We evaluated the utility of FuseLinker in the graph-based drug repurposing task through detail...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical informatics Vol. 158; p. 104730
Main Authors: Xiao, Yongkang, Zhang, Sinian, Zhou, Huixue, Li, Mingchen, Yang, Han, Zhang, Rui
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] To develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph’s structural, textual and domain knowledge information. We evaluated the utility of FuseLinker in the graph-based drug repurposing task through detailed case studies. FuseLinker leverages fused pre-trained text embedding and domain knowledge embedding to enhance the graph neural network (GNN)-based link prediction model tailored for BKGs. This framework includes three parts: a) obtain text embeddings for BKGs using embedding-visible large language models (LLMs), b) learn the representations of medical ontology as domain knowledge information by employing the Poincaré graph embedding method, and c) fuse these embeddings and further learn the graph structure representations of BKGs by applying a GNN-based link prediction model. We evaluated FuseLinker against traditional knowledge graph embedding models and a conventional GNN-based link prediction model across four public BKG datasets. Additionally, we examined the impact of using different embedding-visible LLMs on FuseLinker’s performance. Finally, we investigated FuseLinker’s ability to generate medical hypotheses through two drug repurposing case studies for Sorafenib and Parkinson’s disease. By comparing FuseLinker with baseline models on four BKGs, our method demonstrates superior performance. The Mean Reciprocal Rank (MRR) and Area Under receiver operating characteristic Curve (AUROC) for KEGG50k, Hetionet, SuppKG and ADInt are 0.969 and 0.987, 0.548 and 0.903, 0.739 and 0.928, and 0.831 and 0.890, respectively. Our study demonstrates that FuseLinker is an effective novel link prediction framework that integrates multiple graph information and shows significant potential for practical applications in biomedical and clinical tasks. Source code and data are available at https://github.com/YKXia0/FuseLinker.
AbstractList To develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph's structural, textual and domain knowledge information. We evaluated the utility of FuseLinker in the graph-based drug repurposing task through detailed case studies.OBJECTIVETo develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph's structural, textual and domain knowledge information. We evaluated the utility of FuseLinker in the graph-based drug repurposing task through detailed case studies.FuseLinker leverages fused pre-trained text embedding and domain knowledge embedding to enhance the graph neural network (GNN)-based link prediction model tailored for BKGs. This framework includes three parts: a) obtain text embeddings for BKGs using embedding-visible large language models (LLMs), b) learn the representations of medical ontology as domain knowledge information by employing the Poincaré graph embedding method, and c) fuse these embeddings and further learn the graph structure representations of BKGs by applying a GNN-based link prediction model. We evaluated FuseLinker against traditional knowledge graph embedding models and a conventional GNN-based link prediction model across four public BKG datasets. Additionally, we examined the impact of using different embedding-visible LLMs on FuseLinker's performance. Finally, we investigated FuseLinker's ability to generate medical hypotheses through two drug repurposing case studies for Sorafenib and Parkinson's disease.METHODSFuseLinker leverages fused pre-trained text embedding and domain knowledge embedding to enhance the graph neural network (GNN)-based link prediction model tailored for BKGs. This framework includes three parts: a) obtain text embeddings for BKGs using embedding-visible large language models (LLMs), b) learn the representations of medical ontology as domain knowledge information by employing the Poincaré graph embedding method, and c) fuse these embeddings and further learn the graph structure representations of BKGs by applying a GNN-based link prediction model. We evaluated FuseLinker against traditional knowledge graph embedding models and a conventional GNN-based link prediction model across four public BKG datasets. Additionally, we examined the impact of using different embedding-visible LLMs on FuseLinker's performance. Finally, we investigated FuseLinker's ability to generate medical hypotheses through two drug repurposing case studies for Sorafenib and Parkinson's disease.By comparing FuseLinker with baseline models on four BKGs, our method demonstrates superior performance. The Mean Reciprocal Rank (MRR) and Area Under receiver operating characteristic Curve (AUROC) for KEGG50k, Hetionet, SuppKG and ADInt are 0.969 and 0.987, 0.548 and 0.903, 0.739 and 0.928, and 0.831 and 0.890, respectively.RESULTSBy comparing FuseLinker with baseline models on four BKGs, our method demonstrates superior performance. The Mean Reciprocal Rank (MRR) and Area Under receiver operating characteristic Curve (AUROC) for KEGG50k, Hetionet, SuppKG and ADInt are 0.969 and 0.987, 0.548 and 0.903, 0.739 and 0.928, and 0.831 and 0.890, respectively.Our study demonstrates that FuseLinker is an effective novel link prediction framework that integrates multiple graph information and shows significant potential for practical applications in biomedical and clinical tasks. Source code and data are available at https://github.com/YKXia0/FuseLinker.CONCLUSIONOur study demonstrates that FuseLinker is an effective novel link prediction framework that integrates multiple graph information and shows significant potential for practical applications in biomedical and clinical tasks. Source code and data are available at https://github.com/YKXia0/FuseLinker.
To develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph's structural, textual and domain knowledge information. We evaluated the utility of FuseLinker in the graph-based drug repurposing task through detailed case studies. FuseLinker leverages fused pre-trained text embedding and domain knowledge embedding to enhance the graph neural network (GNN)-based link prediction model tailored for BKGs. This framework includes three parts: a) obtain text embeddings for BKGs using embedding-visible large language models (LLMs), b) learn the representations of medical ontology as domain knowledge information by employing the Poincaré graph embedding method, and c) fuse these embeddings and further learn the graph structure representations of BKGs by applying a GNN-based link prediction model. We evaluated FuseLinker against traditional knowledge graph embedding models and a conventional GNN-based link prediction model across four public BKG datasets. Additionally, we examined the impact of using different embedding-visible LLMs on FuseLinker's performance. Finally, we investigated FuseLinker's ability to generate medical hypotheses through two drug repurposing case studies for Sorafenib and Parkinson's disease. By comparing FuseLinker with baseline models on four BKGs, our method demonstrates superior performance. The Mean Reciprocal Rank (MRR) and Area Under receiver operating characteristic Curve (AUROC) for KEGG50k, Hetionet, SuppKG and ADInt are 0.965 and 0.987, 0.541 and 0.903, 0.781 ad 0.928, and 0.788 and 0.890, respectively. Our study demonstrates that FuseLinker is an effective novel link prediction framework that integrates multiple graph information and shows significant potential for practical applications in biomedical and clinical tasks. Source code and data are available at https://github.com/YKXia0/FuseLinker.
[Display omitted] To develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph’s structural, textual and domain knowledge information. We evaluated the utility of FuseLinker in the graph-based drug repurposing task through detailed case studies. FuseLinker leverages fused pre-trained text embedding and domain knowledge embedding to enhance the graph neural network (GNN)-based link prediction model tailored for BKGs. This framework includes three parts: a) obtain text embeddings for BKGs using embedding-visible large language models (LLMs), b) learn the representations of medical ontology as domain knowledge information by employing the Poincaré graph embedding method, and c) fuse these embeddings and further learn the graph structure representations of BKGs by applying a GNN-based link prediction model. We evaluated FuseLinker against traditional knowledge graph embedding models and a conventional GNN-based link prediction model across four public BKG datasets. Additionally, we examined the impact of using different embedding-visible LLMs on FuseLinker’s performance. Finally, we investigated FuseLinker’s ability to generate medical hypotheses through two drug repurposing case studies for Sorafenib and Parkinson’s disease. By comparing FuseLinker with baseline models on four BKGs, our method demonstrates superior performance. The Mean Reciprocal Rank (MRR) and Area Under receiver operating characteristic Curve (AUROC) for KEGG50k, Hetionet, SuppKG and ADInt are 0.969 and 0.987, 0.548 and 0.903, 0.739 and 0.928, and 0.831 and 0.890, respectively. Our study demonstrates that FuseLinker is an effective novel link prediction framework that integrates multiple graph information and shows significant potential for practical applications in biomedical and clinical tasks. Source code and data are available at https://github.com/YKXia0/FuseLinker.
ArticleNumber 104730
Author Yang, Han
Xiao, Yongkang
Zhou, Huixue
Li, Mingchen
Zhang, Rui
Zhang, Sinian
Author_xml – sequence: 1
  givenname: Yongkang
  surname: Xiao
  fullname: Xiao, Yongkang
  organization: Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Sinian
  surname: Zhang
  fullname: Zhang, Sinian
  organization: Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Huixue
  surname: Zhou
  fullname: Zhou, Huixue
  organization: Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
– sequence: 4
  givenname: Mingchen
  surname: Li
  fullname: Li, Mingchen
  organization: Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
– sequence: 5
  givenname: Han
  surname: Yang
  fullname: Yang, Han
  organization: Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
– sequence: 6
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  email: ruizhang@umn.edu
  organization: Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39326691$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtKIg8oAPyAX5yGU2bnuecEIRSZCG5BLOlh89G29m7MWeTeDGP3Di9_IleLVJxAmpJXfLVdXqqiOy74NHQk6ALYBBfbparLRbcMbLPJeNYHvkECrBC1a2bP-lr8sDcpTSijGAqqpfkwPRCV7XHRyS3-ebhL3zdxg_0B7vMaql80va918ff_1JdB2xmKNyHi2d8cdMcdJobYYkqrylNkz5k9758DCiXSKdA0V_q7xBenF1VWiVMnPMC7ZS1pnZBU9zaRem7azGf8jLqNa36Q15Nagx4dun95h8O_98c3ZZ9NcXX84-9YWBikHRGGSaV6Jpy0EYDaKBqgZRqaYb-ICi0Z0SZdlxWwtukbeDsLblXFWgAVUrjsn7ne46hu8bTLOcXDI4jspj2CQpILvKODQsQ2EHNTGkFHGQ6-gmFX9KYHKbhVzJnIXcZiF3WWTOuyf5jc6nvjCezc-AjzsA5iPvHUaZjMPsnHURzSxtcP-R_wuWgZ1N
Cites_doi 10.1140/epjb/e2009-00335-8
10.1016/j.jbi.2022.104120
10.1038/s41598-017-05778-z
10.1016/j.jbi.2021.103696
10.1186/s13321-020-00450-7
10.1145/2939672.2939754
10.1136/jamia.2009.002733
10.1158/1078-0432.CCR-13-3060
10.1093/bioinformatics/btz718
10.1186/s13287-017-0573-7
10.1038/s41598-024-58604-8
10.1093/bib/bbab513
10.1093/nar/gkh061
10.1016/j.csbj.2020.05.017
10.1093/bib/bbaa344
10.1145/2623330.2623732
10.1145/3655103.3655110
10.1109/TNN.2008.2005605
10.1002/cfg.255
10.1093/nar/28.1.27
10.18653/v1/2022.acl-long.295
10.1109/TKDE.2024.3352100
10.1093/jamia/ocz216
10.1016/S0898-1221(01)85012-4
10.1038/s41591-023-02448-8
10.7554/eLife.26726
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024. Published by Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024. Published by Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.jbi.2024.104730
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
ExternalDocumentID 10_1016_j_jbi_2024_104730
39326691
S1532046424001485
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABVKL
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
NPM
AAYXX
ABDPE
CITATION
7X8
ID FETCH-LOGICAL-c1501-7ce0b253784f3cb137156135a79f2fe37b9a34492d632de28f3dd822a51b1ea83
ISSN 1532-0464
1532-0480
IngestDate Fri Oct 18 23:47:57 EDT 2024
Wed Oct 30 12:36:51 EDT 2024
Sat Nov 02 12:23:40 EDT 2024
Sat Oct 19 15:54:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Drug Repurposing
Link Prediction
Large Language Model
Graph Neural Network
Knowledge graph
Language English
License Copyright © 2024. Published by Elsevier Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1501-7ce0b253784f3cb137156135a79f2fe37b9a34492d632de28f3dd822a51b1ea83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39326691
PQID 3110402170
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3110402170
crossref_primary_10_1016_j_jbi_2024_104730
pubmed_primary_39326691
elsevier_sciencedirect_doi_10_1016_j_jbi_2024_104730
PublicationCentury 2000
PublicationDate 20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241001
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Schlichtkrull, Kipf, Bloem, Van Den Berg, Titov, Welling (b0225) 2018
Tifrea, Bécigneul, Ganea (b0195) 2018
Yue, Wang, Huang, Parthasarathy, Moosavinasab, Huang, Lin, Zhang, Zhang, Sun (b0025) 2020; 36
Wu, Zhang, Zhang, Wang, Xie (b0175) 2023
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b0070) 2008; 20
O. Ganea, G. Bécigneul, T. Hofmann, Hyperbolic entailment cones for learning hierarchical embeddings, in: Int. Conf. Mach. Learn., PMLR, 2018: pp. 1646–1655.
Ungar (b0205) 2001; 41
Zheng, Rao, Song, Zhang, Xiao, Fang, Yang, Niu (b0150) 2020; 22
Xiao, Hou, Zhou, Diallo, Fiszman, Wolfson, Zhou, Kilicoglu, Chen, Su (b0035) 2024; 14
Kipf, Welling (b0075) 2016
Touvron, Martin, Stone, Albert, Almahairi, Babaei, Bashlykov, Batra, Bhargava, Bhosale (b0170) 2023
Zhang, Hristovski, Schutte, Kastrin, Fiszman, Kilicoglu (b0030) 2021; 115
Aronson, Lang (b0250) 2010; 17
Yang, Yih, He, Gao, Deng (b0060) 2014
T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex embeddings for simple link prediction, in: Int. Conf. Mach. Learn., PMLR, 2016: pp. 2071–2080.
Zhao, Zhou, Li, Tang, Wang, Hou, Min, Zhang, Zhang, Dong (b0110) 2023
Rizvi, Vasilakes, Adam, Melton, Bishop, Bian, Tao, Zhang (b0145) 2020; 27
Jarada, Rokne, Alhajj (b0235) 2020; 12
Devlin, Chang, Lee, Toutanova (b0155) 2018
Nicholson, Greene (b0010) 2020; 18
L. Wang, W. Zhao, Z. Wei, J. Liu, SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models, (2022).
A.R. Aronson, Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program., in: Proc. AMIA Symp., American Medical Informatics Association, 2001: p. 17.
Mohamed, Nounu, Nováček (b0125) 2019
Schutte, Vasilakes, Bompelli, Zhou, Fiszman, Xu, Kilicoglu, Bishop, Adam, Zhang (b0135) 2022; 131
Chung, Hou, Longpre, Zoph, Tay, Fedus, Li, Wang, Dehghani, Brahma (b0165) 2024; 25
Li, Li, Wang, Li, Sun, Cheng, Yu (b0095) 2024
Wynes, Hinz, Gao, Martini, Marek, Ware, Edwards, Böhm, Perner, Helfrich (b0245) 2014; 20
Zhou, Lü, Zhang (b0040) 2009; 71
Pan, Luo, Wang, Chen, Wang, Wu (b0105) 2024; 36
Ganea, Bécigneul, Hofmann (b0210) 2018; 31
Himmelstein, Lizee, Hessler, Brueggeman, Chen, Hadley, Green, Khankhanian, Baranzini (b0130) 2017; 6
Chen, Mao, Li, Jin, Wen, Wei, Wang, Yin, Fan, Liu, Tang (b0100) 2024; 25
Balazevic, Allen, Hospedales (b0185) 2019
Yao, Mao, Luo (b0085) 2019
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b0080) 2017
Kang, Zhang, Liu, Huang, Yin, Lr-gnn (b0230) 2022; 23
Bodenreider (b0180) 2004; 32
A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016: pp. 855–864.
Rotmensch, Halpern, Tlimat, Horng, Sontag (b0015) 2017; 7
McCray (b0120) 2003; 4
B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2014: pp. 701–710.
Hogan, Blomqvist, Cochez, d’Amato, Melo, Gutierrez, Kirrane, Gayo, Navigli, Neumaier (b0005) 2021; 54
Martínez, Berzal, Cubero (b0020) 2016; 49
Gu, Tinn, Cheng, Lucas, Usuyama, Liu, Naumann, Gao, Poon (b0160) 2021; 3
Kanehisa, Goto (b0140) 2000; 28
Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (b0055) 2013; 26
Thirunavukarasu, Ting, Elangovan, Gutierrez, Tan, Ting (b0115) 2023; 29
Schuyler, Hole, Tuttle, Sherertz (b0220) 1993; 81
Pattarozzi, Carra, Favoni, Würth, Marubbi, Filiberti, Mutti, Florio, Barbieri, Daga (b0240) 2017; 8
Nickel, Kiela (b0190) 2017; 30
Kang (10.1016/j.jbi.2024.104730_b0230) 2022; 23
Chen (10.1016/j.jbi.2024.104730_b0100) 2024; 25
Kipf (10.1016/j.jbi.2024.104730_b0075) 2016
Zhao (10.1016/j.jbi.2024.104730_b0110) 2023
Kanehisa (10.1016/j.jbi.2024.104730_b0140) 2000; 28
Zhou (10.1016/j.jbi.2024.104730_b0040) 2009; 71
10.1016/j.jbi.2024.104730_b0215
Devlin (10.1016/j.jbi.2024.104730_b0155) 2018
Hogan (10.1016/j.jbi.2024.104730_b0005) 2021; 54
10.1016/j.jbi.2024.104730_b0050
Bordes (10.1016/j.jbi.2024.104730_b0055) 2013; 26
10.1016/j.jbi.2024.104730_b0090
Thirunavukarasu (10.1016/j.jbi.2024.104730_b0115) 2023; 29
Schutte (10.1016/j.jbi.2024.104730_b0135) 2022; 131
Balazevic (10.1016/j.jbi.2024.104730_b0185) 2019
Yue (10.1016/j.jbi.2024.104730_b0025) 2020; 36
Xiao (10.1016/j.jbi.2024.104730_b0035) 2024; 14
Ungar (10.1016/j.jbi.2024.104730_b0205) 2001; 41
Yao (10.1016/j.jbi.2024.104730_b0085) 2019
Gu (10.1016/j.jbi.2024.104730_b0160) 2021; 3
Nicholson (10.1016/j.jbi.2024.104730_b0010) 2020; 18
Yang (10.1016/j.jbi.2024.104730_b0060) 2014
10.1016/j.jbi.2024.104730_b0065
Schlichtkrull (10.1016/j.jbi.2024.104730_b0225) 2018
McCray (10.1016/j.jbi.2024.104730_b0120) 2003; 4
Martínez (10.1016/j.jbi.2024.104730_b0020) 2016; 49
Zheng (10.1016/j.jbi.2024.104730_b0150) 2020; 22
Schuyler (10.1016/j.jbi.2024.104730_b0220) 1993; 81
Touvron (10.1016/j.jbi.2024.104730_b0170) 2023
Scarselli (10.1016/j.jbi.2024.104730_b0070) 2008; 20
Rotmensch (10.1016/j.jbi.2024.104730_b0015) 2017; 7
Chung (10.1016/j.jbi.2024.104730_b0165) 2024; 25
Li (10.1016/j.jbi.2024.104730_b0095) 2024
Aronson (10.1016/j.jbi.2024.104730_b0250) 2010; 17
Bodenreider (10.1016/j.jbi.2024.104730_b0180) 2004; 32
Himmelstein (10.1016/j.jbi.2024.104730_b0130) 2017; 6
Nickel (10.1016/j.jbi.2024.104730_b0190) 2017; 30
Wu (10.1016/j.jbi.2024.104730_b0175) 2023
Pattarozzi (10.1016/j.jbi.2024.104730_b0240) 2017; 8
Zhang (10.1016/j.jbi.2024.104730_b0030) 2021; 115
10.1016/j.jbi.2024.104730_b0045
10.1016/j.jbi.2024.104730_b0200
Mohamed (10.1016/j.jbi.2024.104730_b0125) 2019
Tifrea (10.1016/j.jbi.2024.104730_b0195) 2018
Jarada (10.1016/j.jbi.2024.104730_b0235) 2020; 12
Rizvi (10.1016/j.jbi.2024.104730_b0145) 2020; 27
Pan (10.1016/j.jbi.2024.104730_b0105) 2024; 36
Wynes (10.1016/j.jbi.2024.104730_b0245) 2014; 20
Ganea (10.1016/j.jbi.2024.104730_b0210) 2018; 31
Veličković (10.1016/j.jbi.2024.104730_b0080) 2017
References_xml – volume: 25
  start-page: 1
  year: 2024
  end-page: 53
  ident: b0165
  article-title: others, Scaling instruction-finetuned language models
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Brahma
– volume: 131
  year: 2022
  ident: b0135
  article-title: Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature
  publication-title: J. Biomed. Inform.
  contributor:
    fullname: Zhang
– year: 2019
  ident: b0085
  article-title: Kg-bert: BERT for knowledge graph completion
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Luo
– year: 2023
  ident: b0170
  article-title: Llama 2: Open foundation and fine-tuned chat models
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Bhosale
– volume: 36
  start-page: 3580
  year: 2024
  end-page: 3599
  ident: b0105
  article-title: Unifying Large Language Models and Knowledge Graphs: A Roadmap
  publication-title: IEEE Trans. Knowl. Data Eng.
  contributor:
    fullname: Wu
– volume: 29
  start-page: 1930
  year: 2023
  end-page: 1940
  ident: b0115
  article-title: Large language models in medicine
  publication-title: Nat. Med.
  contributor:
    fullname: Ting
– volume: 49
  start-page: 1
  year: 2016
  end-page: 33
  ident: b0020
  article-title: A survey of link prediction in complex networks
  publication-title: ACM Comput. Surv. CSUR
  contributor:
    fullname: Cubero
– year: 2016
  ident: b0075
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Welling
– volume: 27
  start-page: 539
  year: 2020
  end-page: 548
  ident: b0145
  article-title: iDISK: the integrated dietary supplements knowledge base
  publication-title: J. Am. Med. Inform. Assoc.
  contributor:
    fullname: Zhang
– year: 2019
  ident: b0185
  article-title: Multi-relational Poincaré Graph Embeddings
  publication-title: Adv
  contributor:
    fullname: Hospedales
– year: 2014
  ident: b0060
  article-title: Embedding entities and relations for learning and inference in knowledge bases
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Deng
– volume: 23
  start-page: bbab513
  year: 2022
  ident: b0230
  article-title: A graph neural network based on link representation for predicting molecular associations
  publication-title: Brief. Bioinform.
  contributor:
    fullname: Lr-gnn
– start-page: 11
  year: 2019
  end-page: 18
  ident: b0125
  article-title: Drug target discovery using knowledge graph embeddings
  contributor:
    fullname: Nováček
– volume: 6
  start-page: e26726
  year: 2017
  ident: b0130
  article-title: Systematic integration of biomedical knowledge prioritizes drugs for repurposing
  publication-title: Elife
  contributor:
    fullname: Baranzini
– volume: 25
  start-page: 42
  year: 2024
  end-page: 61
  ident: b0100
  article-title: Exploring the Potential of Large Language Models (LLMs)in Learning on Graphs
  publication-title: SIGKDD Explor. Newsl.
  contributor:
    fullname: Tang
– volume: 18
  start-page: 1414
  year: 2020
  end-page: 1428
  ident: b0010
  article-title: Constructing knowledge graphs and their biomedical applications
  publication-title: Comput. Struct Biotechnol. J.
  contributor:
    fullname: Greene
– start-page: 593
  year: 2018
  end-page: 607
  ident: b0225
  article-title: Modeling relational data with graph convolutional networks
  contributor:
    fullname: Welling
– volume: 54
  start-page: 1
  year: 2021
  end-page: 37
  ident: b0005
  article-title: others, Knowledge graphs
  publication-title: ACM Comput. Surv. Csur
  contributor:
    fullname: Neumaier
– year: 2018
  ident: b0195
  article-title: Poincar\ackslash’e glove: Hyperbolic word embeddings
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Ganea
– volume: 115
  year: 2021
  ident: b0030
  article-title: Drug repurposing for COVID-19 via knowledge graph completion
  publication-title: J. Biomed. Inform.
  contributor:
    fullname: Kilicoglu
– volume: 81
  start-page: 217
  year: 1993
  ident: b0220
  article-title: The UMLS Metathesaurus: representing different views of biomedical concepts
  publication-title: Bull. Med. Libr. Assoc.
  contributor:
    fullname: Sherertz
– volume: 12
  start-page: 1
  year: 2020
  end-page: 23
  ident: b0235
  article-title: A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions
  publication-title: J. Cheminformatics
  contributor:
    fullname: Alhajj
– year: 2017
  ident: b0080
  article-title: Graph attention networks
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Bengio
– volume: 20
  start-page: 61
  year: 2008
  end-page: 80
  ident: b0070
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  contributor:
    fullname: Monfardini
– volume: 31
  year: 2018
  ident: b0210
  article-title: Hyperbolic neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Hofmann
– volume: 22
  start-page: bbaa344
  year: 2020
  ident: b0150
  article-title: PharmKG: a dedicated knowledge graph benchmark for bomedical data mining
  publication-title: Brief. Bioinform.
  contributor:
    fullname: Niu
– volume: 30
  year: 2017
  ident: b0190
  article-title: Poincaré embeddings for learning hierarchical representations
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Kiela
– volume: 14
  start-page: 8693
  year: 2024
  ident: b0035
  article-title: others, Repurposing non-pharmacological interventions for Alzheimer’s disease through link prediction on biomedical literature
  publication-title: Sci. Rep.
  contributor:
    fullname: Su
– volume: 26
  year: 2013
  ident: b0055
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Yakhnenko
– volume: 17
  start-page: 229
  year: 2010
  end-page: 236
  ident: b0250
  article-title: An overview of MetaMap: historical perspective and recent advances
  publication-title: J. Am. Med. Inform. Assoc.
  contributor:
    fullname: Lang
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  ident: b0140
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Goto
– volume: 3
  start-page: 1
  year: 2021
  end-page: 23
  ident: b0160
  article-title: Domain-specific language model pretraining for biomedical natural language processing
  publication-title: ACM Trans. Comput. Healthc. Health
  contributor:
    fullname: Poon
– volume: 4
  start-page: 80
  year: 2003
  end-page: 84
  ident: b0120
  article-title: An upper-level ontology for the biomedical domain
  publication-title: Comp. Funct. Genomics
  contributor:
    fullname: McCray
– year: 2023
  ident: b0110
  article-title: A survey of large language models
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Dong
– volume: 41
  start-page: 135
  year: 2001
  end-page: 147
  ident: b0205
  article-title: Hyperbolic trigonometry and its application in the Poincaré ball model of hyperbolic geometry
  publication-title: Comput. Math. Appl.
  contributor:
    fullname: Ungar
– volume: 36
  start-page: 1241
  year: 2020
  end-page: 1251
  ident: b0025
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
  contributor:
    fullname: Sun
– year: 2018
  ident: b0155
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Toutanova
– volume: 20
  start-page: 3299
  year: 2014
  end-page: 3309
  ident: b0245
  article-title: others, FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies
  publication-title: Clin. Cancer Res.
  contributor:
    fullname: Helfrich
– volume: 7
  start-page: 5994
  year: 2017
  ident: b0015
  article-title: Learning a health knowledge graph from electronic medical records
  publication-title: Sci. Rep.
  contributor:
    fullname: Sontag
– volume: 71
  start-page: 623
  year: 2009
  end-page: 630
  ident: b0040
  article-title: Predicting missing links via local information
  publication-title: Eur. Phys. J. B
  contributor:
    fullname: Zhang
– volume: 32
  start-page: D267
  year: 2004
  end-page: D270
  ident: b0180
  article-title: The unified medical language system (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Bodenreider
– year: 2023
  ident: b0175
  article-title: Pmc-llama: Further finetuning llama on medical papers
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Xie
– volume: 8
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0240
  article-title: The inhibition of FGF receptor 1 activity mediates sorafenib antiproliferative effects in human malignant pleural mesothelioma tumor-initiating cells
  publication-title: Stem Cell Res. Ther.
  contributor:
    fullname: Daga
– year: 2024
  ident: b0095
  article-title: A survey of graph meets large language model
  publication-title: Progress and Future Directions
  contributor:
    fullname: Yu
– year: 2023
  ident: 10.1016/j.jbi.2024.104730_b0170
  article-title: Llama 2: Open foundation and fine-tuned chat models
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Touvron
– volume: 71
  start-page: 623
  year: 2009
  ident: 10.1016/j.jbi.2024.104730_b0040
  article-title: Predicting missing links via local information
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00335-8
  contributor:
    fullname: Zhou
– volume: 54
  start-page: 1
  year: 2021
  ident: 10.1016/j.jbi.2024.104730_b0005
  article-title: others, Knowledge graphs
  publication-title: ACM Comput. Surv. Csur
  contributor:
    fullname: Hogan
– volume: 131
  year: 2022
  ident: 10.1016/j.jbi.2024.104730_b0135
  article-title: Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2022.104120
  contributor:
    fullname: Schutte
– volume: 7
  start-page: 5994
  year: 2017
  ident: 10.1016/j.jbi.2024.104730_b0015
  article-title: Learning a health knowledge graph from electronic medical records
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05778-z
  contributor:
    fullname: Rotmensch
– volume: 115
  year: 2021
  ident: 10.1016/j.jbi.2024.104730_b0030
  article-title: Drug repurposing for COVID-19 via knowledge graph completion
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2021.103696
  contributor:
    fullname: Zhang
– ident: 10.1016/j.jbi.2024.104730_b0200
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.jbi.2024.104730_b0235
  article-title: A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-020-00450-7
  contributor:
    fullname: Jarada
– ident: 10.1016/j.jbi.2024.104730_b0050
  doi: 10.1145/2939672.2939754
– volume: 17
  start-page: 229
  year: 2010
  ident: 10.1016/j.jbi.2024.104730_b0250
  article-title: An overview of MetaMap: historical perspective and recent advances
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2009.002733
  contributor:
    fullname: Aronson
– volume: 20
  start-page: 3299
  year: 2014
  ident: 10.1016/j.jbi.2024.104730_b0245
  article-title: others, FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-3060
  contributor:
    fullname: Wynes
– volume: 36
  start-page: 1241
  year: 2020
  ident: 10.1016/j.jbi.2024.104730_b0025
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz718
  contributor:
    fullname: Yue
– volume: 3
  start-page: 1
  year: 2021
  ident: 10.1016/j.jbi.2024.104730_b0160
  article-title: Domain-specific language model pretraining for biomedical natural language processing
  publication-title: ACM Trans. Comput. Healthc. Health
  contributor:
    fullname: Gu
– year: 2023
  ident: 10.1016/j.jbi.2024.104730_b0175
  article-title: Pmc-llama: Further finetuning llama on medical papers
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Wu
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.jbi.2024.104730_b0240
  article-title: The inhibition of FGF receptor 1 activity mediates sorafenib antiproliferative effects in human malignant pleural mesothelioma tumor-initiating cells
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-017-0573-7
  contributor:
    fullname: Pattarozzi
– volume: 14
  start-page: 8693
  year: 2024
  ident: 10.1016/j.jbi.2024.104730_b0035
  article-title: others, Repurposing non-pharmacological interventions for Alzheimer’s disease through link prediction on biomedical literature
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-58604-8
  contributor:
    fullname: Xiao
– volume: 23
  start-page: bbab513
  year: 2022
  ident: 10.1016/j.jbi.2024.104730_b0230
  article-title: A graph neural network based on link representation for predicting molecular associations
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab513
  contributor:
    fullname: Kang
– volume: 49
  start-page: 1
  year: 2016
  ident: 10.1016/j.jbi.2024.104730_b0020
  article-title: A survey of link prediction in complex networks
  publication-title: ACM Comput. Surv. CSUR
  contributor:
    fullname: Martínez
– volume: 32
  start-page: D267
  year: 2004
  ident: 10.1016/j.jbi.2024.104730_b0180
  article-title: The unified medical language system (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh061
  contributor:
    fullname: Bodenreider
– volume: 30
  year: 2017
  ident: 10.1016/j.jbi.2024.104730_b0190
  article-title: Poincaré embeddings for learning hierarchical representations
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Nickel
– start-page: 593
  year: 2018
  ident: 10.1016/j.jbi.2024.104730_b0225
  contributor:
    fullname: Schlichtkrull
– start-page: 11
  year: 2019
  ident: 10.1016/j.jbi.2024.104730_b0125
  contributor:
    fullname: Mohamed
– volume: 18
  start-page: 1414
  year: 2020
  ident: 10.1016/j.jbi.2024.104730_b0010
  article-title: Constructing knowledge graphs and their biomedical applications
  publication-title: Comput. Struct Biotechnol. J.
  doi: 10.1016/j.csbj.2020.05.017
  contributor:
    fullname: Nicholson
– year: 2016
  ident: 10.1016/j.jbi.2024.104730_b0075
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Kipf
– volume: 22
  start-page: bbaa344
  year: 2020
  ident: 10.1016/j.jbi.2024.104730_b0150
  article-title: PharmKG: a dedicated knowledge graph benchmark for bomedical data mining
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa344
  contributor:
    fullname: Zheng
– ident: 10.1016/j.jbi.2024.104730_b0045
  doi: 10.1145/2623330.2623732
– volume: 25
  start-page: 1
  year: 2024
  ident: 10.1016/j.jbi.2024.104730_b0165
  article-title: others, Scaling instruction-finetuned language models
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Chung
– volume: 25
  start-page: 42
  year: 2024
  ident: 10.1016/j.jbi.2024.104730_b0100
  article-title: Exploring the Potential of Large Language Models (LLMs)in Learning on Graphs
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/3655103.3655110
  contributor:
    fullname: Chen
– ident: 10.1016/j.jbi.2024.104730_b0215
– volume: 20
  start-page: 61
  year: 2008
  ident: 10.1016/j.jbi.2024.104730_b0070
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
  contributor:
    fullname: Scarselli
– year: 2014
  ident: 10.1016/j.jbi.2024.104730_b0060
  article-title: Embedding entities and relations for learning and inference in knowledge bases
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Yang
– year: 2018
  ident: 10.1016/j.jbi.2024.104730_b0155
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Devlin
– year: 2019
  ident: 10.1016/j.jbi.2024.104730_b0085
  article-title: Kg-bert: BERT for knowledge graph completion
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Yao
– ident: 10.1016/j.jbi.2024.104730_b0065
– volume: 4
  start-page: 80
  year: 2003
  ident: 10.1016/j.jbi.2024.104730_b0120
  article-title: An upper-level ontology for the biomedical domain
  publication-title: Comp. Funct. Genomics
  doi: 10.1002/cfg.255
  contributor:
    fullname: McCray
– volume: 28
  start-page: 27
  year: 2000
  ident: 10.1016/j.jbi.2024.104730_b0140
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
  contributor:
    fullname: Kanehisa
– volume: 26
  year: 2013
  ident: 10.1016/j.jbi.2024.104730_b0055
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Bordes
– year: 2019
  ident: 10.1016/j.jbi.2024.104730_b0185
  article-title: Multi-relational Poincaré Graph Embeddings
  contributor:
    fullname: Balazevic
– year: 2018
  ident: 10.1016/j.jbi.2024.104730_b0195
  article-title: Poincar\ackslash’e glove: Hyperbolic word embeddings
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Tifrea
– year: 2023
  ident: 10.1016/j.jbi.2024.104730_b0110
  article-title: A survey of large language models
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Zhao
– year: 2017
  ident: 10.1016/j.jbi.2024.104730_b0080
  article-title: Graph attention networks
  publication-title: ArXiv Prepr.
  contributor:
    fullname: Veličković
– ident: 10.1016/j.jbi.2024.104730_b0090
  doi: 10.18653/v1/2022.acl-long.295
– volume: 31
  year: 2018
  ident: 10.1016/j.jbi.2024.104730_b0210
  article-title: Hyperbolic neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Ganea
– volume: 36
  start-page: 3580
  year: 2024
  ident: 10.1016/j.jbi.2024.104730_b0105
  article-title: Unifying Large Language Models and Knowledge Graphs: A Roadmap
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2024.3352100
  contributor:
    fullname: Pan
– volume: 27
  start-page: 539
  year: 2020
  ident: 10.1016/j.jbi.2024.104730_b0145
  article-title: iDISK: the integrated dietary supplements knowledge base
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocz216
  contributor:
    fullname: Rizvi
– volume: 81
  start-page: 217
  year: 1993
  ident: 10.1016/j.jbi.2024.104730_b0220
  article-title: The UMLS Metathesaurus: representing different views of biomedical concepts
  publication-title: Bull. Med. Libr. Assoc.
  contributor:
    fullname: Schuyler
– year: 2024
  ident: 10.1016/j.jbi.2024.104730_b0095
  article-title: A survey of graph meets large language model
  publication-title: Progress and Future Directions
  contributor:
    fullname: Li
– volume: 41
  start-page: 135
  year: 2001
  ident: 10.1016/j.jbi.2024.104730_b0205
  article-title: Hyperbolic trigonometry and its application in the Poincaré ball model of hyperbolic geometry
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)85012-4
  contributor:
    fullname: Ungar
– volume: 29
  start-page: 1930
  year: 2023
  ident: 10.1016/j.jbi.2024.104730_b0115
  article-title: Large language models in medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02448-8
  contributor:
    fullname: Thirunavukarasu
– volume: 6
  start-page: e26726
  year: 2017
  ident: 10.1016/j.jbi.2024.104730_b0130
  article-title: Systematic integration of biomedical knowledge prioritizes drugs for repurposing
  publication-title: Elife
  doi: 10.7554/eLife.26726
  contributor:
    fullname: Himmelstein
SSID ssj0011556
Score 2.448605
Snippet [Display omitted] To develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph’s...
To develop the FuseLinker, a novel link prediction framework for biomedical knowledge graphs (BKGs), which fully exploits the graph's structural, textual and...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 104730
SubjectTerms Drug Repurposing
Graph Neural Network
Knowledge graph
Large Language Model
Link Prediction
Title FuseLinker: Leveraging LLM’s pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs
URI https://dx.doi.org/10.1016/j.jbi.2024.104730
https://www.ncbi.nlm.nih.gov/pubmed/39326691
https://www.proquest.com/docview/3110402170
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6TUIghKAwGDcZiSeqTHXsNAlvE3QM1PVlQyq8RHHsbClaMi2NxCP_gSf-Hr-Ec-zcCioCJKQoqtzaTvR9tc_N5xDy3B8rnYRcOMBdCQpKmjgBKHCOF8B2qYRMx6bG0tGJP18Er6diOhg0Vcu6tv-KNLQB1nhy9i_QbgeFBvgMmMMdUIf7H-F-WJUaFUxt6j_ONLyALUQ0mx03kQ1hibkBHFMeAgRODP4Y6QuplXFEGX-CKi7gy1FrckMZVefn5oDBm_ncwd1PjdD9i0OpzFYch8ue5zfQd51NWuxygyDc61GncV31QvAXWWysuR-K_OxTXO-za5buLO9R_ON5UZnttMo-Vy1pZ5k9IpCfAUfzvqXDFW3MXG1-a47grEWIwortYnyqWFvSbTr4X7YHa6lY7i9lto8zoIfbr_1C61m3T3BcHBZjbEFl9LbIjgtrGSylOwdvp4t3rasKBLKJTcprn6NxnZsgwp8m2iT8bFJujJBzepvcqkGhB5ZWd8hA50Nyo5ezckiuHdfRGENy09p8qT3Kdpd87bj3knbMo8C871--lbTHOYqcox3nKHCOWs7RljZ0VdCac7TlHEXO0Y5zFK6OQb3OlnP3yPvD6emrI6cu-uEkoJswx0_0WLoe9wOR8kQy7jPUcb3YD1M31dyXYcyFCF014a7SbpBypUDKjT0mmY4Dvku28yLXDwgdMwn6SQxKBshgepwEXsIZC4UWYhKnMt0jLxo0okub2yVqgh6XEUAXIXSRhW6PiAavqBZOrdAZAbl-1-1Zg20ECzd64-JcF1UZwaPABuoyH35z34LePgVHrWoSsof_Nukjcr37_zwm26urSj8hW6Wqntbs_QH8Qsbe
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FuseLinker%3A+Leveraging+LLM%E2%80%99s+pre-trained+text+embeddings+and+domain+knowledge+to+enhance+GNN-based+link+prediction+on+biomedical+knowledge+graphs&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Xiao%2C+Yongkang&rft.au=Zhang%2C+Sinian&rft.au=Zhou%2C+Huixue&rft.au=Li%2C+Mingchen&rft.date=2024-10-01&rft.pub=Elsevier+Inc&rft.issn=1532-0464&rft.volume=158&rft_id=info:doi/10.1016%2Fj.jbi.2024.104730&rft.externalDocID=S1532046424001485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon