High-Performance Three-Stage Single-Miller CMOS OTA With No Upper Limit of

This brief presents a low-power, area-efficient three-stage CMOS operational transconductance amplifier (OTA) suitable for very large capacitive loads, <inline-formula> <tex-math notation="LaTeX">{C} _{L} </tex-math></inline-formula>. A single Miller capacitor and a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Vol. 65; no. 11; pp. 1529 - 1533
Main Authors: Grasso, Alfio Dario, Marano, D., Palumbo, G., Pennisi, S.
Format: Journal Article
Language:English
Published: New York IEEE 01-11-2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This brief presents a low-power, area-efficient three-stage CMOS operational transconductance amplifier (OTA) suitable for very large capacitive loads, <inline-formula> <tex-math notation="LaTeX">{C} _{L} </tex-math></inline-formula>. A single Miller capacitor and an inverting current buffer embedded in the input stage are exploited to implement the frequency compensation network. An additional feed-forward path and a slew rate enhancer are also utilized to improve the large-signal transient response. Detailed small-signal analysis reveals that the proposed OTA does not exhibit an upper limit of drivable <inline-formula> <tex-math notation="LaTeX">{C} _{L} </tex-math></inline-formula>. The OTA is fabricated in a standard 0.35-<inline-formula> <tex-math notation="LaTeX">{\mu }\text{m} </tex-math></inline-formula> technology and occupies 0.0027 mm 2 of die area. Under 1.4-V supply and 6.36-<inline-formula> <tex-math notation="LaTeX">{\mu }\text{A} </tex-math></inline-formula> quiescent current consumption, it provides a dc gain greater than 110 dB and is stable for any <inline-formula> <tex-math notation="LaTeX">{C} _{L} </tex-math></inline-formula> larger than 5 nF. Comparison with the state of the art shows remarkable improvement of both small- and large-signal performance.
AbstractList This brief presents a low-power, area-efficient three-stage CMOS operational transconductance amplifier (OTA) suitable for very large capacitive loads, <inline-formula> <tex-math notation="LaTeX">{C} _{L} </tex-math></inline-formula>. A single Miller capacitor and an inverting current buffer embedded in the input stage are exploited to implement the frequency compensation network. An additional feed-forward path and a slew rate enhancer are also utilized to improve the large-signal transient response. Detailed small-signal analysis reveals that the proposed OTA does not exhibit an upper limit of drivable <inline-formula> <tex-math notation="LaTeX">{C} _{L} </tex-math></inline-formula>. The OTA is fabricated in a standard 0.35-<inline-formula> <tex-math notation="LaTeX">{\mu }\text{m} </tex-math></inline-formula> technology and occupies 0.0027 mm 2 of die area. Under 1.4-V supply and 6.36-<inline-formula> <tex-math notation="LaTeX">{\mu }\text{A} </tex-math></inline-formula> quiescent current consumption, it provides a dc gain greater than 110 dB and is stable for any <inline-formula> <tex-math notation="LaTeX">{C} _{L} </tex-math></inline-formula> larger than 5 nF. Comparison with the state of the art shows remarkable improvement of both small- and large-signal performance.
This brief presents a low-power, area-efficient three-stage CMOS operational transconductance amplifier (OTA) suitable for very large capacitive loads, [Formula Omitted]. A single Miller capacitor and an inverting current buffer embedded in the input stage are exploited to implement the frequency compensation network. An additional feed-forward path and a slew rate enhancer are also utilized to improve the large-signal transient response. Detailed small-signal analysis reveals that the proposed OTA does not exhibit an upper limit of drivable [Formula Omitted]. The OTA is fabricated in a standard 0.35-[Formula Omitted] technology and occupies 0.0027 mm2 of die area. Under 1.4-V supply and 6.36-[Formula Omitted] quiescent current consumption, it provides a dc gain greater than 110 dB and is stable for any [Formula Omitted] larger than 5 nF. Comparison with the state of the art shows remarkable improvement of both small- and large-signal performance.
Author Pennisi, S.
Palumbo, G.
Grasso, Alfio Dario
Marano, D.
Author_xml – sequence: 1
  givenname: Alfio Dario
  orcidid: 0000-0002-5707-9683
  surname: Grasso
  fullname: Grasso, Alfio Dario
  email: agrasso@dieei.unict.it
  organization: Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, University of Catania, Catania, Italy
– sequence: 2
  givenname: D.
  orcidid: 0000-0001-9433-4199
  surname: Marano
  fullname: Marano, D.
  email: davide.marano@oact.inaf.it
  organization: Istituto Nazionale di Astrofisica, Catania, Italy
– sequence: 3
  givenname: G.
  orcidid: 0000-0002-8011-8660
  surname: Palumbo
  fullname: Palumbo, G.
  email: gaetano.palumbo@dieei.unict.it
  organization: Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, University of Catania, Catania, Italy
– sequence: 4
  givenname: S.
  orcidid: 0000-0002-5803-484X
  surname: Pennisi
  fullname: Pennisi, S.
  email: spennisi@dieei.unict.it
  organization: Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, University of Catania, Catania, Italy
BookMark eNo9kE1PwkAQhjcGEwH9A3pp4nlxd7ufR9KoYEBMWuJxU8ssLClt3ZaD_94ixNNMJu8zM3lGaFDVFSB0T8mEUmKesiSdzyeMUDVhSkjD4is0pEJoHCtDB6eeG6wUVzdo1LZ7QpghMRuit5nf7vAHBFeHQ14VEGW7AIDTLt9ClPpqWwJe-rKEECXLVRqtsmn06btd9F5H66bpxwt_8F1Uu1t07fKyhbtLHaP1y3OWzPBi9TpPpgtcUE4M1l-CF65QkhDg_YeMO7oROufOSW10zpTOFdtoQYwjggAwbWRMCqdkLKQU8Rg9nvc2of4-QtvZfX0MVX_SMsqk1IQr06fYOVWEum0DONsEf8jDj6XEnpzZP2f25MxenPXQwxnyAPAPaCIopSz-BfC5Zk8
CODEN ICSPE5
CitedBy_id crossref_primary_10_1142_S0218126619501925
crossref_primary_10_1049_cje_2021_06_007
crossref_primary_10_1002_cta_3180
crossref_primary_10_1007_s10470_020_01795_7
crossref_primary_10_1108_CW_03_2020_0036
crossref_primary_10_1049_iet_cds_2019_0209
crossref_primary_10_1080_00207217_2023_2235721
crossref_primary_10_3390_electronics10090991
crossref_primary_10_1109_ACCESS_2022_3147879
crossref_primary_10_1109_ACCESS_2022_3156890
crossref_primary_10_1007_s13369_023_08126_8
crossref_primary_10_1109_TVLSI_2020_2993059
crossref_primary_10_3390_jlpea11020021
crossref_primary_10_1016_j_mejo_2022_105538
crossref_primary_10_1002_cta_3244
crossref_primary_10_1109_TCSI_2020_2978515
crossref_primary_10_1109_TCSI_2020_3044454
crossref_primary_10_1109_LSSC_2022_3206892
crossref_primary_10_1145_3363499
crossref_primary_10_1109_ACCESS_2022_3187169
crossref_primary_10_1007_s10470_021_01906_y
crossref_primary_10_1007_s10470_019_01555_2
crossref_primary_10_1109_TVLSI_2023_3313613
crossref_primary_10_1002_cta_2723
crossref_primary_10_1016_j_vlsi_2021_03_003
crossref_primary_10_1109_TCSI_2022_3216201
Cites_doi 10.1109/JSSC.2016.2619677
10.1109/JSSC.2015.2477944
10.1007/s10470-016-0696-2
10.1109/TCSI.2015.2476298
10.1109/TVLSI.2016.2515131
10.1109/4.384174
10.1109/JSSC.2014.2364037
10.1109/TCSII.2010.2043401
10.1109/TCSI.2016.2573920
10.1109/TCSI.2013.2284181
10.1109/TCSI.2014.2333364
10.1109/JSSC.2012.2229070
10.1109/TCSII.2012.2186361
10.1002/cta.2273
10.1109/TCSI.2016.2584919
10.1109/JSSC.2015.2453195
10.1109/TCSI.2015.2495723
10.1109/JSSC.2012.2194090
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2017.2756923
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 1533
ExternalDocumentID 10_1109_TCSII_2017_2756923
8051112
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RIG
RNS
RXW
TAE
TAF
VJK
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c1409-8b54cfc7600e455824f1d58a4ff6898a278a72d8509f050ee289630cf76356653
IEDL.DBID RIE
ISSN 1549-7747
IngestDate Thu Oct 10 19:28:08 EDT 2024
Fri Aug 23 00:44:57 EDT 2024
Wed Jun 26 19:31:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1409-8b54cfc7600e455824f1d58a4ff6898a278a72d8509f050ee289630cf76356653
ORCID 0000-0002-8011-8660
0000-0002-5803-484X
0000-0002-5707-9683
0000-0001-9433-4199
PQID 2126680479
PQPubID 85412
PageCount 5
ParticipantIDs crossref_primary_10_1109_TCSII_2017_2756923
ieee_primary_8051112
proquest_journals_2126680479
PublicationCentury 2000
PublicationDate 2018-Nov.
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref7
ref9
ref4
ref3
ref6
ref5
qu (ref8) 2014
References_xml – ident: ref12
  doi: 10.1109/JSSC.2016.2619677
– ident: ref17
  doi: 10.1109/JSSC.2015.2477944
– ident: ref13
  doi: 10.1007/s10470-016-0696-2
– ident: ref11
  doi: 10.1109/TCSI.2015.2476298
– ident: ref15
  doi: 10.1109/TVLSI.2016.2515131
– ident: ref19
  doi: 10.1109/4.384174
– ident: ref7
  doi: 10.1109/JSSC.2014.2364037
– ident: ref4
  doi: 10.1109/TCSII.2010.2043401
– ident: ref10
  doi: 10.1109/TCSI.2016.2573920
– start-page: 290
  year: 2014
  ident: ref8
  article-title: 17.3 A 0.9V $6.3\mu$ W multistage amplifier driving 500pF capacitive load with 1.34MHz GBW
  publication-title: IEEE Int Solid-State Circuits Conf Dig Tech Papers
  contributor:
    fullname: qu
– ident: ref2
  doi: 10.1109/TCSI.2013.2284181
– ident: ref1
  doi: 10.1109/TCSI.2014.2333364
– ident: ref9
  doi: 10.1109/JSSC.2012.2229070
– ident: ref3
  doi: 10.1109/TCSII.2012.2186361
– ident: ref18
  doi: 10.1002/cta.2273
– ident: ref14
  doi: 10.1109/TCSI.2016.2584919
– ident: ref16
  doi: 10.1109/JSSC.2015.2453195
– ident: ref5
  doi: 10.1109/TCSI.2015.2495723
– ident: ref6
  doi: 10.1109/JSSC.2012.2194090
SSID ssj0029032
Score 2.2509284
Snippet This brief presents a low-power, area-efficient three-stage CMOS operational transconductance amplifier (OTA) suitable for very large capacitive loads,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1529
SubjectTerms Art exhibits
Capacitors
Circuit stability
CMOS
Digital audio players
Gain
large capacitive loads
Miller compensation
multistage amplifiers
Operational amplifiers
Operational transconductance amplifiers
Slew rate
Small signal analysis
Stability analysis
State of the art
Transconductance
Transistors
Title High-Performance Three-Stage Single-Miller CMOS OTA With No Upper Limit of
URI https://ieeexplore.ieee.org/document/8051112
https://www.proquest.com/docview/2126680479
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6Ukx78hUYUTQ_etDBGu70dCULERDDZiN6WrmvVxDAi8P_b1w3U6MVbs3TN8rXb-7q-73uEXMnIdCRIYF2ZScbBKCa5zlmmM66yHBmqK50Qh-NnuB2gTc7NRgujtXbJZ7qFTXeWnxdqhb_K2mBXUAdLCm-HEZRarc3mKvJcMTJ0HLOMkYdrgYwXtZN-PBphFlfYQrPzyO_-CEKuqsqvT7GLL8P9_z3ZAdmreCTtlRN_SLb07IjsfnMXrJN7zOFgj1_KAJrYidPM8ssXTWPb512zUgtI-w-TmE6SHn16W77ScUGn87m97ORPtDDHZDocJP07VpVOYAodrBhkgiuj8NRNcyHA56aTC5DcmAAikH4IMvRzsHTBeMLT2u67gq6njPOrC0T3hNRmxUyfEip8lWfo6ic5cEydEnYk3zIL2-YSoEGu11im89IhI3U7Cy9KHfIpIp9WyDdIHdHb9KyAa5DmGv60eokWqY2qQQDogX_2913nZMeODaU0sElqy4-VviDbi3x16RbHJ9RktHA
link.rule.ids 315,782,786,798,27935,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG0UH9QHv9CIovbBNy2Mrd3uHglCQPkwYUTflq5r1cQwIvD_bbuBGn3xrVm6j5x2u6frPecidM1D1eDAgXg84YSCEoRTmZJEJlQkqWGotnTCOBg-w13b2OTcrrUwUkqbfCZrpmn38tNMLM2vsjroGdQwJYW3GA0CJ1drrZdXoWPLkRnPMc0ZabCSyDhhPWqNez2TxxXUjN156Ho_wpCtq_LrY2wjTGf_f892gPYKJomb-dAfog05PUK73_wFy-jeZHGQxy9tAI700EmiGeaLxGPd512SXA2IW4PRGI-iJn56W7ziYYYns5k-bAVQOFPHaNJpR60uKYonEGE8rAgkjAolzL6bpIyBS1UjZcCpUj6EwN0AeOCmoAmDcpgjpV55-Z4jlHWs85l3gkrTbCpPEWauSBPj68cpUJM8xfSVXM0tdJtygAq6WWEZz3KPjNiuLZwwtsjHBvm4QL6Cyga9dc8CuAqqruCPi9doHuu46vtgXPDP_j7rCm13o0E_7veGD-doR98HcqFgFZUWH0t5gTbn6fLSTpRPepC3uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Three-Stage+Single-Miller+CMOS+OTA+With+No+Upper+Limit+of&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Grasso%2C+Alfio+Dario&rft.au=Marano%2C+D.&rft.au=Palumbo%2C+G.&rft.au=Pennisi%2C+S.&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=65&rft.issue=11&rft.spage=1529&rft.epage=1533&rft_id=info:doi/10.1109%2FTCSII.2017.2756923&rft.externalDocID=8051112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon