A hybrid artificial neural network for grid-connected photovoltaic system output prediction

This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic (GCPV) system. In this study, the ANN-based prediction utilized solar irradiance (SI), ambient temperature (AT) and module temperature (MT) as...

Full description

Saved in:
Bibliographic Details
Published in:2013 IEEE Symposium on Computers & Informatics (ISCI) pp. 108 - 111
Main Authors: Hussain, Thaqifah Nafisah, Sulaiman, Shahril Irwan, Musirin, Ismail, Shaari, Sulaiman, Zainuddin, Hedzlin
Format: Conference Proceeding
Language:English
Published: IEEE 01-04-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic (GCPV) system. In this study, the ANN-based prediction utilized solar irradiance (SI), ambient temperature (AT) and module temperature (MT) as the inputs and kWh energy from the GCPV system as the sole output. Besides that, Particle Swarm Optimization (PSO) was used to optimize the number of neurons in the hidden layer during the ANN training process such that the Root Mean Square Error (RMSE) of the prediction was minimized. After the training process, testing was performed to validate the ANN training. The results showed that the proposed hybrid PSO-ANN had outperformed the hybrid Fast Evolutionary Programming-Artificial Neural Network (FEP-ANN) in producing lower RMSE. In addition, the optimal learning algorithm and population size in PSO were also investigated in this study.
AbstractList This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic (GCPV) system. In this study, the ANN-based prediction utilized solar irradiance (SI), ambient temperature (AT) and module temperature (MT) as the inputs and kWh energy from the GCPV system as the sole output. Besides that, Particle Swarm Optimization (PSO) was used to optimize the number of neurons in the hidden layer during the ANN training process such that the Root Mean Square Error (RMSE) of the prediction was minimized. After the training process, testing was performed to validate the ANN training. The results showed that the proposed hybrid PSO-ANN had outperformed the hybrid Fast Evolutionary Programming-Artificial Neural Network (FEP-ANN) in producing lower RMSE. In addition, the optimal learning algorithm and population size in PSO were also investigated in this study.
Author Shaari, Sulaiman
Sulaiman, Shahril Irwan
Musirin, Ismail
Hussain, Thaqifah Nafisah
Zainuddin, Hedzlin
Author_xml – sequence: 1
  givenname: Thaqifah Nafisah
  surname: Hussain
  fullname: Hussain, Thaqifah Nafisah
  email: thaqifahussain@yahoo.com
  organization: Fac. of Electr. Eng., Univ. Teknol. MARA, Shah Alam, Malaysia
– sequence: 2
  givenname: Shahril Irwan
  surname: Sulaiman
  fullname: Sulaiman, Shahril Irwan
  email: shahril_irwan2004@yahoo.com
  organization: Fac. of Electr. Eng., Univ. Teknol. MARA, Shah Alam, Malaysia
– sequence: 3
  givenname: Ismail
  surname: Musirin
  fullname: Musirin, Ismail
  email: ismailbm@salam.uitm.edu.my
  organization: Fac. of Electr. Eng., Univ. Teknol. MARA, Shah Alam, Malaysia
– sequence: 4
  givenname: Sulaiman
  surname: Shaari
  fullname: Shaari, Sulaiman
  email: solarman1001@gmail.com
  organization: Fac. of Appl. Sci., Univ. Teknol. MARA, Shah Alam, Malaysia
– sequence: 5
  givenname: Hedzlin
  surname: Zainuddin
  fullname: Zainuddin, Hedzlin
  email: hedzlinzainuddin@yahoo.com
  organization: Fac. of Appl. Sci., Univ. Teknol. MARA, Shah Alam, Malaysia
BookMark eNotj81KxDAURiPowhl9AHGTF2jNbdo0WQ7Fn8KAC3XlYkiTWyfYSUqaKn17h3FWBz4OH5wVufTBIyF3wHIAph7at6bNCwY8FwIKLqsLsoKyVooVTMlr8rmh-6WLzlIdk-udcXqgHud4QvoN8Zv2IdKvo5KZ4D2ahJaO-5DCTxiSdoZOy5TwQMOcxjnRMaJ1Jrngb8hVr4cJb89ck4-nx_fmJdu-PrfNZpsZ4DJlYDUKUDWARG5lDUpWAJUCoUQneVdYVRppxHHsKy5MCawTRmMBjNfM1nxN7v9_HSLuxugOOi67cy__AwDFT9A
CitedBy_id crossref_primary_10_3390_su151813521
crossref_primary_10_1007_s10586_018_2047_9
crossref_primary_10_1016_j_rser_2016_12_029
crossref_primary_10_1016_j_segan_2024_101318
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCI.2013.6612385
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 1479902098
9781479902101
1479902101
9781479902095
EndPage 111
ExternalDocumentID 6612385
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-c138t-1dae6197118e3d87198511591696b83b2d94c8c6511f536c410b6cae210370d73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:36 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c138t-1dae6197118e3d87198511591696b83b2d94c8c6511f536c410b6cae210370d73
PageCount 4
ParticipantIDs ieee_primary_6612385
PublicationCentury 2000
PublicationDate 2013-April
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-April
PublicationDecade 2010
PublicationTitle 2013 IEEE Symposium on Computers & Informatics (ISCI)
PublicationTitleAbbrev ISCI
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6096568
Snippet This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic...
SourceID ieee
SourceType Publisher
StartPage 108
SubjectTerms artificial neural network
Artificial neural networks
grid-connected photovoltaic
particle swarm optimization
Photovoltaic systems
prediction
root mean square error
Sociology
Statistics
Testing
Training
Title A hybrid artificial neural network for grid-connected photovoltaic system output prediction
URI https://ieeexplore.ieee.org/document/6612385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTp34aBHf8sBIWrtOYntEpRVdEFJBQmKoEvtCWZoIkoF_j8-JipBYmGJZliz5lPhd7r13ANc6LnKB1kWWxz5Bcal_pVAXkdSZEIU2TmehdcJKPbzouznZ5NzstDCIGMhnOKZhqOW70jb0q2ySkleITnrQU0a3Wq2uUCm4mSxXsyVxteS4W_erYUq4Lxb7_9vpAEY_wjv2uLtSDmEPt0cwIEDY-ikP4fWWbb5IZcUo5q39AyNTyvAIlG7mcSh780siSywW6zElqzZlXfovUZ29W9a6N7OyqaumZtUH1WooPiN4XsyfZvdR1yAhskLqOhIuQ58AKZ8koHQ-9TGEnxKP-Eyaa5lPnYmttqmfLBKZ2ljwPLUZTkkcyJ2Sx9Dflls8ASYzx5WHCrkRJs45FWO5Q81zVMq6BE9hSKe0rloPjHV3QGd_T5_DYBraRhDD5QL69UeDl9D7dM1ViNo3bq2bOA
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64eXAnf2zib3PwaLdkaZv0KHNjwzmETRA8jDZJ3S5rme3B_968tEwEL54aQiCQR5vv9X3f9wDupJ8mzCjtKerbBEWH9pUyMvW4jBlLZaRl7FonzMXsTT4O0SbnfqeFMcY48pnp4tDV8nWmSvxV1gvRK0QGDdgPfBGKSq1VlyoZjXqT-WCCbC3erVf-apnibozR4f_2OoLOj_SOvOwulWPYM5sTaCEkrByV2_D-QFZfqLMiGPXKAIKgLaV7OFI3sUiUfNglnkIei7KokuSrrMjst6iI14pU_s0kK4u8LEi-xWoNRqgDr6PhYjD26hYJnmJcFh7TsbEpkLBpguHaJj8RIqjAYr4oTCRP-jrylVShnUwDHiqf0SRUsemjPJBqwU-huck25gwIjzUVFiwkEYv8hGI5lmojaWKEUDow59DGU1rmlQvGsj6gi7-nb-FgvHieLqeT2dMltPquiQTyXa6gWWxLcw2NT13euAh-A8hJnok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Symposium+on+Computers+%26+Informatics+%28ISCI%29&rft.atitle=A+hybrid+artificial+neural+network+for+grid-connected+photovoltaic+system+output+prediction&rft.au=Hussain%2C+Thaqifah+Nafisah&rft.au=Sulaiman%2C+Shahril+Irwan&rft.au=Musirin%2C+Ismail&rft.au=Shaari%2C+Sulaiman&rft.date=2013-04-01&rft.pub=IEEE&rft.spage=108&rft.epage=111&rft_id=info:doi/10.1109%2FISCI.2013.6612385&rft.externalDocID=6612385