A hybrid artificial neural network for grid-connected photovoltaic system output prediction
This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic (GCPV) system. In this study, the ANN-based prediction utilized solar irradiance (SI), ambient temperature (AT) and module temperature (MT) as...
Saved in:
Published in: | 2013 IEEE Symposium on Computers & Informatics (ISCI) pp. 108 - 111 |
---|---|
Main Authors: | , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-04-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic (GCPV) system. In this study, the ANN-based prediction utilized solar irradiance (SI), ambient temperature (AT) and module temperature (MT) as the inputs and kWh energy from the GCPV system as the sole output. Besides that, Particle Swarm Optimization (PSO) was used to optimize the number of neurons in the hidden layer during the ANN training process such that the Root Mean Square Error (RMSE) of the prediction was minimized. After the training process, testing was performed to validate the ANN training. The results showed that the proposed hybrid PSO-ANN had outperformed the hybrid Fast Evolutionary Programming-Artificial Neural Network (FEP-ANN) in producing lower RMSE. In addition, the optimal learning algorithm and population size in PSO were also investigated in this study. |
---|---|
AbstractList | This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic (GCPV) system. In this study, the ANN-based prediction utilized solar irradiance (SI), ambient temperature (AT) and module temperature (MT) as the inputs and kWh energy from the GCPV system as the sole output. Besides that, Particle Swarm Optimization (PSO) was used to optimize the number of neurons in the hidden layer during the ANN training process such that the Root Mean Square Error (RMSE) of the prediction was minimized. After the training process, testing was performed to validate the ANN training. The results showed that the proposed hybrid PSO-ANN had outperformed the hybrid Fast Evolutionary Programming-Artificial Neural Network (FEP-ANN) in producing lower RMSE. In addition, the optimal learning algorithm and population size in PSO were also investigated in this study. |
Author | Shaari, Sulaiman Sulaiman, Shahril Irwan Musirin, Ismail Hussain, Thaqifah Nafisah Zainuddin, Hedzlin |
Author_xml | – sequence: 1 givenname: Thaqifah Nafisah surname: Hussain fullname: Hussain, Thaqifah Nafisah email: thaqifahussain@yahoo.com organization: Fac. of Electr. Eng., Univ. Teknol. MARA, Shah Alam, Malaysia – sequence: 2 givenname: Shahril Irwan surname: Sulaiman fullname: Sulaiman, Shahril Irwan email: shahril_irwan2004@yahoo.com organization: Fac. of Electr. Eng., Univ. Teknol. MARA, Shah Alam, Malaysia – sequence: 3 givenname: Ismail surname: Musirin fullname: Musirin, Ismail email: ismailbm@salam.uitm.edu.my organization: Fac. of Electr. Eng., Univ. Teknol. MARA, Shah Alam, Malaysia – sequence: 4 givenname: Sulaiman surname: Shaari fullname: Shaari, Sulaiman email: solarman1001@gmail.com organization: Fac. of Appl. Sci., Univ. Teknol. MARA, Shah Alam, Malaysia – sequence: 5 givenname: Hedzlin surname: Zainuddin fullname: Zainuddin, Hedzlin email: hedzlinzainuddin@yahoo.com organization: Fac. of Appl. Sci., Univ. Teknol. MARA, Shah Alam, Malaysia |
BookMark | eNotj81KxDAURiPowhl9AHGTF2jNbdo0WQ7Fn8KAC3XlYkiTWyfYSUqaKn17h3FWBz4OH5wVufTBIyF3wHIAph7at6bNCwY8FwIKLqsLsoKyVooVTMlr8rmh-6WLzlIdk-udcXqgHud4QvoN8Zv2IdKvo5KZ4D2ahJaO-5DCTxiSdoZOy5TwQMOcxjnRMaJ1Jrngb8hVr4cJb89ck4-nx_fmJdu-PrfNZpsZ4DJlYDUKUDWARG5lDUpWAJUCoUQneVdYVRppxHHsKy5MCawTRmMBjNfM1nxN7v9_HSLuxugOOi67cy__AwDFT9A |
CitedBy_id | crossref_primary_10_3390_su151813521 crossref_primary_10_1007_s10586_018_2047_9 crossref_primary_10_1016_j_rser_2016_12_029 crossref_primary_10_1016_j_segan_2024_101318 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISCI.2013.6612385 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISBN | 1479902098 9781479902101 1479902101 9781479902095 |
EndPage | 111 |
ExternalDocumentID | 6612385 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-c138t-1dae6197118e3d87198511591696b83b2d94c8c6511f536c410b6cae210370d73 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:36:36 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c138t-1dae6197118e3d87198511591696b83b2d94c8c6511f536c410b6cae210370d73 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6612385 |
PublicationCentury | 2000 |
PublicationDate | 2013-April |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-April |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE Symposium on Computers & Informatics (ISCI) |
PublicationTitleAbbrev | ISCI |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6096568 |
Snippet | This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 108 |
SubjectTerms | artificial neural network Artificial neural networks grid-connected photovoltaic particle swarm optimization Photovoltaic systems prediction root mean square error Sociology Statistics Testing Training |
Title | A hybrid artificial neural network for grid-connected photovoltaic system output prediction |
URI | https://ieeexplore.ieee.org/document/6612385 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTp34aBHf8sBIWrtOYntEpRVdEFJBQmKoEvtCWZoIkoF_j8-JipBYmGJZliz5lPhd7r13ANc6LnKB1kWWxz5Bcal_pVAXkdSZEIU2TmehdcJKPbzouznZ5NzstDCIGMhnOKZhqOW70jb0q2ySkleITnrQU0a3Wq2uUCm4mSxXsyVxteS4W_erYUq4Lxb7_9vpAEY_wjv2uLtSDmEPt0cwIEDY-ikP4fWWbb5IZcUo5q39AyNTyvAIlG7mcSh780siSywW6zElqzZlXfovUZ29W9a6N7OyqaumZtUH1WooPiN4XsyfZvdR1yAhskLqOhIuQ58AKZ8koHQ-9TGEnxKP-Eyaa5lPnYmttqmfLBKZ2ljwPLUZTkkcyJ2Sx9Dflls8ASYzx5WHCrkRJs45FWO5Q81zVMq6BE9hSKe0rloPjHV3QGd_T5_DYBraRhDD5QL69UeDl9D7dM1ViNo3bq2bOA |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64eXAnf2zib3PwaLdkaZv0KHNjwzmETRA8jDZJ3S5rme3B_968tEwEL54aQiCQR5vv9X3f9wDupJ8mzCjtKerbBEWH9pUyMvW4jBlLZaRl7FonzMXsTT4O0SbnfqeFMcY48pnp4tDV8nWmSvxV1gvRK0QGDdgPfBGKSq1VlyoZjXqT-WCCbC3erVf-apnibozR4f_2OoLOj_SOvOwulWPYM5sTaCEkrByV2_D-QFZfqLMiGPXKAIKgLaV7OFI3sUiUfNglnkIei7KokuSrrMjst6iI14pU_s0kK4u8LEi-xWoNRqgDr6PhYjD26hYJnmJcFh7TsbEpkLBpguHaJj8RIqjAYr4oTCRP-jrylVShnUwDHiqf0SRUsemjPJBqwU-huck25gwIjzUVFiwkEYv8hGI5lmojaWKEUDow59DGU1rmlQvGsj6gi7-nb-FgvHieLqeT2dMltPquiQTyXa6gWWxLcw2NT13euAh-A8hJnok |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Symposium+on+Computers+%26+Informatics+%28ISCI%29&rft.atitle=A+hybrid+artificial+neural+network+for+grid-connected+photovoltaic+system+output+prediction&rft.au=Hussain%2C+Thaqifah+Nafisah&rft.au=Sulaiman%2C+Shahril+Irwan&rft.au=Musirin%2C+Ismail&rft.au=Shaari%2C+Sulaiman&rft.date=2013-04-01&rft.pub=IEEE&rft.spage=108&rft.epage=111&rft_id=info:doi/10.1109%2FISCI.2013.6612385&rft.externalDocID=6612385 |