Multinuclear PFGSTE NMR description of 39K, 23Na, 7Li, and 1H specific activation energies governing diffusion in alkali nitrite solutions
[Display omitted] •Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable spin-lattice and spin-spin relaxation coefficients permissive for 39K NMR diffusometry•Found links between alkali cation self-diffusion, water...
Saved in:
Published in: | Journal of magnetic resonance (1997) Vol. 364; p. 107707 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
01-07-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | [Display omitted]
•Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable spin-lattice and spin-spin relaxation coefficients permissive for 39K NMR diffusometry•Found links between alkali cation self-diffusion, water activation energy, and hydration enthalpy in concentrated alkali nitrite solutions
While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin–lattice and spin–spin relaxation coefficients on the order of 60–100 ms and 50–100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications. |
---|---|
AbstractList | [Display omitted]
•Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable spin-lattice and spin-spin relaxation coefficients permissive for 39K NMR diffusometry•Found links between alkali cation self-diffusion, water activation energy, and hydration enthalpy in concentrated alkali nitrite solutions
While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin–lattice and spin–spin relaxation coefficients on the order of 60–100 ms and 50–100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications. While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin-lattice and spin-spin relaxation coefficients on the order of 60-100 ms and 50-100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin-lattice and spin-spin relaxation coefficients on the order of 60-100 ms and 50-100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications. |
ArticleNumber | 107707 |
Author | Colina-Ruiz, Roberto A. Graham, Trent R. Reynolds, Jacob G. Kennedy, Ashley R. Pearce, Carolyn I. Felsted, Robert G. Nienhuis, Emily T. |
Author_xml | – sequence: 1 givenname: Trent R. orcidid: 0000-0001-8907-8004 surname: Graham fullname: Graham, Trent R. email: trent.graham@pnnl.gov organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 2 givenname: Ashley R. surname: Kennedy fullname: Kennedy, Ashley R. organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 3 givenname: Robert G. surname: Felsted fullname: Felsted, Robert G. organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 4 givenname: Roberto A. surname: Colina-Ruiz fullname: Colina-Ruiz, Roberto A. organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 5 givenname: Emily T. surname: Nienhuis fullname: Nienhuis, Emily T. organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 6 givenname: Jacob G. surname: Reynolds fullname: Reynolds, Jacob G. organization: Washington River Protection Solutions, LLC, Richland, WA 99354, USA – sequence: 7 givenname: Carolyn I. surname: Pearce fullname: Pearce, Carolyn I. organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA |
BookMark | eNp9kE1v2zAMhoWhA9Z2-wG76bhDnFGmbSnYaSj6MTT9wNadBUWmA2aOlEl2gP6F_eo5Tc-9kBT0PgT4nImTEAMJ8VnBXIFqvm7mm22al1BW01tr0O_EqYJFU4Cpm5OXGQptQH8QZzlvAJSqNZyKf3djP3AYfU8uycer619Pl_L-7qdsKfvEu4FjkLGTuLidyRLv3UzqJc-kC61UNzLvyHPHXjo_8N69pClQWjNluY57SoHDWrbcdWM-fHKQrv_jepaBh8QDyRz78cDlj-J95_pMn177ufh9dfl0cVMsH65_XHxfFl6VGgvtNaJr23JRKXAGjFqB93W10pUB6LDFqVKpaoN148xi5VeooUY0FRqnHJ6LL8e9uxT_jpQHu-Xsqe9doDhmi6BVaRAbnKLqGPUp5pyos7vEW5eerQJ78G43dvJuD97t0fvEfDsyNN2wZ0o2e6bgqeVEfrBt5Dfo_4odi00 |
Cites_doi | 10.1039/C9CP04714J 10.1021/acs.chemmater.8b03944 10.1063/1.1695690 10.1021/je3003089 10.1039/D3CC04168A 10.1021/ed054p540 10.1515/zna-1974-1208 10.1021/ac50048a040 10.1002/mrc.5218 10.1021/je00028a014 10.1002/mrc.1079 10.1021/acs.jpclett.9b01416 10.1161/01.RES.84.8.913 10.1002/(SICI)1099-0534(1998)10:4<197::AID-CMR1>3.0.CO;2-S 10.1002/eem2.12174 10.1039/D1RA02301B 10.1021/acs.chemmater.1c02891 10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U 10.1021/acs.analchem.1c04197 10.1021/acs.jpcb.8b10145 10.1039/D0EE02917C |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier Inc. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Inc. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jmr.2024.107707 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-0856 |
ExternalDocumentID | 10_1016_j_jmr_2024_107707 S1090780724000910 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABNEU ABUDA ABXDB ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADMUD ADUVX ADVLN AEBSH AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV AJRQY AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM LG5 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSQ SSU SSZ T5K UPT UQL XPP YQT ZCG ZGI ZXP ~02 ~G- AAXKI AAYXX ABDPE AFJKZ CITATION 7X8 |
ID | FETCH-LOGICAL-c1273-7c733add29410a8081b0cc54b74800f3d300fe2158356a89bcb3705338438a1a3 |
ISSN | 1090-7807 1096-0856 |
IngestDate | Sat Oct 26 04:42:04 EDT 2024 Fri Nov 22 03:31:09 EST 2024 Sat Jul 13 15:32:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1273-7c733add29410a8081b0cc54b74800f3d300fe2158356a89bcb3705338438a1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8907-8004 |
PQID | 3071283363 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3071283363 crossref_primary_10_1016_j_jmr_2024_107707 elsevier_sciencedirect_doi_10_1016_j_jmr_2024_107707 |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of magnetic resonance (1997) |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Graham, Wei, Walter, Nienhuis, Chun, Schenter, Rosso, Pearce, Clark (b0060) 2023; 59 Hayamizu (b0015) 2012; 57 Feinauer, Majer (b0030) 2001 Yu, Bien, Pletka, Iwahara (b0010) 2022; 94 Sahm, Schwenk (b0090) 1974; 29 Nienhuis, Graham, D'Annunzio, Kowalska, LaVerne, Orlando, Reynolds, Camaioni, Rosso, Pearce, Walter (b0100) 2023 Stejskal, Tanner (b0040) 1965; 42 Han, Bazak, Chen, Graham, Washton, Hu, Murugesan, Mueller (b0045) 2021; 33 Andersen, Rajput, Han, Pan, Govind, Persson, Mueller, Murugesan (b0070) 2019; 31 Rezaei-Ghaleh (b0135) 2022 Smith (b0120) 1977; 54 Min, Xiao, Fang, Wang, Zhao, Liu, Abdelkader, Xi, Kumar, Huang (b0110) 2021; 14 Price (b0050) 1998; 10 Raiford, Fisk, Becker (b0140) 1979; 51 Gyabeng, Martín, Pal, Deschamps, Forsyth, O'Dell (b0020) 2019 Yu, Juran, Liu, Han, Wang, Mueller, Ma, Xu, Li, Curtiss, Cheng (b0075) 2022; 5 Hayamizu, Chiba, Haishi (b0125) 2021; 11 Harris, Becker, de Menezes, Goodfellow, Granger (b0025) 2002; 40 Gaune (b0080) 1982; 27 Wang, Graham, Mamontov, Page, Stack, Pearce (b0095) 2019; 10 Graham, Han, Dembowski, Krzysko, Zhang, Hu, Clark, Clark, Schenter, Pearce, Rosso (b0105) 2018; 122 Fieno, Kim, Rehwald, Judd (b0035) 1999; 84 Price (b0055) 1997; 9 Graham, Chun, Schenter, Zhang, Clark, Pearce, Rosso (b0065) 2022; 60 Sinclair, Oakes, Warden, Paten, Jones (b0130) 2023 Mortensen, Aguilar, Crebelli, Di Domenico, Dusemund, Frutos, Galtier, Gott, Gundert-Remy, Lambré, Leblanc, Lindtner, Moldeus, Mosesso, Oskarsson, Parent-Massin, Stankovic, Waalkens-Berendsen, Woutersen, Wright, van den Brandt, Fortes, Merino, Toldrà, Arcella, Christodoulidou, Abrahantes, Barrucci, Garcia, Pizzo, Battacchi, Younes, Additives (b0085) 2017 Hayamizu, Terada, Kataoka, Akimoto, Haishi (b0005) 2019; 21 Zhou, Bai, Ji, Yang, Wang, Xu (b0115) 2021 Zhou (10.1016/j.jmr.2024.107707_b0115) 2021 Sahm (10.1016/j.jmr.2024.107707_b0090) 1974; 29 Andersen (10.1016/j.jmr.2024.107707_b0070) 2019; 31 Raiford (10.1016/j.jmr.2024.107707_b0140) 1979; 51 Feinauer (10.1016/j.jmr.2024.107707_b0030) 2001 Hayamizu (10.1016/j.jmr.2024.107707_b0005) 2019; 21 Rezaei-Ghaleh (10.1016/j.jmr.2024.107707_b0135) 2022 Yu (10.1016/j.jmr.2024.107707_b0010) 2022; 94 Price (10.1016/j.jmr.2024.107707_b0055) 1997; 9 Price (10.1016/j.jmr.2024.107707_b0050) 1998; 10 Fieno (10.1016/j.jmr.2024.107707_b0035) 1999; 84 Hayamizu (10.1016/j.jmr.2024.107707_b0125) 2021; 11 Min (10.1016/j.jmr.2024.107707_b0110) 2021; 14 Smith (10.1016/j.jmr.2024.107707_b0120) 1977; 54 Stejskal (10.1016/j.jmr.2024.107707_b0040) 1965; 42 Wang (10.1016/j.jmr.2024.107707_b0095) 2019; 10 Gyabeng (10.1016/j.jmr.2024.107707_b0020) 2019 Gaune (10.1016/j.jmr.2024.107707_b0080) 1982; 27 Graham (10.1016/j.jmr.2024.107707_b0060) 2023; 59 Han (10.1016/j.jmr.2024.107707_b0045) 2021; 33 Yu (10.1016/j.jmr.2024.107707_b0075) 2022; 5 Sinclair (10.1016/j.jmr.2024.107707_b0130) 2023 Graham (10.1016/j.jmr.2024.107707_b0065) 2022; 60 Graham (10.1016/j.jmr.2024.107707_b0105) 2018; 122 Mortensen (10.1016/j.jmr.2024.107707_b0085) 2017 Harris (10.1016/j.jmr.2024.107707_b0025) 2002; 40 Hayamizu (10.1016/j.jmr.2024.107707_b0015) 2012; 57 Nienhuis (10.1016/j.jmr.2024.107707_b0100) 2023 |
References_xml | – volume: 9 start-page: 299 year: 1997 end-page: 336 ident: b0055 publication-title: Concept Magnet. Res. contributor: fullname: Price – start-page: 15 year: 2017 ident: b0085 publication-title: EFSA J. contributor: fullname: Additives – volume: 33 start-page: 8562 year: 2021 end-page: 8590 ident: b0045 publication-title: Chem. Mater. contributor: fullname: Mueller – start-page: 158 year: 2023 ident: b0100 publication-title: J. Chem. Phys. contributor: fullname: Walter – volume: 11 start-page: 20252 year: 2021 end-page: 20257 ident: b0125 publication-title: RSC Adv. contributor: fullname: Haishi – volume: 84 start-page: 913 year: 1999 end-page: 920 ident: b0035 publication-title: Circ. Res. contributor: fullname: Judd – volume: 27 start-page: 151 year: 1982 end-page: 153 ident: b0080 publication-title: J. Chem. Eng. Data contributor: fullname: Gaune – volume: 21 start-page: 23589 year: 2019 end-page: 23597 ident: b0005 publication-title: PCCP contributor: fullname: Haishi – start-page: 64 year: 2001 ident: b0030 publication-title: Phys. Rev. B contributor: fullname: Majer – volume: 54 start-page: 540 year: 1977 end-page: 542 ident: b0120 publication-title: J. Chem. Educ. contributor: fullname: Smith – volume: 51 start-page: 2050 year: 1979 end-page: 2051 ident: b0140 publication-title: Anal. Chem. contributor: fullname: Becker – volume: 10 start-page: 197 year: 1998 end-page: 237 ident: b0050 publication-title: Concept Magnet. Res. contributor: fullname: Price – volume: 94 start-page: 2444 year: 2022 end-page: 2452 ident: b0010 publication-title: Anal. Chem. contributor: fullname: Iwahara – start-page: 33 year: 2021 ident: b0115 publication-title: Adv. Mater. contributor: fullname: Xu – volume: 57 start-page: 2012 year: 2012 end-page: 2017 ident: b0015 publication-title: J. Chem. Eng. Data contributor: fullname: Hayamizu – volume: 5 start-page: 295 year: 2022 end-page: 304 ident: b0075 publication-title: Energy Environ Mater contributor: fullname: Cheng – volume: 31 start-page: 2308 year: 2019 end-page: 2319 ident: b0070 publication-title: Chem. Mater. contributor: fullname: Murugesan – volume: 29 start-page: 1754 year: 1974 end-page: 1762 ident: b0090 publication-title: Zeitschrift Für Naturforschung A contributor: fullname: Schwenk – volume: 60 start-page: 226 year: 2022 end-page: 238 ident: b0065 publication-title: Magn. Reson. Chem. contributor: fullname: Rosso – volume: 40 start-page: 622 year: 2002 ident: b0025 publication-title: Magn. Reson. Chem. contributor: fullname: Granger – volume: 10 start-page: 3318 year: 2019 end-page: 3325 ident: b0095 publication-title: J. Phys. Chem. Lett. contributor: fullname: Pearce – volume: 14 start-page: 2186 year: 2021 end-page: 2243 ident: b0110 publication-title: Energ. Environ. Sci. contributor: fullname: Huang – start-page: 11 year: 2022 ident: b0135 publication-title: Chemistryopen contributor: fullname: Rezaei-Ghaleh – volume: 42 start-page: 288 year: 1965 ident: b0040 publication-title: J. Chem. Phys. contributor: fullname: Tanner – start-page: 7 year: 2019 ident: b0020 publication-title: Front. Chem. contributor: fullname: O'Dell – volume: 122 start-page: 10907 year: 2018 end-page: 10912 ident: b0105 publication-title: J. Phys. Chem. B contributor: fullname: Rosso – volume: 59 start-page: 14407 year: 2023 end-page: 14410 ident: b0060 publication-title: Chem. Commun. contributor: fullname: Clark – start-page: 19 year: 2023 ident: b0130 publication-title: Metabolomics contributor: fullname: Jones – volume: 21 start-page: 23589 year: 2019 ident: 10.1016/j.jmr.2024.107707_b0005 publication-title: PCCP doi: 10.1039/C9CP04714J contributor: fullname: Hayamizu – start-page: 64 year: 2001 ident: 10.1016/j.jmr.2024.107707_b0030 publication-title: Phys. Rev. B contributor: fullname: Feinauer – volume: 31 start-page: 2308 year: 2019 ident: 10.1016/j.jmr.2024.107707_b0070 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03944 contributor: fullname: Andersen – start-page: 11 year: 2022 ident: 10.1016/j.jmr.2024.107707_b0135 publication-title: Chemistryopen contributor: fullname: Rezaei-Ghaleh – volume: 42 start-page: 288 year: 1965 ident: 10.1016/j.jmr.2024.107707_b0040 publication-title: J. Chem. Phys. doi: 10.1063/1.1695690 contributor: fullname: Stejskal – volume: 57 start-page: 2012 year: 2012 ident: 10.1016/j.jmr.2024.107707_b0015 publication-title: J. Chem. Eng. Data doi: 10.1021/je3003089 contributor: fullname: Hayamizu – volume: 59 start-page: 14407 year: 2023 ident: 10.1016/j.jmr.2024.107707_b0060 publication-title: Chem. Commun. doi: 10.1039/D3CC04168A contributor: fullname: Graham – volume: 54 start-page: 540 year: 1977 ident: 10.1016/j.jmr.2024.107707_b0120 publication-title: J. Chem. Educ. doi: 10.1021/ed054p540 contributor: fullname: Smith – volume: 29 start-page: 1754 year: 1974 ident: 10.1016/j.jmr.2024.107707_b0090 publication-title: Zeitschrift Für Naturforschung A doi: 10.1515/zna-1974-1208 contributor: fullname: Sahm – volume: 51 start-page: 2050 year: 1979 ident: 10.1016/j.jmr.2024.107707_b0140 publication-title: Anal. Chem. doi: 10.1021/ac50048a040 contributor: fullname: Raiford – volume: 60 start-page: 226 year: 2022 ident: 10.1016/j.jmr.2024.107707_b0065 publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.5218 contributor: fullname: Graham – volume: 27 start-page: 151 year: 1982 ident: 10.1016/j.jmr.2024.107707_b0080 publication-title: J. Chem. Eng. Data doi: 10.1021/je00028a014 contributor: fullname: Gaune – volume: 40 start-page: 622 year: 2002 ident: 10.1016/j.jmr.2024.107707_b0025 publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.1079 contributor: fullname: Harris – start-page: 15 year: 2017 ident: 10.1016/j.jmr.2024.107707_b0085 publication-title: EFSA J. contributor: fullname: Mortensen – start-page: 7 year: 2019 ident: 10.1016/j.jmr.2024.107707_b0020 publication-title: Front. Chem. contributor: fullname: Gyabeng – start-page: 33 year: 2021 ident: 10.1016/j.jmr.2024.107707_b0115 publication-title: Adv. Mater. contributor: fullname: Zhou – start-page: 19 year: 2023 ident: 10.1016/j.jmr.2024.107707_b0130 publication-title: Metabolomics contributor: fullname: Sinclair – volume: 10 start-page: 3318 year: 2019 ident: 10.1016/j.jmr.2024.107707_b0095 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01416 contributor: fullname: Wang – volume: 84 start-page: 913 year: 1999 ident: 10.1016/j.jmr.2024.107707_b0035 publication-title: Circ. Res. doi: 10.1161/01.RES.84.8.913 contributor: fullname: Fieno – volume: 10 start-page: 197 year: 1998 ident: 10.1016/j.jmr.2024.107707_b0050 publication-title: Concept Magnet. Res. doi: 10.1002/(SICI)1099-0534(1998)10:4<197::AID-CMR1>3.0.CO;2-S contributor: fullname: Price – volume: 5 start-page: 295 year: 2022 ident: 10.1016/j.jmr.2024.107707_b0075 publication-title: Energy Environ Mater doi: 10.1002/eem2.12174 contributor: fullname: Yu – volume: 11 start-page: 20252 year: 2021 ident: 10.1016/j.jmr.2024.107707_b0125 publication-title: RSC Adv. doi: 10.1039/D1RA02301B contributor: fullname: Hayamizu – volume: 33 start-page: 8562 year: 2021 ident: 10.1016/j.jmr.2024.107707_b0045 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c02891 contributor: fullname: Han – volume: 9 start-page: 299 year: 1997 ident: 10.1016/j.jmr.2024.107707_b0055 publication-title: Concept Magnet. Res. doi: 10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U contributor: fullname: Price – volume: 94 start-page: 2444 year: 2022 ident: 10.1016/j.jmr.2024.107707_b0010 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c04197 contributor: fullname: Yu – volume: 122 start-page: 10907 year: 2018 ident: 10.1016/j.jmr.2024.107707_b0105 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b10145 contributor: fullname: Graham – start-page: 158 year: 2023 ident: 10.1016/j.jmr.2024.107707_b0100 publication-title: J. Chem. Phys. contributor: fullname: Nienhuis – volume: 14 start-page: 2186 year: 2021 ident: 10.1016/j.jmr.2024.107707_b0110 publication-title: Energ. Environ. Sci. doi: 10.1039/D0EE02917C contributor: fullname: Min |
SSID | ssj0011570 |
Score | 2.4688523 |
Snippet | [Display omitted]
•Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable... While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 107707 |
Title | Multinuclear PFGSTE NMR description of 39K, 23Na, 7Li, and 1H specific activation energies governing diffusion in alkali nitrite solutions |
URI | https://dx.doi.org/10.1016/j.jmr.2024.107707 https://www.proquest.com/docview/3071283363 |
Volume | 364 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6TQheEAzQNj5kJJ5IUzWxUyePVUlXvirUFmlvkZM4o4WlU0Ne-An8au6N4yQbDAESL1Flq06ae3p9fH19LiEvYge3e3yJSQypzQOZ2TEsbW0v8dPUg_nLq3S2Z0sxP_NfhTzs9UxZ0rbtv1oa2sDWeHL2L6zdDAoN8BlsDlewOlz_yO7VidocVYrlzvowPV2uQmv-fmGlqnUQQBBZ8BbfrsvmFXsU79Ymj9OZWXj8ElOIKqUNHbO1UJ4aJSWs86o6L0YYsLhKWdTJkvLLZ6D0FniIHbBYq_mRN7DfC3meK60fjYsBdC8oGRUE3dhEe4x7VYlILQa_mB_GxSd0bG3fFKb7Ooar88at06ZvUtUoshfl-lvbv7XGg270w-VNpmwdkjPHcq5kjWKyqS18XU53oEzbyAZ-Oeq6fqYV1H-aRnREYzPYXKBkrMuhRQgz3BV17iXeC2-FubjIvfbIgQs-D1zuwfh1ePam2dJyPKGlMepnM1vsVbLhtRvdRJKu0YWKA63ukbu1-ehYo-4-6an8kNyemJqBh-RWlVCcFA_I9y4OqcYhBRzSDg7pNqOAwz5FFPYpYLBPAYHUmVGDQNoikBoE0gaBtEEgXedUI5DWCKQNAh-Sj9NwNZnZdd0PO3GATdsiEYzBvOsG3BlKLA0TD5PE47HgsLzJWMrgqoCrwuphJP0gTmIm8Ey5z5kvHckekf18m6sjQpN46GRC8dhXDvcyT-ICAJyWTJQfA_s-Ji_Ni44utbxLZPIeNxFYJUKrRNoqx4QbU0Q1P9W8MwLc_O5rz43ZIjAHbsjJXG3LIoL5FeghYyN28m9DPyZ32j_FE7L_dVeqp2SvSMtnNfx-AMLIuWs |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multinuclear+PFGSTE+NMR+description+of+39K%2C+23Na%2C+7Li%2C+and+1H+specific+activation+energies+governing+diffusion+in+alkali+nitrite+solutions&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Graham%2C+Trent+R.&rft.au=Kennedy%2C+Ashley+R.&rft.au=Felsted%2C+Robert+G.&rft.au=Colina-Ruiz%2C+Roberto+A.&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=1090-7807&rft.eissn=1096-0856&rft.volume=364&rft_id=info:doi/10.1016%2Fj.jmr.2024.107707&rft.externalDocID=S1090780724000910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon |