KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE

Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrh...

Full description

Saved in:
Bibliographic Details
Published in:E-jurnal matematika Vol. 12; no. 2; pp. 87 - 91
Main Authors: RISKASARI YR, VANIA, KENCANA, I PUTU EKA NILA, SUKARSA, I KOMANG GDE
Format: Journal Article
Language:English
Published: Universitas Udayana 31-05-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and  that gives the best accuracy is determined.  The final model using SVM with parameters C = 1 and  = 0,6 is the best model with the accuracy value of 67,86 percent.
AbstractList Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and  that gives the best accuracy is determined.  The final model using SVM with parameters C = 1 and  = 0,6 is the best model with the accuracy value of 67,86 percent.
Author RISKASARI YR, VANIA
SUKARSA, I KOMANG GDE
KENCANA, I PUTU EKA NILA
Author_xml – sequence: 1
  givenname: VANIA
  surname: RISKASARI YR
  fullname: RISKASARI YR, VANIA
– sequence: 2
  givenname: I PUTU EKA NILA
  orcidid: 0000-0003-1935-0142
  surname: KENCANA
  fullname: KENCANA, I PUTU EKA NILA
– sequence: 3
  givenname: I KOMANG GDE
  surname: SUKARSA
  fullname: SUKARSA, I KOMANG GDE
BookMark eNpNkN1Kw0AQRhdRsNa-guQFEvc_mysJIW2XtElpUsGrZZPdlZTalEQE3960FfFmvpmB71ycB3B77I4WgCcEA0wFJc_rKgswxCT4QjhoIQ5OFNIbMMEEEh-FDN3-2-_BbBj2EMLxIJTzCXjJVnEp5zIbp7dJ87c4k5VXym1RytJbp_liscvjLM69crfZFNvKe02Tqth66zhZyjx9BHdOHwY7-80p2M3TKln6q2Ihk3jlNwgR5pOQWGNr3kSM10KLxmgRWqS5YWGNERXWccchjCCzkUHMIkccH5vMCCKMJVMgr1zT6b069e2H7r9Vp1t1eXT9u9L9Z9scrLIGigizxtXWUVzDGjFB68iyiGDhCBtZ_Mpq-m4Yeuv-eAiqi1U1WlVnq2q0qkar6myV_ABzIWde
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.24843/MTK.2023.v12.i02.p404
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2303-1751
EndPage 91
ExternalDocumentID oai_doaj_org_article_ed08925cfbef42b0b1584b9e59328f35
10_24843_MTK_2023_v12_i02_p404
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
OK1
RIG
ID FETCH-LOGICAL-c1135-373edeb6c956b8a8cda87e1a6d57b2148ef6f600905e9d15e1f3f61355d838de3
IEDL.DBID DOA
ISSN 2303-1751
IngestDate Tue Oct 22 15:11:21 EDT 2024
Fri Aug 23 01:11:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1135-373edeb6c956b8a8cda87e1a6d57b2148ef6f600905e9d15e1f3f61355d838de3
ORCID 0000-0003-1935-0142
OpenAccessLink https://doaj.org/article/ed08925cfbef42b0b1584b9e59328f35
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_ed08925cfbef42b0b1584b9e59328f35
crossref_primary_10_24843_MTK_2023_v12_i02_p404
PublicationCentury 2000
PublicationDate 2023-05-31
PublicationDateYYYYMMDD 2023-05-31
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-31
  day: 31
PublicationDecade 2020
PublicationTitle E-jurnal matematika
PublicationYear 2023
Publisher Universitas Udayana
Publisher_xml – name: Universitas Udayana
SSID ssj0001753466
Score 2.2732644
Snippet Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites,...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 87
Title KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
URI https://doaj.org/article/ed08925cfbef42b0b1584b9e59328f35
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwyIpygvZWBNm_iROBMKJW2j0LRqUgRTFMe2xFIQpfx-zkladWNhyRDFlvWdnbvPZ3-H0L0vRaCkV9pCcGpTRhxb-ErYRjlGB0qXXlVvXWR--sqfIiOTsy31Zc6ENfLADXB9JR0eYFZpoTTFwhEuuEzon0HgwTVp1Esdb4dM1bsrEIVTz2uuBGPKKelP8qRnaoX3flzce3eAT9K2OtvGG-2I9tfeZXiMjtqw0Aqb4ZygPbU8RYeTrabq6gw9JM9hFg_jBJ7WLErfwiTOrSyeT7M4syZROhot0jAJUytbzGbTeW69RIN8Orcm4WAcp9E5WgyjfDC22_IHduW6hMHSJ0oq4VVAYQQveSVL7iu39CTzBQYao7SnIV4JHKYC6TLlaqLBOzMmOeFSkQvUWX4s1SWywBhUS-JjYhKZAprDXw3IkcYVoY7CXdTfwFB8NioXBbCDGrgCgCsMcMCncQHAFQa4Lno0aG2_NirV9QuwXdHarvjLdlf_0ck1OjCjazL6N6jz_bVWt2h_Jdd39Zz4BS_ctH8
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KLASIFIKASI+PENYAKIT+SIROSIS+MENGGUNAKAN+SUPPORT+VECTOR+MACHINE&rft.jtitle=E-jurnal+matematika&rft.au=RISKASARI+YR%2C+VANIA&rft.au=KENCANA%2C+I+PUTU+EKA+NILA&rft.au=SUKARSA%2C+I+KOMANG+GDE&rft.date=2023-05-31&rft.issn=2303-1751&rft.eissn=2303-1751&rft.volume=12&rft.issue=2&rft.spage=87&rft_id=info:doi/10.24843%2FMTK.2023.v12.i02.p404&rft.externalDBID=n%2Fa&rft.externalDocID=10_24843_MTK_2023_v12_i02_p404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2303-1751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2303-1751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2303-1751&client=summon