KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrh...
Saved in:
Published in: | E-jurnal matematika Vol. 12; no. 2; pp. 87 - 91 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Universitas Udayana
31-05-2023
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and that gives the best accuracy is determined. The final model using SVM with parameters C = 1 and = 0,6 is the best model with the accuracy value of 67,86 percent. |
---|---|
AbstractList | Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and that gives the best accuracy is determined. The final model using SVM with parameters C = 1 and = 0,6 is the best model with the accuracy value of 67,86 percent. |
Author | RISKASARI YR, VANIA SUKARSA, I KOMANG GDE KENCANA, I PUTU EKA NILA |
Author_xml | – sequence: 1 givenname: VANIA surname: RISKASARI YR fullname: RISKASARI YR, VANIA – sequence: 2 givenname: I PUTU EKA NILA orcidid: 0000-0003-1935-0142 surname: KENCANA fullname: KENCANA, I PUTU EKA NILA – sequence: 3 givenname: I KOMANG GDE surname: SUKARSA fullname: SUKARSA, I KOMANG GDE |
BookMark | eNpNkN1Kw0AQRhdRsNa-guQFEvc_mysJIW2XtElpUsGrZZPdlZTalEQE3960FfFmvpmB71ycB3B77I4WgCcEA0wFJc_rKgswxCT4QjhoIQ5OFNIbMMEEEh-FDN3-2-_BbBj2EMLxIJTzCXjJVnEp5zIbp7dJ87c4k5VXym1RytJbp_liscvjLM69crfZFNvKe02Tqth66zhZyjx9BHdOHwY7-80p2M3TKln6q2Ihk3jlNwgR5pOQWGNr3kSM10KLxmgRWqS5YWGNERXWccchjCCzkUHMIkccH5vMCCKMJVMgr1zT6b069e2H7r9Vp1t1eXT9u9L9Z9scrLIGigizxtXWUVzDGjFB68iyiGDhCBtZ_Mpq-m4Yeuv-eAiqi1U1WlVnq2q0qkar6myV_ABzIWde |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.24843/MTK.2023.v12.i02.p404 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2303-1751 |
EndPage | 91 |
ExternalDocumentID | oai_doaj_org_article_ed08925cfbef42b0b1584b9e59328f35 10_24843_MTK_2023_v12_i02_p404 |
GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 OK1 RIG |
ID | FETCH-LOGICAL-c1135-373edeb6c956b8a8cda87e1a6d57b2148ef6f600905e9d15e1f3f61355d838de3 |
IEDL.DBID | DOA |
ISSN | 2303-1751 |
IngestDate | Tue Oct 22 15:11:21 EDT 2024 Fri Aug 23 01:11:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1135-373edeb6c956b8a8cda87e1a6d57b2148ef6f600905e9d15e1f3f61355d838de3 |
ORCID | 0000-0003-1935-0142 |
OpenAccessLink | https://doaj.org/article/ed08925cfbef42b0b1584b9e59328f35 |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed08925cfbef42b0b1584b9e59328f35 crossref_primary_10_24843_MTK_2023_v12_i02_p404 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-31 |
PublicationDateYYYYMMDD | 2023-05-31 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | E-jurnal matematika |
PublicationYear | 2023 |
Publisher | Universitas Udayana |
Publisher_xml | – name: Universitas Udayana |
SSID | ssj0001753466 |
Score | 2.2732644 |
Snippet | Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites,... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 87 |
Title | KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE |
URI | https://doaj.org/article/ed08925cfbef42b0b1584b9e59328f35 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwyIpygvZWBNm_iROBMKJW2j0LRqUgRTFMe2xFIQpfx-zkladWNhyRDFlvWdnbvPZ3-H0L0vRaCkV9pCcGpTRhxb-ErYRjlGB0qXXlVvXWR--sqfIiOTsy31Zc6ENfLADXB9JR0eYFZpoTTFwhEuuEzon0HgwTVp1Esdb4dM1bsrEIVTz2uuBGPKKelP8qRnaoX3flzce3eAT9K2OtvGG-2I9tfeZXiMjtqw0Aqb4ZygPbU8RYeTrabq6gw9JM9hFg_jBJ7WLErfwiTOrSyeT7M4syZROhot0jAJUytbzGbTeW69RIN8Orcm4WAcp9E5WgyjfDC22_IHduW6hMHSJ0oq4VVAYQQveSVL7iu39CTzBQYao7SnIV4JHKYC6TLlaqLBOzMmOeFSkQvUWX4s1SWywBhUS-JjYhKZAprDXw3IkcYVoY7CXdTfwFB8NioXBbCDGrgCgCsMcMCncQHAFQa4Lno0aG2_NirV9QuwXdHarvjLdlf_0ck1OjCjazL6N6jz_bVWt2h_Jdd39Zz4BS_ctH8 |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KLASIFIKASI+PENYAKIT+SIROSIS+MENGGUNAKAN+SUPPORT+VECTOR+MACHINE&rft.jtitle=E-jurnal+matematika&rft.au=RISKASARI+YR%2C+VANIA&rft.au=KENCANA%2C+I+PUTU+EKA+NILA&rft.au=SUKARSA%2C+I+KOMANG+GDE&rft.date=2023-05-31&rft.issn=2303-1751&rft.eissn=2303-1751&rft.volume=12&rft.issue=2&rft.spage=87&rft_id=info:doi/10.24843%2FMTK.2023.v12.i02.p404&rft.externalDBID=n%2Fa&rft.externalDocID=10_24843_MTK_2023_v12_i02_p404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2303-1751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2303-1751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2303-1751&client=summon |