A Bayesian Approach to Explore Risk Factors for Respiratory Dysfunction in Intensive Care Unit Patient

Respiratory dysfunction and failure are common in the intensive care unit (ICU); they are often the primary reasons for ICU admission and affect length of stay, mortality, and cost. However, diagnosing respiratory dysfunction requires arterial blood gas values to calculate the partial pressure of ar...

Full description

Saved in:
Bibliographic Details
Published in:JOIV : international journal on informatics visualization Online Vol. 7; no. 3-2; p. 1048
Main Authors: Nor Hisham Shah, Norliyana Binti, Abdul Razak, Normy Norfiza Binti, Abu Samah, Asma Binti, Abdul Razak, Nur Athirah Binti, Ramasamy, Agileswari, M. Suhaimi, Fatanah, Chase, J. Geoffrey
Format: Journal Article
Language:English
Published: 30-11-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Respiratory dysfunction and failure are common in the intensive care unit (ICU); they are often the primary reasons for ICU admission and affect length of stay, mortality, and cost. However, diagnosing respiratory dysfunction requires arterial blood gas values to calculate the partial pressure of arterial oxygen (PaO2) to a fraction of inspired oxygen (FiO2) or P/F ratio. These intermittent blood gas values may be difficult to obtain in some patients or where financial resources are limited. Its varying etiologies and lack of other specific biomarkers make diagnosing difficult without this measurement. Thus, in this study, we investigate commonly available parameters in the ICU for the classification of respiratory dysfunction without arterial blood gas values using a Bayesian network, an unsupervised structural learning method. Clinical data from selected patients in the Medical Information Mart for Intensive Care (MIMIC) III v1.4 database is used to create and validate these models. Bayesian network generated using the taboo order algorithm showed a satisfying performance in the classification of respiratory dysfunction. Results are compared to standard diagnosis with P/F ratio. The predictor variables selected could stratify respiratory dysfunction with 80% accuracy and 94% sensitivity. Hence, without using arterial blood gas values, these parameters could identify respiratory dysfunction in 90% of cases using Bayesian networks.
AbstractList Respiratory dysfunction and failure are common in the intensive care unit (ICU); they are often the primary reasons for ICU admission and affect length of stay, mortality, and cost. However, diagnosing respiratory dysfunction requires arterial blood gas values to calculate the partial pressure of arterial oxygen (PaO2) to a fraction of inspired oxygen (FiO2) or P/F ratio. These intermittent blood gas values may be difficult to obtain in some patients or where financial resources are limited. Its varying etiologies and lack of other specific biomarkers make diagnosing difficult without this measurement. Thus, in this study, we investigate commonly available parameters in the ICU for the classification of respiratory dysfunction without arterial blood gas values using a Bayesian network, an unsupervised structural learning method. Clinical data from selected patients in the Medical Information Mart for Intensive Care (MIMIC) III v1.4 database is used to create and validate these models. Bayesian network generated using the taboo order algorithm showed a satisfying performance in the classification of respiratory dysfunction. Results are compared to standard diagnosis with P/F ratio. The predictor variables selected could stratify respiratory dysfunction with 80% accuracy and 94% sensitivity. Hence, without using arterial blood gas values, these parameters could identify respiratory dysfunction in 90% of cases using Bayesian networks.
Author Chase, J. Geoffrey
Abdul Razak, Normy Norfiza Binti
Nor Hisham Shah, Norliyana Binti
Abu Samah, Asma Binti
Abdul Razak, Nur Athirah Binti
M. Suhaimi, Fatanah
Ramasamy, Agileswari
Author_xml – sequence: 1
  givenname: Norliyana Binti
  surname: Nor Hisham Shah
  fullname: Nor Hisham Shah, Norliyana Binti
– sequence: 2
  givenname: Normy Norfiza Binti
  surname: Abdul Razak
  fullname: Abdul Razak, Normy Norfiza Binti
– sequence: 3
  givenname: Asma Binti
  surname: Abu Samah
  fullname: Abu Samah, Asma Binti
– sequence: 4
  givenname: Nur Athirah Binti
  surname: Abdul Razak
  fullname: Abdul Razak, Nur Athirah Binti
– sequence: 5
  givenname: Agileswari
  surname: Ramasamy
  fullname: Ramasamy, Agileswari
– sequence: 6
  givenname: Fatanah
  surname: M. Suhaimi
  fullname: M. Suhaimi, Fatanah
– sequence: 7
  givenname: J. Geoffrey
  surname: Chase
  fullname: Chase, J. Geoffrey
BookMark eNo1kE1PAjEYhBuDiYjcPfYP7Nr2rXR7RAQkIdEQOTel28Yitpu2EvffC36cZuYwk8xzjQYhBovQLSU1kAmQu330x1rUULGagSAXaMjuuaykJHzw7yeUXKFxzntCCGsEF0CHyE3xg-5t9jrgadelqM0bLhHPv7pDTBZvfH7HC21KTBm7mPDG5s4nfco9fuyz-wym-BiwD3gVig3ZHy2e6VN1G3zBL7p4G8oNunT6kO34T0dou5i_zp6q9fNyNZuuK0MpLZWkrXWaG95ITiXXYGTbnk6YnXG2dZq0jAgQTgLwBmRLHGWNpDugrXZcMBgh8rtrUsw5Wae65D906hUl6geVOqNSQoFi6owKvgFmmmBJ
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.30630/joiv.7.3-2.2370
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2549-9904
ExternalDocumentID 10_30630_joiv_7_3_2_2370
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c111t-91defa4c4894194a3c9dd990cbcfedfa0d20737f9334839d0f12891b31daf4723
ISSN 2549-9610
IngestDate Thu Nov 21 22:07:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3-2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c111t-91defa4c4894194a3c9dd990cbcfedfa0d20737f9334839d0f12891b31daf4723
ParticipantIDs crossref_primary_10_30630_joiv_7_3_2_2370
PublicationCentury 2000
PublicationDate 2023-11-30
PublicationDateYYYYMMDD 2023-11-30
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-30
  day: 30
PublicationDecade 2020
PublicationTitle JOIV : international journal on informatics visualization Online
PublicationYear 2023
SSID ssj0002874731
ssib044742980
Score 2.2911825
Snippet Respiratory dysfunction and failure are common in the intensive care unit (ICU); they are often the primary reasons for ICU admission and affect length of...
SourceID crossref
SourceType Aggregation Database
StartPage 1048
Title A Bayesian Approach to Explore Risk Factors for Respiratory Dysfunction in Intensive Care Unit Patient
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbidOnSd9E3OHQpBLsyyZjSqDQOPHVwUqCbQPMBq43lILICuL--dxIpqUaLNkMXwiDog6T7cC_eg5D3KWiVxM34mBlwVwXHS8KZsGMF2mklZbI6cRiHXFzIz1-Ts7mYH43CCM5-779yGvaA11g5ewdud0RhA34Dz2EFrsP6T3zPolO1t01pZHbd10u1uXY2WmIq-bkfsoMphsvBXfvZvkI9F_If-_R2rFJqzFNs6V-EXJkufwhcSIwsFL9EF7ueFEjLm8a6im6LCus42-rPqO102kWk4XkWOA56g42k1_5e6arYq1JFp0C-6G-rTH0VLdUP9d2f2uxxdUD48GQdXahNSy2rNn8hVN9E2W4NH2Q9OOejIoyHboxBeKLfC6jzKbN2sJe2446D9JcDkHNfidnKcnBUk98pGY5tylDLbIvbiZzAnyaMy7hXqCGJ4EDPdtmP4Hc1NHKkkMuc5yxHCiNyj4G4FIPAAEhFISTYDF7KfmvCoeACNoM2u5ds798boh8PHmtgbw0Mp8tH5IH3eGjWQvUxObLlE_IwTBOhXrk8JS6jAbk0IJfuttQjlyJyqUcuBTzRAXLpALm0KGmHXIrIpYhc6pH7jHw5n19-Woz9FJCxBj28A21srFNCiyQV01QorlNjgIt6pZ01TsWGgZqSLsWacp6a2IHJlU5XfGqUE5Lx5-S43Jb2BaFaWocWsJzKRNhUK53wWDMlZ9qcWBa_JB_Ct8qv22Yv-Z-Y9eoOZ1-T-z1G35Dj3U1t35JRZep3Dat_ArjmoSA
link.rule.ids 315,782,786,866,27934,27935
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Approach+to+Explore+Risk+Factors+for+Respiratory+Dysfunction+in+Intensive+Care+Unit+Patient&rft.jtitle=JOIV+%3A+international+journal+on+informatics+visualization+Online&rft.au=Nor+Hisham+Shah%2C+Norliyana+Binti&rft.au=Abdul+Razak%2C+Normy+Norfiza+Binti&rft.au=Abu+Samah%2C+Asma+Binti&rft.au=Abdul+Razak%2C+Nur+Athirah+Binti&rft.date=2023-11-30&rft.issn=2549-9610&rft.eissn=2549-9904&rft.volume=7&rft.issue=3-2&rft.spage=1048&rft_id=info:doi/10.30630%2Fjoiv.7.3-2.2370&rft.externalDBID=n%2Fa&rft.externalDocID=10_30630_joiv_7_3_2_2370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2549-9610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2549-9610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2549-9610&client=summon