Vehicles Speed Estimation Model from Video Streams for Automatic Traffic Flow Analysis Systems

Image and video processing have been widely used to provide traffic parameters, which will be used to improve certain areas of traffic operations. This research aims to develop a model for estimating vehicle speed from video streams to support traffic flow analysis (TFA) systems. Subsequently, this...

Full description

Saved in:
Bibliographic Details
Published in:JOIV : international journal on informatics visualization Online Vol. 7; no. 2; p. 295
Main Authors: Arriffin, Maizatul Najihah, Mostafa, Salama A., Khattak, Umar Farooq, Jaber, Mustafa Musa, Baharum, Zirawani, Defni, -, Gusman, Taufik
Format: Journal Article
Language:English
Published: 11-05-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image and video processing have been widely used to provide traffic parameters, which will be used to improve certain areas of traffic operations. This research aims to develop a model for estimating vehicle speed from video streams to support traffic flow analysis (TFA) systems. Subsequently, this paper proposes a vehicle speed estimation model with three main stages of achieving speed estimation: (1) pre-processing, (2) segmentation, and (3) speed detection. The model uses a bilateral filter in the pre-processing strategy to provide free-shadow image quality and sharpen the image. Gaussian filter and active contour are used to detect and track objects of interest in the image. The Pinhole model is used to assess the real distance of the item within the image sequence for speed estimation. Kalman filter and optical flow are used to flatten vehicle speed and acceleration uncertainties. This model is evaluated with a dataset that consists of video recordings of moving vehicles at traffic light junctions on the urban roadway. The average percentage for speed estimation error is 20.86%. The average percentage for accuracy obtained is 79.14%, and the overall average precision of 0.08.
AbstractList Image and video processing have been widely used to provide traffic parameters, which will be used to improve certain areas of traffic operations. This research aims to develop a model for estimating vehicle speed from video streams to support traffic flow analysis (TFA) systems. Subsequently, this paper proposes a vehicle speed estimation model with three main stages of achieving speed estimation: (1) pre-processing, (2) segmentation, and (3) speed detection. The model uses a bilateral filter in the pre-processing strategy to provide free-shadow image quality and sharpen the image. Gaussian filter and active contour are used to detect and track objects of interest in the image. The Pinhole model is used to assess the real distance of the item within the image sequence for speed estimation. Kalman filter and optical flow are used to flatten vehicle speed and acceleration uncertainties. This model is evaluated with a dataset that consists of video recordings of moving vehicles at traffic light junctions on the urban roadway. The average percentage for speed estimation error is 20.86%. The average percentage for accuracy obtained is 79.14%, and the overall average precision of 0.08.
Author Jaber, Mustafa Musa
Mostafa, Salama A.
Arriffin, Maizatul Najihah
Gusman, Taufik
Khattak, Umar Farooq
Baharum, Zirawani
Defni, -
Author_xml – sequence: 1
  givenname: Maizatul Najihah
  surname: Arriffin
  fullname: Arriffin, Maizatul Najihah
– sequence: 2
  givenname: Salama A.
  surname: Mostafa
  fullname: Mostafa, Salama A.
– sequence: 3
  givenname: Umar Farooq
  surname: Khattak
  fullname: Khattak, Umar Farooq
– sequence: 4
  givenname: Mustafa Musa
  surname: Jaber
  fullname: Jaber, Mustafa Musa
– sequence: 5
  givenname: Zirawani
  surname: Baharum
  fullname: Baharum, Zirawani
– sequence: 6
  givenname: -
  surname: Defni
  fullname: Defni, -
– sequence: 7
  givenname: Taufik
  surname: Gusman
  fullname: Gusman, Taufik
BookMark eNo1kMtOwzAURC1UJErplrV_IOH6ETteVlULSCAWLV0SOc61SJXElR1A_XtaHquZxehIc67JZAgDEnLLIBegBNztQ_uZ65znrORwQaa8kCYzBuTkvysGV2Se0h4AeKmlFmxK3nb43roOE90cEBu6SmPb27ENA30ODXbUx9DTXdtgoJsxou0T9SHSxccYzjtHt9F6f8p1F77oYrDdMbUn2jGN2Kcbcultl3D-lzPyul5tlw_Z08v943LxlDkGZswKwZVqJHhdeM4Nc8hqVRpndSlra0EyxWztBGpWaGQomS69LxpgNRrplJiR_JfrYkgpoq8O8fQjHisG1Y-g6iyo0hWvzoLEN7DCXBg
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.30630/joiv.7.2.1820
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2549-9904
ExternalDocumentID 10_30630_joiv_7_2_1820
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c109t-53266d40f75f2291ce1b689ca784baa04161abc3e7157e1e4178ff5d01be94c63
ISSN 2549-9610
IngestDate Thu Nov 21 22:07:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c109t-53266d40f75f2291ce1b689ca784baa04161abc3e7157e1e4178ff5d01be94c63
ParticipantIDs crossref_primary_10_30630_joiv_7_2_1820
PublicationCentury 2000
PublicationDate 2023-05-11
PublicationDateYYYYMMDD 2023-05-11
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-11
  day: 11
PublicationDecade 2020
PublicationTitle JOIV : international journal on informatics visualization Online
PublicationYear 2023
SSID ssj0002874731
ssib044742980
Score 2.2712
Snippet Image and video processing have been widely used to provide traffic parameters, which will be used to improve certain areas of traffic operations. This...
SourceID crossref
SourceType Aggregation Database
StartPage 295
Title Vehicles Speed Estimation Model from Video Streams for Automatic Traffic Flow Analysis Systems
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECacdOnSd9E3OBToIMjVgxKl0WhtZEmXJkGnCkeJghW4VhtL6d_vHUk9EnRIhy6SQUiErPt8L999x9h79BCoY7L2gzTXvkjiwM9VVvkRxCoKylBWNaWyT77KL9-yz2uxXiyG4avT2n-VNK6hrKlz9h-kPW6KC_gZZY5HlDoe7yT3C701lW40WR6dyTX-hG13ohl7trP9JBdNpVvzj7QjZPBWfdda9la0XkQr4W127e-Js2TObD7WDWHoSBmF5kZWceSioBpK5xKXB--6OVD_pu369CzD6YQ2kzqyZcVA1_Q71PuXzXbKVp-26MfWYLPYCGPwVsvRWmyh68Do9fMfcOVtAOOBX2NxECiLy9PebEFnmGc7IlNb6LSxUYoUz_p56kph9Wwtt2OMB60uZ-CN5hrazvS8bTli4h4j09E210u5jJZEbD_ZyKEu4JbpHAsaMZQyOxR0fyGLqKD7j9i9CPWfmEX6qOaEkOgEOLV5afKbGNOZyZnjt7P0ombLjzceaeY-zfygs0fsgQtg-Moi7zFb6P0T9nAYDsKdrXjKvg9A5AaIfAIiN0DkBERugMgdEDmihY9A5A6InIDIByByB8Rn7HyzPvt04rthHn4ZBnnnJxgnpJUIapnUUZSHpQ5VmuUlyEwogIACbVBlrGWYSB1qEcqsrpMqCJXORZnGz9nxvt3rF4yHOo1TJSsVxJmAFFSSlAmgbQLIUSPJl-zD8I6Kn5azpfi7gF7d-crX7P4ExzfsuLvq9Vt2dKj6d0a4fwCeXo5G
link.rule.ids 315,782,786,866,27934,27935
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicles+Speed+Estimation+Model+from+Video+Streams+for+Automatic+Traffic+Flow+Analysis+Systems&rft.jtitle=JOIV+%3A+international+journal+on+informatics+visualization+Online&rft.au=Arriffin%2C+Maizatul+Najihah&rft.au=Mostafa%2C+Salama+A.&rft.au=Khattak%2C+Umar+Farooq&rft.au=Jaber%2C+Mustafa+Musa&rft.date=2023-05-11&rft.issn=2549-9610&rft.eissn=2549-9904&rft.volume=7&rft.issue=2&rft.spage=295&rft_id=info:doi/10.30630%2Fjoiv.7.2.1820&rft.externalDBID=n%2Fa&rft.externalDocID=10_30630_joiv_7_2_1820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2549-9610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2549-9610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2549-9610&client=summon