Life Course Associations Between Ambient Fine Particulate Matter and the Prevalence of Prediabetes and Diabetes: A Longitudinal Cohort Study in Taiwan and Hong Kong

OBJECTIVE Both air pollution and diabetes are key urban challenges. The association between particulate matter with a diameter of <2.5 μm (PM2.5) exposure and prediabetes/diabetes in adults is well documented, but the health effects of life course exposure remain unclear. This study evaluated the...

Full description

Saved in:
Bibliographic Details
Published in:Diabetes care
Main Authors: Yi, Yuanyuan, Guo, Cui, Zheng, Yiling, Chen, Siyi, Lin, Changqing, Lau, Alexis K. H., Wong, Martin C. S., Bishai, David M.
Format: Journal Article
Language:English
Published: 12-11-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:OBJECTIVE Both air pollution and diabetes are key urban challenges. The association between particulate matter with a diameter of <2.5 μm (PM2.5) exposure and prediabetes/diabetes in adults is well documented, but the health effects of life course exposure remain unclear. This study evaluated the impact of PM2.5 exposure throughout various life stages on the prevalence of prediabetes/diabetes in adulthood. RESEARCH DESIGN AND METHODS We included 4,551 individuals with 19,593 medical visits from two open cohorts in Taiwan and Hong Kong between 2000 and 2018. Ambient PM2.5 exposure was assessed using a satellite-based model, delivering a 2-year average exposure at a resolution of 1 km2. Logistic mixed-effects models were used to investigate longitudinal associations between PM2.5 exposure and the prevalence of prediabetes/diabetes. Life course models were used to examine the impact of PM2.5 exposure at different life stages on prediabetes/diabetes in adulthood. RESULTS Over an average follow-up period of 9.93 years, 1,660 individuals with prediabetes/diabetes were observed. For the longitudinal association, every 10 μg/m3 increase in PM2.5 was associated with an increased odds of having prediabetes/diabetes (odds ratio 1.32, 95% CI 1.13, 1.54). The odds of adulthood prediabetes/diabetes increased by 15%, 18%, and 29% for each 10 μg/m3 increase in PM2.5 exposure during school age, adolescence, and adulthood, respectively. CONCLUSIONS Our findings suggest a link between PM2.5 exposure during each life stage and the prevalence of prediabetes/diabetes in adulthood, with the health impacts of exposure during adulthood being slightly greater. This study underscores the need for life course air pollution control strategies to mitigate the substantial disease burden of diabetes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0149-5992
1935-5548
1935-5548
DOI:10.2337/dc24-1041