Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets

Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics Vol. 10; no. 196; p. 196
Main Authors: Chelh, Ilham, Meunier, Bruno, Picard, Brigitte, Reecy, Mark James, Chevalier, Catherine, Hocquette, Jean-François, Cassar-Malek, Isabelle
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 27-04-2009
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3epsilon protein, TCTP/GSK-3beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
AbstractList Abstract Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
BACKGROUNDMyostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. RESULTSTranscriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. CONCLUSIONAll together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3epsilon protein, TCTP/GSK-3beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3epsilon protein, TCTP/GSK-3beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
Background Myostatin (MSTN), a member of the TGF-I2 superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3Im protein, TCTP/GSK-3I2). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ζ protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
BACKGROUND: Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. RESULTS: Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. CONCLUSION: All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ζ protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
Background: Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results: Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up-and 245 down-regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up-and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion: All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e. g. DJ-1, PINK1, 14-3-3 epsilon protein, TCTP/GSK-3 beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.
ArticleNumber 196
Audience Academic
Author Reecy, Mark James
Chevalier, Catherine
Cassar-Malek, Isabelle
Meunier, Bruno
Hocquette, Jean-François
Picard, Brigitte
Chelh, Ilham
AuthorAffiliation 2 Iowa State University, Animal Science Dept, 2255 Kildee Hall, Ames, IA 50011-3150, USA
3 Plateforme Puces à ADN, Ouest Génopole, U915, Institut du Thorax, Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cédex, France
1 INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Theix, F-63122 Saint-Genès-Champanelle, France
AuthorAffiliation_xml – name: 1 INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Theix, F-63122 Saint-Genès-Champanelle, France
– name: 2 Iowa State University, Animal Science Dept, 2255 Kildee Hall, Ames, IA 50011-3150, USA
– name: 3 Plateforme Puces à ADN, Ouest Génopole, U915, Institut du Thorax, Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cédex, France
Author_xml – sequence: 1
  givenname: Ilham
  surname: Chelh
  fullname: Chelh, Ilham
  email: ilham.chelh@clermont.inra.fr
  organization: INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Theix, Saint-Genès-Champanelle F-63122, France. ilham.chelh@clermont.inra.fr
– sequence: 2
  givenname: Bruno
  surname: Meunier
  fullname: Meunier, Bruno
– sequence: 3
  givenname: Brigitte
  surname: Picard
  fullname: Picard, Brigitte
– sequence: 4
  givenname: Mark James
  surname: Reecy
  fullname: Reecy, Mark James
– sequence: 5
  givenname: Catherine
  surname: Chevalier
  fullname: Chevalier, Catherine
– sequence: 6
  givenname: Jean-François
  surname: Hocquette
  fullname: Hocquette, Jean-François
– sequence: 7
  givenname: Isabelle
  surname: Cassar-Malek
  fullname: Cassar-Malek, Isabelle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19397818$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02658841$$DView record in HAL
BookMark eNqFk8tv1DAQxiNURB9w54QsISH1kOJH7DgXpNUK6IpFvM-WYzvbVE6c2s7C_vc4ZNV2URHKIdHM7_tmMh6fZke9602WPUfwAiHOXqOiRDlGrMgRzFHFHmUnt6Gje9_H2WkI1xCikmP6JDtGFalKjvhJtv3orFGjlR4M3jWtNQG4BnwZpfatMkMA3RiUNaDtQbdzIcrY9nk_Wgu6lAfebI204POKfACy10AObogutgoMMl79lLsAZLhTgij9xsTwNHvcSBvMs_37LPvx7u335WW-_vR-tVys87qkOOZUS4MI1LRGVVHUBDFeGWNw3dCaEswU5FCTpiqaWlFSshIbyhuKIVOUM1WRs2w1-2onr8Xg2076nXCyFX8Czm-E9Klba0QSVhoyBnXJCgYZR43mpiKaQ4khkcnrzew1jHVntDJ99NIemB5m-vZKbNxWYMYLSmEyOJ8Nrv6SXS7WYopBzCjnBdqixC5ntm7dP4odZpTrxHTeYjpvgaBI65BcXu1b9u5mNCGKrg3KWCt748Yg0sBSQVz9F0wTTSwpEvhyBjcyzaztG5eqqwkWC5wWjFDKp-4vHqDSo03amrTD06IdCs4PBImJ5lfcyDEEsfr29ZCFM6u8C8Gb5nYq01-na_HQHF7cP7o7wf4ekN_06ggo
CitedBy_id crossref_primary_10_1371_journal_pone_0092030
crossref_primary_10_1017_S1751731110001448
crossref_primary_10_1096_fj_10_159608
crossref_primary_10_1152_ajpendo_00179_2009
crossref_primary_10_1152_ajpendo_00509_2010
crossref_primary_10_1210_en_2011_1687
crossref_primary_10_1080_10495398_2017_1299744
crossref_primary_10_1002_jcb_23280
crossref_primary_10_1017_S1751731110002454
crossref_primary_10_1089_neu_2021_0061
crossref_primary_10_1002_mus_23242
crossref_primary_10_3390_genes13010058
crossref_primary_10_1016_j_bbrc_2015_07_018
crossref_primary_10_1016_j_bbamcr_2014_03_025
crossref_primary_10_1016_j_biocel_2013_12_003
crossref_primary_10_1152_ajpregu_00121_2011
crossref_primary_10_1152_physiolgenomics_00223_2010
crossref_primary_10_1155_2019_7052456
crossref_primary_10_1017_S1751731110000601
crossref_primary_10_1186_1755_8794_2_65
crossref_primary_10_1021_acs_jproteome_7b00069
crossref_primary_10_4236_cm_2012_34031
crossref_primary_10_1152_physiolgenomics_00184_2013
crossref_primary_10_11005_jbm_2021_28_3_179
crossref_primary_10_1007_s11626_013_9689_y
crossref_primary_10_1155_2012_251217
crossref_primary_10_1016_j_bbapap_2010_08_001
crossref_primary_10_1016_j_jprot_2012_01_013
crossref_primary_10_1089_rej_2009_0870
crossref_primary_10_1186_1471_2164_13_541
crossref_primary_10_1016_j_febslet_2010_04_039
crossref_primary_10_1138_20100423
crossref_primary_10_1038_s41366_021_00821_6
crossref_primary_10_1007_s13539_011_0052_4
crossref_primary_10_1002_jcsm_13009
crossref_primary_10_1210_er_2010_0018
crossref_primary_10_1186_s12863_017_0499_1
crossref_primary_10_18632_oncotarget_24250
crossref_primary_10_1017_S1751731110001862
crossref_primary_10_3390_ani2030472
crossref_primary_10_1016_j_bbadis_2013_03_011
crossref_primary_10_1016_j_meatsci_2021_108726
crossref_primary_10_1016_j_meatsci_2023_109370
crossref_primary_10_18632_oncotarget_13009
crossref_primary_10_1371_journal_pone_0203042
crossref_primary_10_3389_fphys_2021_677746
crossref_primary_10_1016_j_mce_2014_10_001
crossref_primary_10_1155_2016_2185323
crossref_primary_10_1159_000530888
crossref_primary_10_1002_jcsm_12792
crossref_primary_10_1016_j_bbrep_2018_12_009
crossref_primary_10_1152_physiolgenomics_00120_2010
crossref_primary_10_1080_87559129_2022_2087669
crossref_primary_10_1016_j_aaf_2022_03_007
crossref_primary_10_1152_japplphysiol_00110_2009
crossref_primary_10_1002_pmic_201600006
crossref_primary_10_1016_j_jprot_2019_103628
crossref_primary_10_1007_s00018_014_1689_x
crossref_primary_10_1016_j_jprot_2019_03_008
crossref_primary_10_1016_j_jff_2023_105954
Cites_doi 10.1038/387083a0
10.1677/joe.1.06837
10.1016/j.tvjl.2003.10.020
10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8
10.1096/fj.06-6683com
10.1002/gene.10188
10.1113/jphysiol.2006.116715
10.1186/1471-2164-8-63
10.1152/ajpendo.00275.2002
10.1097/01.mco.0000134364.61406.26
10.1042/bj20031797
10.1128/MCB.13.10.6367
10.1152/ajpendo.2001.280.2.E221
10.1016/S1095-6433(98)10172-1
10.1210/en.2006-1500
10.1152/ajpcell.00068.2005
10.1080/1028415X.1998.11747217
10.1074/jbc.M610185200
10.1007/s00421-007-0612-7
10.1385/JMN:29:3:215
10.1096/fj.05-5125fje
10.1016/j.exger.2006.10.020
10.1073/pnas.0500303102
10.20870/productions-animales.1998.11.2.3928
10.1006/bbrc.2000.4159
10.1016/j.bbrc.2004.11.096
10.1038/ng0997-71
10.1152/ajpendo.00107.2003
10.1210/en.2006-0539
10.1161/01.RES.0000129179.66631.00
10.2527/jas.2006-449
10.1016/j.ccr.2005.02.010
10.1016/j.clnu.2007.06.005
10.1016/S1097-2765(05)00012-2
10.1002/pmic.200400925
10.1016/j.ygcen.2007.02.006
10.1139/h02-020
10.1093/hmg/ddl104
10.2174/1568008043339901
10.1146/annurev.biochem.68.1.965
10.1016/j.ab.2005.02.028
10.1016/j.exger.2005.04.003
10.1038/ncb1547
10.1152/ajpcell.00372.2001
10.1210/en.2008-0959
10.1172/JCI119464
10.1002/j.1460-2075.1995.tb00122.x
10.1016/j.semcancer.2006.03.003
10.1083/jcb.200207056
10.1038/nrc1819
10.1016/S1097-2765(04)00211-4
10.1016/S1357-2725(03)00213-9
10.1379/1466-1268(2002)007<0309:AHFCMM>2.0.CO;2
10.1016/S0014-4827(03)00074-0
10.1056/NEJMoa040933
10.1002/jcp.20757
10.1371/journal.pgen.0030079
10.1172/JCI28520
10.1016/j.yexcr.2006.07.010
10.1074/jbc.M004356200
10.1002/ijc.21773
10.1002/pmic.200300688
10.1152/japplphysiol.00089.2007
10.1128/MCB.22.17.6209-6221.2002
10.1073/pnas.091062498
ContentType Journal Article
Copyright COPYRIGHT 2009 BioMed Central Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2009 Chelh et al; licensee BioMed Central Ltd. 2009 Chelh et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2009 Chelh et al; licensee BioMed Central Ltd. 2009 Chelh et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7QP
8FD
FR3
P64
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1186/1471-2164-10-196
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Science in Context
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Genetics Abstracts





Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 196
ExternalDocumentID oai_doaj_org_article_58f9d0660d76460681fd8e93d80a203a
oai_HAL_hal_02658841v1
oai_biomedcentral_com_1471_2164_10_196
A200135581
10_1186_1471_2164_10_196
19397818
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations France
United States
GeographicLocations_xml – name: France
– name: United States
GroupedDBID ---
-A0
0R~
23N
2VQ
2WC
2XV
3V.
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
AIXEN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
7QP
8FD
FR3
P64
RC3
7X8
ABVAZ
AFGXO
AFNRJ
1XC
VOOES
5PM
ID FETCH-LOGICAL-b752t-5dae130d5b1944b31689eee2bf5b5326c080d3f94fbc537672e58f5206c586c93
IEDL.DBID RPM
ISSN 1471-2164
IngestDate Tue Oct 22 15:00:04 EDT 2024
Tue Sep 17 21:34:37 EDT 2024
Tue Oct 15 15:00:35 EDT 2024
Wed May 22 07:12:31 EDT 2024
Fri Oct 25 09:30:18 EDT 2024
Fri Oct 25 05:51:32 EDT 2024
Tue Nov 19 21:33:50 EST 2024
Tue Nov 12 23:38:06 EST 2024
Sat Sep 28 20:54:27 EDT 2024
Thu Nov 21 20:58:50 EST 2024
Sat Sep 28 08:41:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 196
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b752t-5dae130d5b1944b31689eee2bf5b5326c080d3f94fbc537672e58f5206c586c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8188-405X
0000-0001-7407-1408
0000-0003-2409-3881
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684550/
PMID 19397818
PQID 20667234
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_58f9d0660d76460681fd8e93d80a203a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2684550
hal_primary_oai_HAL_hal_02658841v1
biomedcentral_primary_oai_biomedcentral_com_1471_2164_10_196
proquest_miscellaneous_67258829
proquest_miscellaneous_20667234
gale_infotracmisc_A200135581
gale_infotracacademiconefile_A200135581
gale_incontextgauss_ISR_A200135581
crossref_primary_10_1186_1471_2164_10_196
pubmed_primary_19397818
PublicationCentury 2000
PublicationDate 2009-04-27
PublicationDateYYYYMMDD 2009-04-27
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-27
  day: 27
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2009
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References A Primeau (2080_CR63) 2002; 27
MN Sillence (2080_CR3) 2004; 167
B Leger (2080_CR37) 2006; 576
S Busquets (2080_CR61) 2007; 26
EE Dupont-Versteegden (2080_CR60) 2005; 40
CA Steelman (2080_CR29) 2006; 20
R Ríos (2080_CR55) 2001; 280
M Schuelke (2080_CR8) 2004; 350
JLJ van der Velden (2080_CR41) 2006; 290
TN Stitt (2080_CR40) 2004; 14
DS Mosher (2080_CR6) 2007; 3
RA Frost (2080_CR36) 2007; 103
G-C Fan (2080_CR42) 2004; 94
CJ Carlson (2080_CR18) 1999; 277
CD McMahon (2080_CR25) 2003; 285
VG Tusher (2080_CR64) 2001; 98
S McCroskery (2080_CR15) 2003; 162
T Nakashima (2080_CR47) 1993; 13
H Gilson (2080_CR23) 2007; 148
CA Steelman (2080_CR17) 2006; 20
Y Ohsawa (2080_CR22) 2006; 116
McFarland (2080_CR16) 2007; 151
PJ Adhihetty (2080_CR57) 2003; 13
DL Allen (2080_CR62) 1999; 22
M Thomas (2080_CR10) 2000; 275
W Yang (2080_CR39) 2007; 282
RV Lenth (2080_CR66) 2007; 85
JH Holmes (2080_CR4) 1972; 36
A Vandebrouck (2080_CR30) 2007; 21
D Joulia (2080_CR14) 2003; 286
S Gurbuxani (2080_CR48) 2005; 102
EV Haar (2080_CR53) 2007; 9
GW Porter (2080_CR51) 2006; 16
R Rios (2080_CR12) 2002; 282
A Amirouche (2080_CR38) 2009; 150
KTaSCK Wadhwa (2080_CR44) 2002; 7
J Bouley (2080_CR67) 2004; 4
RH Kim (2080_CR33) 2005; 7
B Meunier (2080_CR68) 2005; 340
R Wadhwa (2080_CR45) 2006; 118
SR Datta (2080_CR52) 2000; 6
MJ Spencer (2080_CR59) 1997; 99
A Sugimoto (2080_CR46) 1995; 14
AC McPherron (2080_CR7) 1997; 387
L Grobet (2080_CR5) 1997; 17
J-F Hocquette (2080_CR26) 1999; 122
D Joulia-Ekaza (2080_CR13) 2006; 312
TO Chan (2080_CR31) 1999; 68
U-A Bommer (2080_CR50) 2004; 36
N Lev (2080_CR32) 2006; 29
A-C Durieux (2080_CR21) 2007; 148
B Picard (2080_CR69) 1998; 11
R Mera (2080_CR65) 1998; 1
W Yang (2080_CR56) 2005; 326
AM Solomon (2080_CR19) 2006; 191
S Reisz-Porszasz (2080_CR20) 2003; 285
SC Kaul (2080_CR43) 2007; 42
L Grobet (2080_CR9) 2003; 35
J Bouley (2080_CR27) 2005; 5
K Tsuchida (2080_CR2) 2004; 4
WE Taylor (2080_CR11) 2001; 280
FR Yarm (2080_CR49) 2002; 22
M Pozuelo Rubio (2080_CR54) 2004; 379
B Tang (2080_CR34) 2006; 15
S Koçtürk (2080_CR58) 2008; 102
I Cassar-Malek (2080_CR28) 2007; 8
C McFarlane (2080_CR24) 2006; 209
Guttridge (2080_CR1) 2004; 7
M Cully (2080_CR35) 2006; 6
References_xml – volume: 387
  start-page: 83
  issue: 6628
  year: 1997
  ident: 2080_CR7
  publication-title: Nature
  doi: 10.1038/387083a0
  contributor:
    fullname: AC McPherron
– volume: 191
  start-page: 349
  issue: 2
  year: 2006
  ident: 2080_CR19
  publication-title: J Endocrinol
  doi: 10.1677/joe.1.06837
  contributor:
    fullname: AM Solomon
– volume: 167
  start-page: 242
  issue: 3
  year: 2004
  ident: 2080_CR3
  publication-title: Vet J
  doi: 10.1016/j.tvjl.2003.10.020
  contributor:
    fullname: MN Sillence
– volume: 22
  start-page: 1350
  issue: 10
  year: 1999
  ident: 2080_CR62
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8
  contributor:
    fullname: DL Allen
– volume: 21
  start-page: 608
  issue: 2
  year: 2007
  ident: 2080_CR30
  publication-title: FASEB J
  doi: 10.1096/fj.06-6683com
  contributor:
    fullname: A Vandebrouck
– volume: 35
  start-page: 227
  issue: 4
  year: 2003
  ident: 2080_CR9
  publication-title: Genesis
  doi: 10.1002/gene.10188
  contributor:
    fullname: L Grobet
– volume: 576
  start-page: 923
  issue: 3
  year: 2006
  ident: 2080_CR37
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2006.116715
  contributor:
    fullname: B Leger
– volume: 8
  start-page: 63
  issue: 1
  year: 2007
  ident: 2080_CR28
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-63
  contributor:
    fullname: I Cassar-Malek
– volume: 285
  start-page: E82
  issue: 1
  year: 2003
  ident: 2080_CR25
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00275.2002
  contributor:
    fullname: CD McMahon
– volume: 7
  start-page: 443
  issue: 4
  year: 2004
  ident: 2080_CR1
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/01.mco.0000134364.61406.26
  contributor:
    fullname: Guttridge
– volume: 379
  start-page: 395
  issue: 2
  year: 2004
  ident: 2080_CR54
  publication-title: Biochem J
  doi: 10.1042/bj20031797
  contributor:
    fullname: M Pozuelo Rubio
– volume: 13
  start-page: 6367
  issue: 10
  year: 1993
  ident: 2080_CR47
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.13.10.6367
  contributor:
    fullname: T Nakashima
– volume: 280
  start-page: E221
  issue: 2
  year: 2001
  ident: 2080_CR11
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.2001.280.2.E221
  contributor:
    fullname: WE Taylor
– volume: 122
  start-page: 127
  issue: 1
  year: 1999
  ident: 2080_CR26
  publication-title: Comp Biochem Physiol A Molec Integr Physiol
  doi: 10.1016/S1095-6433(98)10172-1
  contributor:
    fullname: J-F Hocquette
– volume: 148
  start-page: 3140
  issue: 7
  year: 2007
  ident: 2080_CR21
  publication-title: Endocrinology
  doi: 10.1210/en.2006-1500
  contributor:
    fullname: A-C Durieux
– volume: 290
  start-page: C453
  issue: 2
  year: 2006
  ident: 2080_CR41
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00068.2005
  contributor:
    fullname: JLJ van der Velden
– volume: 1
  start-page: 87
  year: 1998
  ident: 2080_CR65
  publication-title: Nutr Neurosci
  doi: 10.1080/1028415X.1998.11747217
  contributor:
    fullname: R Mera
– volume: 282
  start-page: 3799
  issue: 6
  year: 2007
  ident: 2080_CR39
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M610185200
  contributor:
    fullname: W Yang
– volume: 102
  start-page: 515
  issue: 5
  year: 2008
  ident: 2080_CR58
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-007-0612-7
  contributor:
    fullname: S Koçtürk
– volume: 29
  start-page: 215
  issue: 3
  year: 2006
  ident: 2080_CR32
  publication-title: J Mol Neurosci
  doi: 10.1385/JMN:29:3:215
  contributor:
    fullname: N Lev
– volume: 20
  start-page: 580
  issue: 3
  year: 2006
  ident: 2080_CR29
  publication-title: FASEB J
  doi: 10.1096/fj.05-5125fje
  contributor:
    fullname: CA Steelman
– volume: 42
  start-page: 263
  issue: 4
  year: 2007
  ident: 2080_CR43
  publication-title: Exp Geront
  doi: 10.1016/j.exger.2006.10.020
  contributor:
    fullname: SC Kaul
– volume: 102
  start-page: 11480
  issue: 32
  year: 2005
  ident: 2080_CR48
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0500303102
  contributor:
    fullname: S Gurbuxani
– volume: 11
  start-page: 150
  issue: 2
  year: 1998
  ident: 2080_CR69
  publication-title: INRA Prod Anim
  doi: 10.20870/productions-animales.1998.11.2.3928
  contributor:
    fullname: B Picard
– volume: 13
  start-page: 171
  issue: 4
  year: 2003
  ident: 2080_CR57
  publication-title: Basic Appl Myol
  contributor:
    fullname: PJ Adhihetty
– volume: 280
  start-page: 561
  issue: 2
  year: 2001
  ident: 2080_CR55
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.2000.4159
  contributor:
    fullname: R Ríos
– volume: 326
  start-page: 660
  issue: 3
  year: 2005
  ident: 2080_CR56
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2004.11.096
  contributor:
    fullname: W Yang
– volume: 36
  start-page: 351
  year: 1972
  ident: 2080_CR4
  publication-title: Growth
  contributor:
    fullname: JH Holmes
– volume: 17
  start-page: 71
  year: 1997
  ident: 2080_CR5
  publication-title: Nat Genet
  doi: 10.1038/ng0997-71
  contributor:
    fullname: L Grobet
– volume: 285
  start-page: E876
  issue: 4
  year: 2003
  ident: 2080_CR20
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00107.2003
  contributor:
    fullname: S Reisz-Porszasz
– volume: 148
  start-page: 452
  issue: 1
  year: 2007
  ident: 2080_CR23
  publication-title: Endocrinology
  doi: 10.1210/en.2006-0539
  contributor:
    fullname: H Gilson
– volume: 94
  start-page: 1474
  issue: 11
  year: 2004
  ident: 2080_CR42
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000129179.66631.00
  contributor:
    fullname: G-C Fan
– volume: 85
  start-page: E24
  issue: 13_suppl
  year: 2007
  ident: 2080_CR66
  publication-title: J Anim Sci
  doi: 10.2527/jas.2006-449
  contributor:
    fullname: RV Lenth
– volume: 7
  start-page: 263
  issue: 3
  year: 2005
  ident: 2080_CR33
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.02.010
  contributor:
    fullname: RH Kim
– volume: 26
  start-page: 614
  issue: 5
  year: 2007
  ident: 2080_CR61
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2007.06.005
  contributor:
    fullname: S Busquets
– volume: 6
  start-page: 41
  issue: 1
  year: 2000
  ident: 2080_CR52
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(05)00012-2
  contributor:
    fullname: SR Datta
– volume: 5
  start-page: 490
  issue: 2
  year: 2005
  ident: 2080_CR27
  publication-title: Proteomics
  doi: 10.1002/pmic.200400925
  contributor:
    fullname: J Bouley
– volume: 151
  start-page: 351
  year: 2007
  ident: 2080_CR16
  publication-title: Gen Comp Endocrinol
  doi: 10.1016/j.ygcen.2007.02.006
  contributor:
    fullname: McFarland
– volume: 27
  start-page: 349
  issue: 4
  year: 2002
  ident: 2080_CR63
  publication-title: Can J Appl Physiol
  doi: 10.1139/h02-020
  contributor:
    fullname: A Primeau
– volume: 15
  start-page: 1816
  issue: 11
  year: 2006
  ident: 2080_CR34
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddl104
  contributor:
    fullname: B Tang
– volume: 4
  start-page: 157
  year: 2004
  ident: 2080_CR2
  publication-title: Curr Drug Targets Immune Endocr Metabol Disord
  doi: 10.2174/1568008043339901
  contributor:
    fullname: K Tsuchida
– volume: 68
  start-page: 965
  issue: 1
  year: 1999
  ident: 2080_CR31
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.68.1.965
  contributor:
    fullname: TO Chan
– volume: 340
  start-page: 226
  issue: 2
  year: 2005
  ident: 2080_CR68
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2005.02.028
  contributor:
    fullname: B Meunier
– volume: 277
  start-page: R601
  issue: 2 pt 2
  year: 1999
  ident: 2080_CR18
  publication-title: Am J Physiol
  contributor:
    fullname: CJ Carlson
– volume: 40
  start-page: 473
  issue: 6
  year: 2005
  ident: 2080_CR60
  publication-title: Exp Geront
  doi: 10.1016/j.exger.2005.04.003
  contributor:
    fullname: EE Dupont-Versteegden
– volume: 9
  start-page: 316
  issue: 3
  year: 2007
  ident: 2080_CR53
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1547
  contributor:
    fullname: EV Haar
– volume: 282
  start-page: C993
  issue: 5
  year: 2002
  ident: 2080_CR12
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00372.2001
  contributor:
    fullname: R Rios
– volume: 150
  start-page: 286
  issue: 1
  year: 2009
  ident: 2080_CR38
  publication-title: Endocrinology
  doi: 10.1210/en.2008-0959
  contributor:
    fullname: A Amirouche
– volume: 99
  start-page: 2745
  issue: 11
  year: 1997
  ident: 2080_CR59
  publication-title: J Clin Invest
  doi: 10.1172/JCI119464
  contributor:
    fullname: MJ Spencer
– volume: 14
  start-page: 4434
  issue: 18
  year: 1995
  ident: 2080_CR46
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1995.tb00122.x
  contributor:
    fullname: A Sugimoto
– volume: 16
  start-page: 193
  issue: 3
  year: 2006
  ident: 2080_CR51
  publication-title: Sem Cancer Biol
  doi: 10.1016/j.semcancer.2006.03.003
  contributor:
    fullname: GW Porter
– volume: 162
  start-page: 1135
  issue: 6
  year: 2003
  ident: 2080_CR15
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200207056
  contributor:
    fullname: S McCroskery
– volume: 6
  start-page: 184
  issue: 3
  year: 2006
  ident: 2080_CR35
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1819
  contributor:
    fullname: M Cully
– volume: 14
  start-page: 395
  year: 2004
  ident: 2080_CR40
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(04)00211-4
  contributor:
    fullname: TN Stitt
– volume: 36
  start-page: 379
  issue: 3
  year: 2004
  ident: 2080_CR50
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/S1357-2725(03)00213-9
  contributor:
    fullname: U-A Bommer
– volume: 7
  start-page: 309
  issue: 3
  year: 2002
  ident: 2080_CR44
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(2002)007<0309:AHFCMM>2.0.CO;2
  contributor:
    fullname: KTaSCK Wadhwa
– volume: 286
  start-page: 263
  issue: 2
  year: 2003
  ident: 2080_CR14
  publication-title: Experimental Cell Research
  doi: 10.1016/S0014-4827(03)00074-0
  contributor:
    fullname: D Joulia
– volume: 350
  start-page: 2682
  issue: 26
  year: 2004
  ident: 2080_CR8
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa040933
  contributor:
    fullname: M Schuelke
– volume: 209
  start-page: 501
  year: 2006
  ident: 2080_CR24
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.20757
  contributor:
    fullname: C McFarlane
– volume: 3
  start-page: 79
  issue: 5
  year: 2007
  ident: 2080_CR6
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0030079
  contributor:
    fullname: DS Mosher
– volume: 116
  start-page: 2924
  issue: 11
  year: 2006
  ident: 2080_CR22
  publication-title: J Clin Invest
  doi: 10.1172/JCI28520
  contributor:
    fullname: Y Ohsawa
– volume: 312
  start-page: 2401
  year: 2006
  ident: 2080_CR13
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2006.07.010
  contributor:
    fullname: D Joulia-Ekaza
– volume: 275
  start-page: 40235
  issue: 51
  year: 2000
  ident: 2080_CR10
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M004356200
  contributor:
    fullname: M Thomas
– volume: 118
  start-page: 2973
  issue: 12
  year: 2006
  ident: 2080_CR45
  publication-title: Int J Cancer
  doi: 10.1002/ijc.21773
  contributor:
    fullname: R Wadhwa
– volume: 4
  start-page: 1811
  issue: 6
  year: 2004
  ident: 2080_CR67
  publication-title: Proteomics
  doi: 10.1002/pmic.200300688
  contributor:
    fullname: J Bouley
– volume: 103
  start-page: 378
  issue: 1
  year: 2007
  ident: 2080_CR36
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00089.2007
  contributor:
    fullname: RA Frost
– volume: 22
  start-page: 6209
  issue: 17
  year: 2002
  ident: 2080_CR49
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.17.6209-6221.2002
  contributor:
    fullname: FR Yarm
– volume: 98
  start-page: 5116
  year: 2001
  ident: 2080_CR64
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.091062498
  contributor:
    fullname: VG Tusher
– volume: 20
  start-page: 580
  issue: 1
  year: 2006
  ident: 2080_CR17
  publication-title: Faseb J
  doi: 10.1096/fj.05-5125fje
  contributor:
    fullname: CA Steelman
SSID ssj0017825
Score 2.259988
Snippet Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN...
Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN...
Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in...
Background Myostatin (MSTN), a member of the TGF-I2 superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in...
BACKGROUNDMyostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations...
BACKGROUND: Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in...
Background: Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations...
Abstract Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating...
SourceID doaj
pubmedcentral
hal
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 196
SubjectTerms Animals
Apoptosis
Computational Biology
Gene Expression
Gene Expression Profiling
Genetic aspects
Genetic regulation
Genetics
Life Sciences
Mice
Mice, Knockout
Myostatin
Myostatin - genetics
Myostatin - metabolism
Oligonucleotide Array Sequence Analysis
Phosphatidylinositol 3-Kinases - metabolism
Physiological aspects
Protein kinases
Proteomics
Quadriceps Muscle - metabolism
SummonAdditionalLinks – databaseName: BiomedCentral
  dbid: RBZ
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfoEBIvfDMyBlgTEuIhInHi2JZ46WBTJz4EG0iIF8uJHVqJJdXcDPW_5y5Ju6WMB8Rr7uzYd2f7Tvb9jpDnmXRlpuIylMywMI1FEkqjstAUQjprCyNSzHeenIiP3-Tbg8swORs3-LHMXsWwfYYMvHrcMcBeRuQ6hAwpWvPx_vf1jQGcdLzNJOq5V1eSV_Swkdv-c3Aktcj96_15NG3Jf_iem08oL51Jh7f_ZTZ3yK3e86TjzlTukmuuukdudLUol_fJ-YdVoVza1_H2tC7p58ZYxB2ae3raeGhIZxU9XdaYiDSrwgoiWIoV7SlCQUH3n46Sd9RUlpp5PV_U8C-KRY9_maWnxl-0pN0TdP-AfD08-PJmEvZFGcJccLYIuTUOzj3L81ilaY51r5RzjuUlzzn4gohcbpNSpWVetFAxzHFZchZlBZdZoZKHZKuqK_eIUAksUWKNSBR6bbl0RjmepxlXYFmRCcjrgZ70vAPg0AiJPaTA6tQoWo2i1RjYqCwgL1dqXbdsQx6ZXcG7j3of_KH9ALrT_RrWMA9lwUWLrMhSCPxkXFrpVGJlZFiUwHj30Go0wmpU-G7nh2m810cnx3qMT9cQyT4OyIueqaxh6IXp0yBAJKjaAefugBPWfTEg7003ZDIZv9f4DeJqzD-Oz4Hp2cp2NbbHF3WVqxuvEcZfsCT9OweQoRemArLd2fqFFFWCUGkyIGKwCgaDGVKq2bTFLkdwIQiKd_5PtY_JzdWtHhO7ZGtx1rgnZORt87TdFX4DCstbpQ
  priority: 500
  providerName: BioMedCentral
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoJSQuiDeBAlaFhDhETZz4JXFZoNVWPAQUJG6WEzvdlWiyIpui_ffM5LHFBcSFq2fsJDPjeEae-YaQp0L5Sui0ihWzLM5TmcXKahHbUirvXGlljvXO8xP5_qt6fYgwOdtWX5gTNsADD4I74KrSDs7FxEmRg7et0soprzOnEsuSbHCNEjEFU-P9AZx7vK8rkmnMICKYLiiVONiO4R8oRbD-oNL9W3BA9Tj-27_1zqIn_-aJXk6o_OWEOrpBro-uJZ0Nn3STXPH1LXJ1aDa5uU3O302dcOnYqLulTUU_dtYhsNCqpWddCxPpsqZnmwYrjZZ1XEOISrFlPUWsJ1j-w3H2htraUbtqVusGnkWxq_EPu2mpbS9m0iHHvL1Dvhwdfn41j8euC3EhOVvH3FkPB5vjRarzvMDGVtp7z4qKFxycPYQmd1ml86ooeywY5kFHnCWi5EqUOrtLduum9vcJVcCSZM7KTKNbVihvtedFLrgG00lsRF4EojerAWHDIOZ1SIHtZ1BzBjVnMHLRIiLPJ01tZ_YxjRJ_4H2Jqgye0A-ArZnR1sy_bC0i-2gIBnEzakzMObVd25rjk09mhrlpCFWfRuTZyFQ18OqlHescQCSo2oBzL-CEjV0G5P3FJZnMZ28NjkHgjAXG6TkwPZnM0eB8TJmrfdO1BnH6Jcvyv3MAGVZhOiL3BvO9kKLOEAtNRUQGhh28TEipl4senBzRgyDqffA_5P2QXJsu75jcI7vr751_RHZa1z3ut_tPsdtW3A
  priority: 102
  providerName: Directory of Open Access Journals
Title Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets
URI https://www.ncbi.nlm.nih.gov/pubmed/19397818
https://search.proquest.com/docview/20667234
https://search.proquest.com/docview/67258829
http://dx.doi.org/10.1186/1471-2164-10-196
https://hal.inrae.fr/hal-02658841
https://pubmed.ncbi.nlm.nih.gov/PMC2684550
https://doaj.org/article/58f9d0660d76460681fd8e93d80a203a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfoJCReEN8UxrAmJMRD1sSJE1vipRubOsHQ2EBCvFhO7KyVVqdamqH-99y5yUYKvPCSh_gucew7-y6--x0hb1Jhy1RGZSCYZkESZXEgtEwDXWTCGlPoLMF858l59vm7-HCIMDm8y4XxQftFPttzl_M9N5v62MrFvBh1cWKj05MDRChBeO0BGYBt2Lno7dEBbHm8O48U6SiC1Tdg4BTgggPi5lFCY0R6Ehs57pe9rckj-N-s04Opb_7DBt0Mpfxtbzp6QO63RiUdrzv_kNyx7hG5uy4zuXpMrk-6Gri0LdFd06qkXxptEFJoUdN5UwMjnTk6X1WYYzRzgQPnlGKxeoooT_D40-P4I9XOUL2oFssK3kWxnvFPvaqprm856Tq6vH5Cvh0dfj2YBG29hSDPOFsG3GgLW5rheSSTJMeSVtJay_KS5xzMPAQlN3EpkzIvPAoMs1yUnIVpwUVayPgp2XKVs88JFUASxkZnsUSDLBdWS8vzJOUShCbUQ_K-N_RqscbWUIh23W8BxVM4iQonUaHPItMhedfN1A2n92ZE-hfafZzK3hv8jerqQrVSpeA7pAHrKzRZmoBPJ6LSCCtjI0LNwhj6u4uCoBAxw2FIzoVu6lodn5-pMUalIUh9NCRvW6Kygq4Xus1wgCHBqe1RbvcoQaWLXvPudGNMJuNPCu-By4ypxdE1EL3uxFEhPwbLOVs1tUKE_ozFyb8poBmewuSQPFuL7-0otroxJFlPsHud6beAlnpY8lYrX_w350tyrzurY9k22VpeNfYVGdSm2fG_SuB6tv9jx6v7L6VhWIQ
link.rule.ids 108,230,315,729,782,786,866,887,2106,24946,27933,27934,53800,53802,75821,75822
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfoEIIXvgeFwawJCfGQNV9ObImXMja1WjsNNiTeLCd21kqrEy3NUP977tJkIwVe9po7J47vfL6T735HyIeImywSXuZwX_lO6MWBw5WIHJXG3GidqjjEeufRWXzyk389RJgc1tbC1En7aTLft5eLfTuf1bmVxSIdtHlig9PpASKUILx2j9yH_eq6bZDeXB7AocfaG0keDTywv44PYQGaHFC4Gic0QKwnvlHlftk5nGoM_xtL3ZvV5L-80M1kyj9Op6Mnd_yvp-Rx447S4Zr8jNwz9jl5sG5QuXpBrqdt91zaNPcuaZ7Rb5XSCEZUlHRRlTCQzi1drHKsTppbx0JYS7HNPUV8KHj96Tg4pspqqoq8WObwLYqdkH-pVUlVeTuSrvPSy5fkx9Hh-cHIaTo1OEnM_KXDtDJwGGqWeCIME2yGJYwxfpKxhIGDiHDmOshEmCVpjR_jG8Yz5rtRyniUimCbbNncmteEcmBxA63iQKArl3CjhGFJGDEB6uaqPvncEZks1qgcEnGyuxTYshKFL1H4EqMdEfXJp1bCNyPrOIhH_-D9girQ-UL9IL-6kI3cJPyH0OC3uTqOQogGuZdpbkSguat8N4D57qECScTasJjMc6GqspTjs-9yiPlsCG_v9cnHhinLYeqpamojYElQtB3OnQ4nGIO0Q96bbazJaDiR-AyCbSxK9q6BabdVY4njMc3OmrwqJWL7x34Q_p8DyPAWX_TJq7Xa365is6f6JO5siM5kuhTYBzWgeaP3b-48cpc8HJ1PJ3IyPjl-Sx61N35-vEO2lleVeUd6pa7e12biN8lzbAY
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEIgXvgeFwawJCfGQNXG-bImXsq1qtQ8VBhJvlhM7a6XViZZmqP89d2nSkQIv8Jq7Sxz77uyT735HyLuImywSXuZwppgTeLHvcCUiR6UxN1qnKg6w3nl0EZ9_50fHCJOzbvVVJ-2nyezAXs0P7Gxa51YW87Tf5on1J2eHiFCC8NqFzvpb5C7YrMvaQL25QICNL2xvJXnU98AHOwxCA3Q7oHQ1VqiPeE98o9L9qrNB1Tj-a2-9Na3Jv51ENxMqf9mhho_-498ek4fNsZQOVixPyB1jn5J7q0aVy2fk5qztokubJt8lzTP6uVIaQYmKks6rEgTpzNL5MscqpZl1LIS3FNvdU8SJgtdPxv4JVVZTVeTFIodvUeyI_EMtS6rKW0m6yk8vn5Nvw-OvhyOn6djgJHHIFk6olYFNUYeJJ4IgwaZYwhjDkixMQjgoIqy59jMRZEla48gwE_IsZG6UhjxKhb9Dtm1uzUtCObC4vlaxL_BIl3CjhAmTIAoFqJ2reuRjZ9lksULnkIiX3aWA6UpUAIkKIDHqEVGPfGhXeS1Zx0M8-gPvJ1SDzhfqB_n1pWzWTsJ_CA3nN1fHUQBRIfcyzY3wNXcVc30Y7z4qkUTMDYtJPZeqKks5vvgiB5jXhjD3Xo-8b5iyHIaeqqZGAqYEl7bDudvhBKeQdsj70405GQ1OJT6DoBuLk70bYNprVVmiPKbbWZNXpUSM_5j5wd85gAxvYaJHXqxU_3YWG7vqkbhjFJ3BdClgCzWweaP7r_5Zco_cnxwN5en4_OQ1edBe_LF4l2wvrivzhmyVunpbe4qfDUVuhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+profiles+of+Quadriceps+muscle+in+myostatin-null+mice+reveal+PI3K+and+apoptotic+pathways+as+myostatin+targets&rft.jtitle=BMC+genomics&rft.au=Chelh%2C+Ilham&rft.au=Meunier%2C+Bruno&rft.au=Picard%2C+Brigitte&rft.au=Reecy%2C+Mark+James&rft.date=2009-04-27&rft.eissn=1471-2164&rft.volume=10&rft.spage=196&rft.epage=196&rft_id=info:doi/10.1186%2F1471-2164-10-196&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon