Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets
Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to...
Saved in:
Published in: | BMC genomics Vol. 10; no. 196; p. 196 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central Ltd
27-04-2009
BioMed Central BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass.
Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed.
All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3epsilon protein, TCTP/GSK-3beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. |
---|---|
AbstractList | Abstract Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. BACKGROUNDMyostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. RESULTSTranscriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. CONCLUSIONAll together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3epsilon protein, TCTP/GSK-3beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3epsilon protein, TCTP/GSK-3beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. Background Myostatin (MSTN), a member of the TGF-I2 superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3Im protein, TCTP/GSK-3I2). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ζ protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. BACKGROUND: Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. RESULTS: Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. CONCLUSION: All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ζ protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. Background: Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results: Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up-and 245 down-regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up-and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion: All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e. g. DJ-1, PINK1, 14-3-3 epsilon protein, TCTP/GSK-3 beta). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. |
ArticleNumber | 196 |
Audience | Academic |
Author | Reecy, Mark James Chevalier, Catherine Cassar-Malek, Isabelle Meunier, Bruno Hocquette, Jean-François Picard, Brigitte Chelh, Ilham |
AuthorAffiliation | 2 Iowa State University, Animal Science Dept, 2255 Kildee Hall, Ames, IA 50011-3150, USA 3 Plateforme Puces à ADN, Ouest Génopole, U915, Institut du Thorax, Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cédex, France 1 INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Theix, F-63122 Saint-Genès-Champanelle, France |
AuthorAffiliation_xml | – name: 1 INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Theix, F-63122 Saint-Genès-Champanelle, France – name: 2 Iowa State University, Animal Science Dept, 2255 Kildee Hall, Ames, IA 50011-3150, USA – name: 3 Plateforme Puces à ADN, Ouest Génopole, U915, Institut du Thorax, Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cédex, France |
Author_xml | – sequence: 1 givenname: Ilham surname: Chelh fullname: Chelh, Ilham email: ilham.chelh@clermont.inra.fr organization: INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, Theix, Saint-Genès-Champanelle F-63122, France. ilham.chelh@clermont.inra.fr – sequence: 2 givenname: Bruno surname: Meunier fullname: Meunier, Bruno – sequence: 3 givenname: Brigitte surname: Picard fullname: Picard, Brigitte – sequence: 4 givenname: Mark James surname: Reecy fullname: Reecy, Mark James – sequence: 5 givenname: Catherine surname: Chevalier fullname: Chevalier, Catherine – sequence: 6 givenname: Jean-François surname: Hocquette fullname: Hocquette, Jean-François – sequence: 7 givenname: Isabelle surname: Cassar-Malek fullname: Cassar-Malek, Isabelle |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19397818$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02658841$$DView record in HAL |
BookMark | eNqFk8tv1DAQxiNURB9w54QsISH1kOJH7DgXpNUK6IpFvM-WYzvbVE6c2s7C_vc4ZNV2URHKIdHM7_tmMh6fZke9602WPUfwAiHOXqOiRDlGrMgRzFHFHmUnt6Gje9_H2WkI1xCikmP6JDtGFalKjvhJtv3orFGjlR4M3jWtNQG4BnwZpfatMkMA3RiUNaDtQbdzIcrY9nk_Wgu6lAfebI204POKfACy10AObogutgoMMl79lLsAZLhTgij9xsTwNHvcSBvMs_37LPvx7u335WW-_vR-tVys87qkOOZUS4MI1LRGVVHUBDFeGWNw3dCaEswU5FCTpiqaWlFSshIbyhuKIVOUM1WRs2w1-2onr8Xg2076nXCyFX8Czm-E9Klba0QSVhoyBnXJCgYZR43mpiKaQ4khkcnrzew1jHVntDJ99NIemB5m-vZKbNxWYMYLSmEyOJ8Nrv6SXS7WYopBzCjnBdqixC5ntm7dP4odZpTrxHTeYjpvgaBI65BcXu1b9u5mNCGKrg3KWCt748Yg0sBSQVz9F0wTTSwpEvhyBjcyzaztG5eqqwkWC5wWjFDKp-4vHqDSo03amrTD06IdCs4PBImJ5lfcyDEEsfr29ZCFM6u8C8Gb5nYq01-na_HQHF7cP7o7wf4ekN_06ggo |
CitedBy_id | crossref_primary_10_1371_journal_pone_0092030 crossref_primary_10_1017_S1751731110001448 crossref_primary_10_1096_fj_10_159608 crossref_primary_10_1152_ajpendo_00179_2009 crossref_primary_10_1152_ajpendo_00509_2010 crossref_primary_10_1210_en_2011_1687 crossref_primary_10_1080_10495398_2017_1299744 crossref_primary_10_1002_jcb_23280 crossref_primary_10_1017_S1751731110002454 crossref_primary_10_1089_neu_2021_0061 crossref_primary_10_1002_mus_23242 crossref_primary_10_3390_genes13010058 crossref_primary_10_1016_j_bbrc_2015_07_018 crossref_primary_10_1016_j_bbamcr_2014_03_025 crossref_primary_10_1016_j_biocel_2013_12_003 crossref_primary_10_1152_ajpregu_00121_2011 crossref_primary_10_1152_physiolgenomics_00223_2010 crossref_primary_10_1155_2019_7052456 crossref_primary_10_1017_S1751731110000601 crossref_primary_10_1186_1755_8794_2_65 crossref_primary_10_1021_acs_jproteome_7b00069 crossref_primary_10_4236_cm_2012_34031 crossref_primary_10_1152_physiolgenomics_00184_2013 crossref_primary_10_11005_jbm_2021_28_3_179 crossref_primary_10_1007_s11626_013_9689_y crossref_primary_10_1155_2012_251217 crossref_primary_10_1016_j_bbapap_2010_08_001 crossref_primary_10_1016_j_jprot_2012_01_013 crossref_primary_10_1089_rej_2009_0870 crossref_primary_10_1186_1471_2164_13_541 crossref_primary_10_1016_j_febslet_2010_04_039 crossref_primary_10_1138_20100423 crossref_primary_10_1038_s41366_021_00821_6 crossref_primary_10_1007_s13539_011_0052_4 crossref_primary_10_1002_jcsm_13009 crossref_primary_10_1210_er_2010_0018 crossref_primary_10_1186_s12863_017_0499_1 crossref_primary_10_18632_oncotarget_24250 crossref_primary_10_1017_S1751731110001862 crossref_primary_10_3390_ani2030472 crossref_primary_10_1016_j_bbadis_2013_03_011 crossref_primary_10_1016_j_meatsci_2021_108726 crossref_primary_10_1016_j_meatsci_2023_109370 crossref_primary_10_18632_oncotarget_13009 crossref_primary_10_1371_journal_pone_0203042 crossref_primary_10_3389_fphys_2021_677746 crossref_primary_10_1016_j_mce_2014_10_001 crossref_primary_10_1155_2016_2185323 crossref_primary_10_1159_000530888 crossref_primary_10_1002_jcsm_12792 crossref_primary_10_1016_j_bbrep_2018_12_009 crossref_primary_10_1152_physiolgenomics_00120_2010 crossref_primary_10_1080_87559129_2022_2087669 crossref_primary_10_1016_j_aaf_2022_03_007 crossref_primary_10_1152_japplphysiol_00110_2009 crossref_primary_10_1002_pmic_201600006 crossref_primary_10_1016_j_jprot_2019_103628 crossref_primary_10_1007_s00018_014_1689_x crossref_primary_10_1016_j_jprot_2019_03_008 crossref_primary_10_1016_j_jff_2023_105954 |
Cites_doi | 10.1038/387083a0 10.1677/joe.1.06837 10.1016/j.tvjl.2003.10.020 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8 10.1096/fj.06-6683com 10.1002/gene.10188 10.1113/jphysiol.2006.116715 10.1186/1471-2164-8-63 10.1152/ajpendo.00275.2002 10.1097/01.mco.0000134364.61406.26 10.1042/bj20031797 10.1128/MCB.13.10.6367 10.1152/ajpendo.2001.280.2.E221 10.1016/S1095-6433(98)10172-1 10.1210/en.2006-1500 10.1152/ajpcell.00068.2005 10.1080/1028415X.1998.11747217 10.1074/jbc.M610185200 10.1007/s00421-007-0612-7 10.1385/JMN:29:3:215 10.1096/fj.05-5125fje 10.1016/j.exger.2006.10.020 10.1073/pnas.0500303102 10.20870/productions-animales.1998.11.2.3928 10.1006/bbrc.2000.4159 10.1016/j.bbrc.2004.11.096 10.1038/ng0997-71 10.1152/ajpendo.00107.2003 10.1210/en.2006-0539 10.1161/01.RES.0000129179.66631.00 10.2527/jas.2006-449 10.1016/j.ccr.2005.02.010 10.1016/j.clnu.2007.06.005 10.1016/S1097-2765(05)00012-2 10.1002/pmic.200400925 10.1016/j.ygcen.2007.02.006 10.1139/h02-020 10.1093/hmg/ddl104 10.2174/1568008043339901 10.1146/annurev.biochem.68.1.965 10.1016/j.ab.2005.02.028 10.1016/j.exger.2005.04.003 10.1038/ncb1547 10.1152/ajpcell.00372.2001 10.1210/en.2008-0959 10.1172/JCI119464 10.1002/j.1460-2075.1995.tb00122.x 10.1016/j.semcancer.2006.03.003 10.1083/jcb.200207056 10.1038/nrc1819 10.1016/S1097-2765(04)00211-4 10.1016/S1357-2725(03)00213-9 10.1379/1466-1268(2002)007<0309:AHFCMM>2.0.CO;2 10.1016/S0014-4827(03)00074-0 10.1056/NEJMoa040933 10.1002/jcp.20757 10.1371/journal.pgen.0030079 10.1172/JCI28520 10.1016/j.yexcr.2006.07.010 10.1074/jbc.M004356200 10.1002/ijc.21773 10.1002/pmic.200300688 10.1152/japplphysiol.00089.2007 10.1128/MCB.22.17.6209-6221.2002 10.1073/pnas.091062498 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2009 BioMed Central Ltd. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2009 Chelh et al; licensee BioMed Central Ltd. 2009 Chelh et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2009 Chelh et al; licensee BioMed Central Ltd. 2009 Chelh et al; licensee BioMed Central Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 7QP 8FD FR3 P64 RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.1186/1471-2164-10-196 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Science in Context Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 196 |
ExternalDocumentID | oai_doaj_org_article_58f9d0660d76460681fd8e93d80a203a oai_HAL_hal_02658841v1 oai_biomedcentral_com_1471_2164_10_196 A200135581 10_1186_1471_2164_10_196 19397818 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | France United States |
GeographicLocations_xml | – name: France – name: United States |
GroupedDBID | --- -A0 0R~ 23N 2VQ 2WC 2XV 3V. 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX AIXEN ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION 7QP 8FD FR3 P64 RC3 7X8 ABVAZ AFGXO AFNRJ 1XC VOOES 5PM |
ID | FETCH-LOGICAL-b752t-5dae130d5b1944b31689eee2bf5b5326c080d3f94fbc537672e58f5206c586c93 |
IEDL.DBID | RPM |
ISSN | 1471-2164 |
IngestDate | Tue Oct 22 15:00:04 EDT 2024 Tue Sep 17 21:34:37 EDT 2024 Tue Oct 15 15:00:35 EDT 2024 Wed May 22 07:12:31 EDT 2024 Fri Oct 25 09:30:18 EDT 2024 Fri Oct 25 05:51:32 EDT 2024 Tue Nov 19 21:33:50 EST 2024 Tue Nov 12 23:38:06 EST 2024 Sat Sep 28 20:54:27 EDT 2024 Thu Nov 21 20:58:50 EST 2024 Sat Sep 28 08:41:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 196 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b752t-5dae130d5b1944b31689eee2bf5b5326c080d3f94fbc537672e58f5206c586c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8188-405X 0000-0001-7407-1408 0000-0003-2409-3881 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684550/ |
PMID | 19397818 |
PQID | 20667234 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58f9d0660d76460681fd8e93d80a203a pubmedcentral_primary_oai_pubmedcentral_nih_gov_2684550 hal_primary_oai_HAL_hal_02658841v1 biomedcentral_primary_oai_biomedcentral_com_1471_2164_10_196 proquest_miscellaneous_67258829 proquest_miscellaneous_20667234 gale_infotracmisc_A200135581 gale_infotracacademiconefile_A200135581 gale_incontextgauss_ISR_A200135581 crossref_primary_10_1186_1471_2164_10_196 pubmed_primary_19397818 |
PublicationCentury | 2000 |
PublicationDate | 2009-04-27 |
PublicationDateYYYYMMDD | 2009-04-27 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-27 day: 27 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2009 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | A Primeau (2080_CR63) 2002; 27 MN Sillence (2080_CR3) 2004; 167 B Leger (2080_CR37) 2006; 576 S Busquets (2080_CR61) 2007; 26 EE Dupont-Versteegden (2080_CR60) 2005; 40 CA Steelman (2080_CR29) 2006; 20 R Ríos (2080_CR55) 2001; 280 M Schuelke (2080_CR8) 2004; 350 JLJ van der Velden (2080_CR41) 2006; 290 TN Stitt (2080_CR40) 2004; 14 DS Mosher (2080_CR6) 2007; 3 RA Frost (2080_CR36) 2007; 103 G-C Fan (2080_CR42) 2004; 94 CJ Carlson (2080_CR18) 1999; 277 CD McMahon (2080_CR25) 2003; 285 VG Tusher (2080_CR64) 2001; 98 S McCroskery (2080_CR15) 2003; 162 T Nakashima (2080_CR47) 1993; 13 H Gilson (2080_CR23) 2007; 148 CA Steelman (2080_CR17) 2006; 20 Y Ohsawa (2080_CR22) 2006; 116 McFarland (2080_CR16) 2007; 151 PJ Adhihetty (2080_CR57) 2003; 13 DL Allen (2080_CR62) 1999; 22 M Thomas (2080_CR10) 2000; 275 W Yang (2080_CR39) 2007; 282 RV Lenth (2080_CR66) 2007; 85 JH Holmes (2080_CR4) 1972; 36 A Vandebrouck (2080_CR30) 2007; 21 D Joulia (2080_CR14) 2003; 286 S Gurbuxani (2080_CR48) 2005; 102 EV Haar (2080_CR53) 2007; 9 GW Porter (2080_CR51) 2006; 16 R Rios (2080_CR12) 2002; 282 A Amirouche (2080_CR38) 2009; 150 KTaSCK Wadhwa (2080_CR44) 2002; 7 J Bouley (2080_CR67) 2004; 4 RH Kim (2080_CR33) 2005; 7 B Meunier (2080_CR68) 2005; 340 R Wadhwa (2080_CR45) 2006; 118 SR Datta (2080_CR52) 2000; 6 MJ Spencer (2080_CR59) 1997; 99 A Sugimoto (2080_CR46) 1995; 14 AC McPherron (2080_CR7) 1997; 387 L Grobet (2080_CR5) 1997; 17 J-F Hocquette (2080_CR26) 1999; 122 D Joulia-Ekaza (2080_CR13) 2006; 312 TO Chan (2080_CR31) 1999; 68 U-A Bommer (2080_CR50) 2004; 36 N Lev (2080_CR32) 2006; 29 A-C Durieux (2080_CR21) 2007; 148 B Picard (2080_CR69) 1998; 11 R Mera (2080_CR65) 1998; 1 W Yang (2080_CR56) 2005; 326 AM Solomon (2080_CR19) 2006; 191 S Reisz-Porszasz (2080_CR20) 2003; 285 SC Kaul (2080_CR43) 2007; 42 L Grobet (2080_CR9) 2003; 35 J Bouley (2080_CR27) 2005; 5 K Tsuchida (2080_CR2) 2004; 4 WE Taylor (2080_CR11) 2001; 280 FR Yarm (2080_CR49) 2002; 22 M Pozuelo Rubio (2080_CR54) 2004; 379 B Tang (2080_CR34) 2006; 15 S Koçtürk (2080_CR58) 2008; 102 I Cassar-Malek (2080_CR28) 2007; 8 C McFarlane (2080_CR24) 2006; 209 Guttridge (2080_CR1) 2004; 7 M Cully (2080_CR35) 2006; 6 |
References_xml | – volume: 387 start-page: 83 issue: 6628 year: 1997 ident: 2080_CR7 publication-title: Nature doi: 10.1038/387083a0 contributor: fullname: AC McPherron – volume: 191 start-page: 349 issue: 2 year: 2006 ident: 2080_CR19 publication-title: J Endocrinol doi: 10.1677/joe.1.06837 contributor: fullname: AM Solomon – volume: 167 start-page: 242 issue: 3 year: 2004 ident: 2080_CR3 publication-title: Vet J doi: 10.1016/j.tvjl.2003.10.020 contributor: fullname: MN Sillence – volume: 22 start-page: 1350 issue: 10 year: 1999 ident: 2080_CR62 publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8 contributor: fullname: DL Allen – volume: 21 start-page: 608 issue: 2 year: 2007 ident: 2080_CR30 publication-title: FASEB J doi: 10.1096/fj.06-6683com contributor: fullname: A Vandebrouck – volume: 35 start-page: 227 issue: 4 year: 2003 ident: 2080_CR9 publication-title: Genesis doi: 10.1002/gene.10188 contributor: fullname: L Grobet – volume: 576 start-page: 923 issue: 3 year: 2006 ident: 2080_CR37 publication-title: J Physiol doi: 10.1113/jphysiol.2006.116715 contributor: fullname: B Leger – volume: 8 start-page: 63 issue: 1 year: 2007 ident: 2080_CR28 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-63 contributor: fullname: I Cassar-Malek – volume: 285 start-page: E82 issue: 1 year: 2003 ident: 2080_CR25 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00275.2002 contributor: fullname: CD McMahon – volume: 7 start-page: 443 issue: 4 year: 2004 ident: 2080_CR1 publication-title: Curr Opin Clin Nutr Metab Care doi: 10.1097/01.mco.0000134364.61406.26 contributor: fullname: Guttridge – volume: 379 start-page: 395 issue: 2 year: 2004 ident: 2080_CR54 publication-title: Biochem J doi: 10.1042/bj20031797 contributor: fullname: M Pozuelo Rubio – volume: 13 start-page: 6367 issue: 10 year: 1993 ident: 2080_CR47 publication-title: Mol Cell Biol doi: 10.1128/MCB.13.10.6367 contributor: fullname: T Nakashima – volume: 280 start-page: E221 issue: 2 year: 2001 ident: 2080_CR11 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.2001.280.2.E221 contributor: fullname: WE Taylor – volume: 122 start-page: 127 issue: 1 year: 1999 ident: 2080_CR26 publication-title: Comp Biochem Physiol A Molec Integr Physiol doi: 10.1016/S1095-6433(98)10172-1 contributor: fullname: J-F Hocquette – volume: 148 start-page: 3140 issue: 7 year: 2007 ident: 2080_CR21 publication-title: Endocrinology doi: 10.1210/en.2006-1500 contributor: fullname: A-C Durieux – volume: 290 start-page: C453 issue: 2 year: 2006 ident: 2080_CR41 publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00068.2005 contributor: fullname: JLJ van der Velden – volume: 1 start-page: 87 year: 1998 ident: 2080_CR65 publication-title: Nutr Neurosci doi: 10.1080/1028415X.1998.11747217 contributor: fullname: R Mera – volume: 282 start-page: 3799 issue: 6 year: 2007 ident: 2080_CR39 publication-title: J Biol Chem doi: 10.1074/jbc.M610185200 contributor: fullname: W Yang – volume: 102 start-page: 515 issue: 5 year: 2008 ident: 2080_CR58 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-007-0612-7 contributor: fullname: S Koçtürk – volume: 29 start-page: 215 issue: 3 year: 2006 ident: 2080_CR32 publication-title: J Mol Neurosci doi: 10.1385/JMN:29:3:215 contributor: fullname: N Lev – volume: 20 start-page: 580 issue: 3 year: 2006 ident: 2080_CR29 publication-title: FASEB J doi: 10.1096/fj.05-5125fje contributor: fullname: CA Steelman – volume: 42 start-page: 263 issue: 4 year: 2007 ident: 2080_CR43 publication-title: Exp Geront doi: 10.1016/j.exger.2006.10.020 contributor: fullname: SC Kaul – volume: 102 start-page: 11480 issue: 32 year: 2005 ident: 2080_CR48 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0500303102 contributor: fullname: S Gurbuxani – volume: 11 start-page: 150 issue: 2 year: 1998 ident: 2080_CR69 publication-title: INRA Prod Anim doi: 10.20870/productions-animales.1998.11.2.3928 contributor: fullname: B Picard – volume: 13 start-page: 171 issue: 4 year: 2003 ident: 2080_CR57 publication-title: Basic Appl Myol contributor: fullname: PJ Adhihetty – volume: 280 start-page: 561 issue: 2 year: 2001 ident: 2080_CR55 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2000.4159 contributor: fullname: R Ríos – volume: 326 start-page: 660 issue: 3 year: 2005 ident: 2080_CR56 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2004.11.096 contributor: fullname: W Yang – volume: 36 start-page: 351 year: 1972 ident: 2080_CR4 publication-title: Growth contributor: fullname: JH Holmes – volume: 17 start-page: 71 year: 1997 ident: 2080_CR5 publication-title: Nat Genet doi: 10.1038/ng0997-71 contributor: fullname: L Grobet – volume: 285 start-page: E876 issue: 4 year: 2003 ident: 2080_CR20 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00107.2003 contributor: fullname: S Reisz-Porszasz – volume: 148 start-page: 452 issue: 1 year: 2007 ident: 2080_CR23 publication-title: Endocrinology doi: 10.1210/en.2006-0539 contributor: fullname: H Gilson – volume: 94 start-page: 1474 issue: 11 year: 2004 ident: 2080_CR42 publication-title: Circ Res doi: 10.1161/01.RES.0000129179.66631.00 contributor: fullname: G-C Fan – volume: 85 start-page: E24 issue: 13_suppl year: 2007 ident: 2080_CR66 publication-title: J Anim Sci doi: 10.2527/jas.2006-449 contributor: fullname: RV Lenth – volume: 7 start-page: 263 issue: 3 year: 2005 ident: 2080_CR33 publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.02.010 contributor: fullname: RH Kim – volume: 26 start-page: 614 issue: 5 year: 2007 ident: 2080_CR61 publication-title: Clin Nutr doi: 10.1016/j.clnu.2007.06.005 contributor: fullname: S Busquets – volume: 6 start-page: 41 issue: 1 year: 2000 ident: 2080_CR52 publication-title: Mol Cell doi: 10.1016/S1097-2765(05)00012-2 contributor: fullname: SR Datta – volume: 5 start-page: 490 issue: 2 year: 2005 ident: 2080_CR27 publication-title: Proteomics doi: 10.1002/pmic.200400925 contributor: fullname: J Bouley – volume: 151 start-page: 351 year: 2007 ident: 2080_CR16 publication-title: Gen Comp Endocrinol doi: 10.1016/j.ygcen.2007.02.006 contributor: fullname: McFarland – volume: 27 start-page: 349 issue: 4 year: 2002 ident: 2080_CR63 publication-title: Can J Appl Physiol doi: 10.1139/h02-020 contributor: fullname: A Primeau – volume: 15 start-page: 1816 issue: 11 year: 2006 ident: 2080_CR34 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddl104 contributor: fullname: B Tang – volume: 4 start-page: 157 year: 2004 ident: 2080_CR2 publication-title: Curr Drug Targets Immune Endocr Metabol Disord doi: 10.2174/1568008043339901 contributor: fullname: K Tsuchida – volume: 68 start-page: 965 issue: 1 year: 1999 ident: 2080_CR31 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.68.1.965 contributor: fullname: TO Chan – volume: 340 start-page: 226 issue: 2 year: 2005 ident: 2080_CR68 publication-title: Anal Biochem doi: 10.1016/j.ab.2005.02.028 contributor: fullname: B Meunier – volume: 277 start-page: R601 issue: 2 pt 2 year: 1999 ident: 2080_CR18 publication-title: Am J Physiol contributor: fullname: CJ Carlson – volume: 40 start-page: 473 issue: 6 year: 2005 ident: 2080_CR60 publication-title: Exp Geront doi: 10.1016/j.exger.2005.04.003 contributor: fullname: EE Dupont-Versteegden – volume: 9 start-page: 316 issue: 3 year: 2007 ident: 2080_CR53 publication-title: Nat Cell Biol doi: 10.1038/ncb1547 contributor: fullname: EV Haar – volume: 282 start-page: C993 issue: 5 year: 2002 ident: 2080_CR12 publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00372.2001 contributor: fullname: R Rios – volume: 150 start-page: 286 issue: 1 year: 2009 ident: 2080_CR38 publication-title: Endocrinology doi: 10.1210/en.2008-0959 contributor: fullname: A Amirouche – volume: 99 start-page: 2745 issue: 11 year: 1997 ident: 2080_CR59 publication-title: J Clin Invest doi: 10.1172/JCI119464 contributor: fullname: MJ Spencer – volume: 14 start-page: 4434 issue: 18 year: 1995 ident: 2080_CR46 publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb00122.x contributor: fullname: A Sugimoto – volume: 16 start-page: 193 issue: 3 year: 2006 ident: 2080_CR51 publication-title: Sem Cancer Biol doi: 10.1016/j.semcancer.2006.03.003 contributor: fullname: GW Porter – volume: 162 start-page: 1135 issue: 6 year: 2003 ident: 2080_CR15 publication-title: J Cell Biol doi: 10.1083/jcb.200207056 contributor: fullname: S McCroskery – volume: 6 start-page: 184 issue: 3 year: 2006 ident: 2080_CR35 publication-title: Nat Rev Cancer doi: 10.1038/nrc1819 contributor: fullname: M Cully – volume: 14 start-page: 395 year: 2004 ident: 2080_CR40 publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00211-4 contributor: fullname: TN Stitt – volume: 36 start-page: 379 issue: 3 year: 2004 ident: 2080_CR50 publication-title: Int J Biochem Cell Biol doi: 10.1016/S1357-2725(03)00213-9 contributor: fullname: U-A Bommer – volume: 7 start-page: 309 issue: 3 year: 2002 ident: 2080_CR44 publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2002)007<0309:AHFCMM>2.0.CO;2 contributor: fullname: KTaSCK Wadhwa – volume: 286 start-page: 263 issue: 2 year: 2003 ident: 2080_CR14 publication-title: Experimental Cell Research doi: 10.1016/S0014-4827(03)00074-0 contributor: fullname: D Joulia – volume: 350 start-page: 2682 issue: 26 year: 2004 ident: 2080_CR8 publication-title: N Engl J Med doi: 10.1056/NEJMoa040933 contributor: fullname: M Schuelke – volume: 209 start-page: 501 year: 2006 ident: 2080_CR24 publication-title: J Cell Physiol doi: 10.1002/jcp.20757 contributor: fullname: C McFarlane – volume: 3 start-page: 79 issue: 5 year: 2007 ident: 2080_CR6 publication-title: PLoS Genetics doi: 10.1371/journal.pgen.0030079 contributor: fullname: DS Mosher – volume: 116 start-page: 2924 issue: 11 year: 2006 ident: 2080_CR22 publication-title: J Clin Invest doi: 10.1172/JCI28520 contributor: fullname: Y Ohsawa – volume: 312 start-page: 2401 year: 2006 ident: 2080_CR13 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2006.07.010 contributor: fullname: D Joulia-Ekaza – volume: 275 start-page: 40235 issue: 51 year: 2000 ident: 2080_CR10 publication-title: J Biol Chem doi: 10.1074/jbc.M004356200 contributor: fullname: M Thomas – volume: 118 start-page: 2973 issue: 12 year: 2006 ident: 2080_CR45 publication-title: Int J Cancer doi: 10.1002/ijc.21773 contributor: fullname: R Wadhwa – volume: 4 start-page: 1811 issue: 6 year: 2004 ident: 2080_CR67 publication-title: Proteomics doi: 10.1002/pmic.200300688 contributor: fullname: J Bouley – volume: 103 start-page: 378 issue: 1 year: 2007 ident: 2080_CR36 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00089.2007 contributor: fullname: RA Frost – volume: 22 start-page: 6209 issue: 17 year: 2002 ident: 2080_CR49 publication-title: Mol Cell Biol doi: 10.1128/MCB.22.17.6209-6221.2002 contributor: fullname: FR Yarm – volume: 98 start-page: 5116 year: 2001 ident: 2080_CR64 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.091062498 contributor: fullname: VG Tusher – volume: 20 start-page: 580 issue: 1 year: 2006 ident: 2080_CR17 publication-title: Faseb J doi: 10.1096/fj.05-5125fje contributor: fullname: CA Steelman |
SSID | ssj0017825 |
Score | 2.259988 |
Snippet | Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN... Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN... Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in... Background Myostatin (MSTN), a member of the TGF-I2 superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in... BACKGROUNDMyostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations... BACKGROUND: Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in... Background: Myostatin (MSTN), a member of the TGF-beta superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations... Abstract Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating... |
SourceID | doaj pubmedcentral hal biomedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 196 |
SubjectTerms | Animals Apoptosis Computational Biology Gene Expression Gene Expression Profiling Genetic aspects Genetic regulation Genetics Life Sciences Mice Mice, Knockout Myostatin Myostatin - genetics Myostatin - metabolism Oligonucleotide Array Sequence Analysis Phosphatidylinositol 3-Kinases - metabolism Physiological aspects Protein kinases Proteomics Quadriceps Muscle - metabolism |
SummonAdditionalLinks | – databaseName: BiomedCentral dbid: RBZ link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfoEBIvfDMyBlgTEuIhInHi2JZ46WBTJz4EG0iIF8uJHVqJJdXcDPW_5y5Ju6WMB8Rr7uzYd2f7Tvb9jpDnmXRlpuIylMywMI1FEkqjstAUQjprCyNSzHeenIiP3-Tbg8swORs3-LHMXsWwfYYMvHrcMcBeRuQ6hAwpWvPx_vf1jQGcdLzNJOq5V1eSV_Swkdv-c3Aktcj96_15NG3Jf_iem08oL51Jh7f_ZTZ3yK3e86TjzlTukmuuukdudLUol_fJ-YdVoVza1_H2tC7p58ZYxB2ae3raeGhIZxU9XdaYiDSrwgoiWIoV7SlCQUH3n46Sd9RUlpp5PV_U8C-KRY9_maWnxl-0pN0TdP-AfD08-PJmEvZFGcJccLYIuTUOzj3L81ilaY51r5RzjuUlzzn4gohcbpNSpWVetFAxzHFZchZlBZdZoZKHZKuqK_eIUAksUWKNSBR6bbl0RjmepxlXYFmRCcjrgZ70vAPg0AiJPaTA6tQoWo2i1RjYqCwgL1dqXbdsQx6ZXcG7j3of_KH9ALrT_RrWMA9lwUWLrMhSCPxkXFrpVGJlZFiUwHj30Go0wmpU-G7nh2m810cnx3qMT9cQyT4OyIueqaxh6IXp0yBAJKjaAefugBPWfTEg7003ZDIZv9f4DeJqzD-Oz4Hp2cp2NbbHF3WVqxuvEcZfsCT9OweQoRemArLd2fqFFFWCUGkyIGKwCgaDGVKq2bTFLkdwIQiKd_5PtY_JzdWtHhO7ZGtx1rgnZORt87TdFX4DCstbpQ priority: 500 providerName: BioMedCentral – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoJSQuiDeBAlaFhDhETZz4JXFZoNVWPAQUJG6WEzvdlWiyIpui_ffM5LHFBcSFq2fsJDPjeEae-YaQp0L5Sui0ihWzLM5TmcXKahHbUirvXGlljvXO8xP5_qt6fYgwOdtWX5gTNsADD4I74KrSDs7FxEmRg7et0soprzOnEsuSbHCNEjEFU-P9AZx7vK8rkmnMICKYLiiVONiO4R8oRbD-oNL9W3BA9Tj-27_1zqIn_-aJXk6o_OWEOrpBro-uJZ0Nn3STXPH1LXJ1aDa5uU3O302dcOnYqLulTUU_dtYhsNCqpWddCxPpsqZnmwYrjZZ1XEOISrFlPUWsJ1j-w3H2htraUbtqVusGnkWxq_EPu2mpbS9m0iHHvL1Dvhwdfn41j8euC3EhOVvH3FkPB5vjRarzvMDGVtp7z4qKFxycPYQmd1ml86ooeywY5kFHnCWi5EqUOrtLduum9vcJVcCSZM7KTKNbVihvtedFLrgG00lsRF4EojerAWHDIOZ1SIHtZ1BzBjVnMHLRIiLPJ01tZ_YxjRJ_4H2Jqgye0A-ArZnR1sy_bC0i-2gIBnEzakzMObVd25rjk09mhrlpCFWfRuTZyFQ18OqlHescQCSo2oBzL-CEjV0G5P3FJZnMZ28NjkHgjAXG6TkwPZnM0eB8TJmrfdO1BnH6Jcvyv3MAGVZhOiL3BvO9kKLOEAtNRUQGhh28TEipl4senBzRgyDqffA_5P2QXJsu75jcI7vr751_RHZa1z3ut_tPsdtW3A priority: 102 providerName: Directory of Open Access Journals |
Title | Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19397818 https://search.proquest.com/docview/20667234 https://search.proquest.com/docview/67258829 http://dx.doi.org/10.1186/1471-2164-10-196 https://hal.inrae.fr/hal-02658841 https://pubmed.ncbi.nlm.nih.gov/PMC2684550 https://doaj.org/article/58f9d0660d76460681fd8e93d80a203a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfoJCReEN8UxrAmJMRD1sSJE1vipRubOsHQ2EBCvFhO7KyVVqdamqH-99y5yUYKvPCSh_gucew7-y6--x0hb1Jhy1RGZSCYZkESZXEgtEwDXWTCGlPoLMF858l59vm7-HCIMDm8y4XxQftFPttzl_M9N5v62MrFvBh1cWKj05MDRChBeO0BGYBt2Lno7dEBbHm8O48U6SiC1Tdg4BTgggPi5lFCY0R6Ehs57pe9rckj-N-s04Opb_7DBt0Mpfxtbzp6QO63RiUdrzv_kNyx7hG5uy4zuXpMrk-6Gri0LdFd06qkXxptEFJoUdN5UwMjnTk6X1WYYzRzgQPnlGKxeoooT_D40-P4I9XOUL2oFssK3kWxnvFPvaqprm856Tq6vH5Cvh0dfj2YBG29hSDPOFsG3GgLW5rheSSTJMeSVtJay_KS5xzMPAQlN3EpkzIvPAoMs1yUnIVpwUVayPgp2XKVs88JFUASxkZnsUSDLBdWS8vzJOUShCbUQ_K-N_RqscbWUIh23W8BxVM4iQonUaHPItMhedfN1A2n92ZE-hfafZzK3hv8jerqQrVSpeA7pAHrKzRZmoBPJ6LSCCtjI0LNwhj6u4uCoBAxw2FIzoVu6lodn5-pMUalIUh9NCRvW6Kygq4Xus1wgCHBqe1RbvcoQaWLXvPudGNMJuNPCu-By4ypxdE1EL3uxFEhPwbLOVs1tUKE_ozFyb8poBmewuSQPFuL7-0otroxJFlPsHud6beAlnpY8lYrX_w350tyrzurY9k22VpeNfYVGdSm2fG_SuB6tv9jx6v7L6VhWIQ |
link.rule.ids | 108,230,315,729,782,786,866,887,2106,24946,27933,27934,53800,53802,75821,75822 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfoEIIXvgeFwawJCfGQNV9ObImXMja1WjsNNiTeLCd21kqrEy3NUP977tJkIwVe9po7J47vfL6T735HyIeImywSXuZwX_lO6MWBw5WIHJXG3GidqjjEeufRWXzyk389RJgc1tbC1En7aTLft5eLfTuf1bmVxSIdtHlig9PpASKUILx2j9yH_eq6bZDeXB7AocfaG0keDTywv44PYQGaHFC4Gic0QKwnvlHlftk5nGoM_xtL3ZvV5L-80M1kyj9Op6Mnd_yvp-Rx447S4Zr8jNwz9jl5sG5QuXpBrqdt91zaNPcuaZ7Rb5XSCEZUlHRRlTCQzi1drHKsTppbx0JYS7HNPUV8KHj96Tg4pspqqoq8WObwLYqdkH-pVUlVeTuSrvPSy5fkx9Hh-cHIaTo1OEnM_KXDtDJwGGqWeCIME2yGJYwxfpKxhIGDiHDmOshEmCVpjR_jG8Yz5rtRyniUimCbbNncmteEcmBxA63iQKArl3CjhGFJGDEB6uaqPvncEZks1qgcEnGyuxTYshKFL1H4EqMdEfXJp1bCNyPrOIhH_-D9girQ-UL9IL-6kI3cJPyH0OC3uTqOQogGuZdpbkSguat8N4D57qECScTasJjMc6GqspTjs-9yiPlsCG_v9cnHhinLYeqpamojYElQtB3OnQ4nGIO0Q96bbazJaDiR-AyCbSxK9q6BabdVY4njMc3OmrwqJWL7x34Q_p8DyPAWX_TJq7Xa365is6f6JO5siM5kuhTYBzWgeaP3b-48cpc8HJ1PJ3IyPjl-Sx61N35-vEO2lleVeUd6pa7e12biN8lzbAY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEIgXvgeFwawJCfGQNXG-bImXsq1qtQ8VBhJvlhM7a6XViZZmqP89d2nSkQIv8Jq7Sxz77uyT735HyLuImywSXuZwppgTeLHvcCUiR6UxN1qnKg6w3nl0EZ9_50fHCJOzbvVVJ-2nyezAXs0P7Gxa51YW87Tf5on1J2eHiFCC8NqFzvpb5C7YrMvaQL25QICNL2xvJXnU98AHOwxCA3Q7oHQ1VqiPeE98o9L9qrNB1Tj-a2-9Na3Jv51ENxMqf9mhho_-498ek4fNsZQOVixPyB1jn5J7q0aVy2fk5qztokubJt8lzTP6uVIaQYmKks6rEgTpzNL5MscqpZl1LIS3FNvdU8SJgtdPxv4JVVZTVeTFIodvUeyI_EMtS6rKW0m6yk8vn5Nvw-OvhyOn6djgJHHIFk6olYFNUYeJJ4IgwaZYwhjDkixMQjgoIqy59jMRZEla48gwE_IsZG6UhjxKhb9Dtm1uzUtCObC4vlaxL_BIl3CjhAmTIAoFqJ2reuRjZ9lksULnkIiX3aWA6UpUAIkKIDHqEVGPfGhXeS1Zx0M8-gPvJ1SDzhfqB_n1pWzWTsJ_CA3nN1fHUQBRIfcyzY3wNXcVc30Y7z4qkUTMDYtJPZeqKks5vvgiB5jXhjD3Xo-8b5iyHIaeqqZGAqYEl7bDudvhBKeQdsj70405GQ1OJT6DoBuLk70bYNprVVmiPKbbWZNXpUSM_5j5wd85gAxvYaJHXqxU_3YWG7vqkbhjFJ3BdClgCzWweaP7r_5Zco_cnxwN5en4_OQ1edBe_LF4l2wvrivzhmyVunpbe4qfDUVuhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+profiles+of+Quadriceps+muscle+in+myostatin-null+mice+reveal+PI3K+and+apoptotic+pathways+as+myostatin+targets&rft.jtitle=BMC+genomics&rft.au=Chelh%2C+Ilham&rft.au=Meunier%2C+Bruno&rft.au=Picard%2C+Brigitte&rft.au=Reecy%2C+Mark+James&rft.date=2009-04-27&rft.eissn=1471-2164&rft.volume=10&rft.spage=196&rft.epage=196&rft_id=info:doi/10.1186%2F1471-2164-10-196&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |