Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII

Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high...

Full description

Saved in:
Bibliographic Details
Published in:BMC biotechnology Vol. 11; no. 1; p. 114
Main Authors: Swiech, Kamilla, Kamen, Amine, Ansorge, Sven, Durocher, Yves, Picanço-Castro, Virgínia, Russo-Carbolante, Elisa M S, Neto, Mário S A, Covas, Dimas T
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 24-11-2011
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37 °C. We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34 °C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1472-6750
1472-6750
DOI:10.1186/1472-6750-11-114