The impact of different ale brewer's yeast strains on the proteome of immature beer

It is well known that brewer's yeast affects the taste and aroma of beer. However, the influence of brewer's yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by al...

Full description

Saved in:
Bibliographic Details
Published in:BMC microbiology Vol. 13; no. 1; p. 215
Main Authors: Berner, Torben Sune, Jacobsen, Susanne, Arneborg, Nils
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 30-09-2013
BioMed Central
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that brewer's yeast affects the taste and aroma of beer. However, the influence of brewer's yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer's yeast strains with different abilities to degrade fermentable sugars were investigated. Beers were fermented from standard hopped wort (13° Plato) using two ale brewer's yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1471-2180
1471-2180
DOI:10.1186/1471-2180-13-215