MetaMQAP: a meta-server for the quality assessment of protein models

Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approxim...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 9; no. 1; p. 403
Main Authors: Pawlowski, Marcin, Gajda, Michal J, Matlak, Ryszard, Bujnicki, Janusz M
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 29-09-2008
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors. The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Angströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89. Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/
AbstractList Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors. The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Angströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89. Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/
BACKGROUNDComputational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors.RESULTSThe ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Angströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89.CONCLUSIONFinally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/
Abstract Background Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors. Results The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Ångströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89. Conclusion Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 – methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/
BACKGROUND: Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors. RESULTS: The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Ångströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89. CONCLUSION: Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models.We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/
ArticleNumber 403
Audience Academic
Author Gajda, Michal J
Matlak, Ryszard
Pawlowski, Marcin
Bujnicki, Janusz M
AuthorAffiliation 2 Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland
AuthorAffiliation_xml – name: 1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland
– name: 2 Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
Author_xml – sequence: 1
  givenname: Marcin
  surname: Pawlowski
  fullname: Pawlowski, Marcin
  email: marcinp@genesilico.pl
  organization: Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland. marcinp@genesilico.pl
– sequence: 2
  givenname: Michal J
  surname: Gajda
  fullname: Gajda, Michal J
– sequence: 3
  givenname: Ryszard
  surname: Matlak
  fullname: Matlak, Ryszard
– sequence: 4
  givenname: Janusz M
  surname: Bujnicki
  fullname: Bujnicki, Janusz M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18823532$$D View this record in MEDLINE/PubMed
BookMark eNp1kstr3DAQxkVJaR7tubfiU6EHJ3pYltxDYZu-FhL6PgtZGm8UbGsjyaH57yvXS5qFFh00jL758Y1mjtHB6EdA6DnBp4TI-oxUgpSUYF42ZYXZI3R0nzl4EB-i4xivMSZCYv4EHRIpKeOMHqF3l5D05dfVl9eFLoYclxHCLYSi86FIV1DcTLp36a7QMUKMA4yp8F2xDT6BG4vBW-jjU_S4032EZ7v7BP388P7H-afy4vPH9fnqomxrzlNJAYNoqekqWndUtCSfWtaE19Jmb9y2WdeK2RynlktWNzbbbIxsibCVZSdovXCt19dqG9ygw53y2qk_CR82SofkTA9KYlkZQxvDRFcxjWUzZ4DIitSCtzqz3iys7dQOYE1uLOh-D7r_MrortfG3inLBZMMy4O0CaJ3_D2D_xfhBzRNR80RUo_K8MuTlzkXwNxPEpAYXDfS9HsFPUdWNIJxWIgtPF-FG5-7c2PnMNPlYGJzJS9G5nF8RKaQklFa54NVeQdYk-JU2eopRrb9_29eeLVoTfIwBuvsuCFbznv3D94uHv_dXv1ss9hsrcc0J
CitedBy_id crossref_primary_10_1038_srep31723
crossref_primary_10_1111_j_1365_2958_2012_08084_x
crossref_primary_10_1007_s11105_012_0450_6
crossref_primary_10_1093_nar_gks547
crossref_primary_10_1002_jez_b_22541
crossref_primary_10_1186_1471_2148_11_72
crossref_primary_10_2976_1_3218766
crossref_primary_10_1007_s12010_013_0263_6
crossref_primary_10_1371_journal_pcbi_1001029
crossref_primary_10_1186_1471_2105_13_289
crossref_primary_10_1016_j_csbj_2020_08_013
crossref_primary_10_3389_fnmol_2014_00051
crossref_primary_10_1093_nar_gkab466
crossref_primary_10_1094_MPMI_01_14_0009_R
crossref_primary_10_1016_j_bbapap_2011_05_009
crossref_primary_10_1093_nar_gkt408
crossref_primary_10_1016_j_molcel_2009_08_006
crossref_primary_10_1186_1471_2164_11_590
crossref_primary_10_1371_journal_pone_0015782
crossref_primary_10_1016_j_bbapap_2012_05_018
crossref_primary_10_1093_nar_gkp1142
crossref_primary_10_1002_ps_3984
crossref_primary_10_1039_C5RA12869B
crossref_primary_10_3390_ijms222111838
crossref_primary_10_1007_s00894_013_2043_1
crossref_primary_10_1093_bioinformatics_btv235
crossref_primary_10_1007_s00253_011_3582_y
crossref_primary_10_1155_2014_583606
crossref_primary_10_18632_oncotarget_6435
crossref_primary_10_1016_j_bbrc_2016_02_025
crossref_primary_10_1016_j_biochi_2015_05_018
crossref_primary_10_1007_s11262_012_0729_6
crossref_primary_10_1016_j_ajhg_2017_03_008
crossref_primary_10_1093_bioinformatics_btq581
crossref_primary_10_1021_acs_jctc_8b00690
crossref_primary_10_1111_febs_12553
crossref_primary_10_1186_1471_2105_13_224
crossref_primary_10_1186_s12859_015_0741_7
crossref_primary_10_1371_journal_pone_0019979
crossref_primary_10_1007_s00894_010_0831_4
crossref_primary_10_1248_cpb_c12_00287
crossref_primary_10_1074_jbc_M109_077339
crossref_primary_10_1007_s00894_013_2010_x
crossref_primary_10_1107_S0907444913011426
crossref_primary_10_1016_j_csbj_2020_11_007
crossref_primary_10_1007_s10695_012_9661_x
crossref_primary_10_1016_j_ejphar_2013_10_055
crossref_primary_10_1016_S2222_1808_12_60094_2
crossref_primary_10_1080_07391102_2016_1229220
crossref_primary_10_1016_j_ijbiomac_2017_06_057
crossref_primary_10_1007_s00894_008_0414_9
crossref_primary_10_1016_j_ymeth_2013_09_014
crossref_primary_10_1093_nar_gkn769
crossref_primary_10_1007_s00436_019_06225_w
crossref_primary_10_1042_BJ20110865
crossref_primary_10_1007_s10969_014_9189_7
crossref_primary_10_1016_j_febslet_2015_07_026
crossref_primary_10_1016_j_ijbiomac_2021_08_067
crossref_primary_10_3389_fmicb_2016_00165
crossref_primary_10_1186_s12859_015_0773_z
crossref_primary_10_1007_s11033_014_3085_x
crossref_primary_10_1016_j_febslet_2009_09_043
crossref_primary_10_1016_j_bbapap_2011_12_009
crossref_primary_10_1016_j_drudis_2008_11_010
crossref_primary_10_1186_1471_2105_13_111
crossref_primary_10_1111_imb_12112
crossref_primary_10_1016_j_bbrc_2011_12_009
crossref_primary_10_1007_s00894_010_0697_5
crossref_primary_10_1021_bi100251u
crossref_primary_10_1080_07391102_2013_834849
crossref_primary_10_1371_journal_pone_0103099
crossref_primary_10_1371_journal_pone_0106247
crossref_primary_10_1371_journal_pcbi_1007449
crossref_primary_10_1016_j_compbiolchem_2016_11_003
crossref_primary_10_1093_nar_gks347
crossref_primary_10_1016_j_biochi_2012_10_024
crossref_primary_10_1007_s00894_008_0381_1
crossref_primary_10_1186_1472_6807_8_48
crossref_primary_10_4161_cc_10_20_17857
crossref_primary_10_1093_bioinformatics_btq369
crossref_primary_10_1042_BCJ20180700
crossref_primary_10_1016_j_bbrc_2008_10_064
crossref_primary_10_1371_journal_pone_0049771
crossref_primary_10_1186_s13068_016_0655_2
crossref_primary_10_1093_protein_gzq030
crossref_primary_10_1371_journal_pone_0032138
crossref_primary_10_1142_S0219720015500055
crossref_primary_10_1186_1743_422X_8_318
crossref_primary_10_1111_cbdd_12278
crossref_primary_10_1038_embor_2010_29
crossref_primary_10_1186_1742_4682_9_38
crossref_primary_10_1016_j_bbapap_2016_10_011
crossref_primary_10_1016_j_sbi_2009_03_010
crossref_primary_10_1002_pro_186
crossref_primary_10_1016_j_ijbiomac_2016_12_082
crossref_primary_10_1007_s10969_014_9180_3
crossref_primary_10_1093_nar_gkw1271
crossref_primary_10_1371_journal_pone_0116688
crossref_primary_10_1111_nph_13459
crossref_primary_10_1002_pro_68
crossref_primary_10_1186_1471_2199_10_52
crossref_primary_10_1007_s11105_012_0510_y
crossref_primary_10_1002_path_2678
crossref_primary_10_1128_MCB_06623_11
crossref_primary_10_1002_prot_22476
crossref_primary_10_1002_prot_23169
crossref_primary_10_1155_2013_185282
crossref_primary_10_1371_journal_pbio_2005821
crossref_primary_10_1021_acs_jcim_1c01381
crossref_primary_10_1371_journal_pone_0023989
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_1186_s12859_016_1237_9
crossref_primary_10_1142_S0219720009004345
crossref_primary_10_1002_prot_24787
crossref_primary_10_1016_j_fob_2014_05_004
crossref_primary_10_1002_jbmr_2403
crossref_primary_10_4236_wjv_2011_12004
crossref_primary_10_1038_ncomms4004
crossref_primary_10_1104_pp_113_218842
crossref_primary_10_1038_ncomms10433
crossref_primary_10_1002_prot_23180
crossref_primary_10_1093_nar_gks570
crossref_primary_10_1371_journal_pone_0066427
crossref_primary_10_1007_s10535_011_0159_7
crossref_primary_10_1080_07391102_2017_1344141
crossref_primary_10_1016_j_plaphy_2013_08_010
crossref_primary_10_7717_peerj_4846
crossref_primary_10_1371_journal_pone_0054178
crossref_primary_10_1186_1471_2105_13_153
crossref_primary_10_1002_prot_22491
Cites_doi 10.1006/jmbi.1999.3091
10.1002/prot.20717
10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
10.1002/prot.21669
10.1093/nar/gkg557
10.1110/ps.062416606
10.1093/bioinformatics/btn014
10.1023/B:JCAM.0000017486.83645.a0
10.1002/prot.20731
10.1093/bioinformatics/17.8.750
10.1006/jmbi.1998.1665
10.1093/nar/gkg554
10.1016/S0968-0004(00)89080-5
10.1016/j.sbi.2004.03.002
10.1016/S0076-6879(97)77022-8
10.1134/S0026893307050147
10.1002/prot.21460
10.1093/bioinformatics/bti702
10.1016/j.bbapap.2007.09.009
10.1080/07391102.2004.10506963
10.1093/nar/gkm319
10.1093/nar/gkh440
10.1038/356083a0
10.1110/ps.9.7.1399
10.1093/bioinformatics/bti540
10.1002/prot.10555
10.1093/nar/gkg571
10.1128/MCB.01674-07
10.1110/ps.0217002
10.1073/pnas.95.19.11158
10.1006/jmbi.1993.1626
10.1002/prot.20726
10.1002/prot.10545
10.1016/S0959-440X(00)00063-4
10.1093/bioinformatics/18.10.1350
10.1107/S0907444901013403
10.1002/prot.10543
10.1002/elps.1150181505
10.1107/S0907444904010145
10.1110/ps.051799606
10.1093/bioinformatics/btg186
10.1002/prot.20720
10.1093/bioinformatics/bti1112
10.1093/protein/gzg063
10.1093/bioinformatics/bti550
10.1002/bip.360221211
10.1002/prot.340170404
10.1016/j.jmb.2007.11.024
10.1002/prot.21156
10.1186/1471-2105-8-345
10.4161/cc.7.1.5158
10.1093/bioinformatics/btm007
10.1002/prot.21640
10.1006/jmbi.1996.0628
10.1110/ps.08501
ContentType Journal Article
Copyright COPYRIGHT 2008 BioMed Central Ltd.
Copyright © 2008 Pawlowski et al; licensee BioMed Central Ltd. 2008 Pawlowski et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2008 BioMed Central Ltd.
– notice: Copyright © 2008 Pawlowski et al; licensee BioMed Central Ltd. 2008 Pawlowski et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2105-9-403
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 403
ExternalDocumentID oai_doaj_org_article_8084cc29c37f43a0898084e1841675ba
oai_biomedcentral_com_1471_2105_9_403
A187881224
10_1186_1471_2105_9_403
18823532
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM081680
– fundername: NIGMS NIH HHS
  grantid: 1R01 GM081680-01
GroupedDBID ---
-A0
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C24
C6C
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
AFGXO
AFPKN
7X8
ABVAZ
AFNRJ
5PM
ID FETCH-LOGICAL-b655t-2e0e7b2cf426f27b1b1b6861568d0015dbb65b7188252d58369d2359c8b17d4d3
IEDL.DBID RPM
ISSN 1471-2105
IngestDate Tue Oct 22 15:07:47 EDT 2024
Tue Sep 17 21:13:42 EDT 2024
Wed May 22 07:11:18 EDT 2024
Fri Oct 25 01:17:49 EDT 2024
Wed Nov 13 00:17:01 EST 2024
Thu Aug 01 19:28:53 EDT 2024
Fri Nov 22 00:55:16 EST 2024
Tue Oct 15 23:36:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b655t-2e0e7b2cf426f27b1b1b6861568d0015dbb65b7188252d58369d2359c8b17d4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573893/
PMID 18823532
PQID 69715247
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8084cc29c37f43a0898084e1841675ba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2573893
biomedcentral_primary_oai_biomedcentral_com_1471_2105_9_403
proquest_miscellaneous_69715247
gale_infotracacademiconefile_A187881224
gale_incontextgauss_ISR_A187881224
crossref_primary_10_1186_1471_2105_9_403
pubmed_primary_18823532
PublicationCentury 2000
PublicationDate 2008-09-29
PublicationDateYYYYMMDD 2008-09-29
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-29
  day: 29
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2008
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 9379925 - Methods Enzymol. 1997;277:396-404
15106995 - J Biomol Struct Dyn. 2004 Jun;21(6):725-36
18343347 - Biochim Biophys Acta. 2008 Apr;1784(4):582-90
15955780 - Bioinformatics. 2005 Sep 1;21(17):3509-15
16187351 - Proteins. 2005;61 Suppl 7:106-13
15213384 - Acta Crystallogr D Biol Crystallogr. 2004 Jul;60(Pt 7):1229-36
14579324 - Proteins. 2003;53 Suppl 6:352-68
12381853 - Protein Sci. 2002 Nov;11(11):2714-26
18164032 - J Mol Biol. 2008 Feb 15;376(2):438-52
15093838 - Curr Opin Struct Biol. 2004 Apr;14(2):225-32
17075131 - Protein Sci. 2006 Nov;15(11):2507-24
12376379 - Bioinformatics. 2002 Oct;18(10):1350-7
18184684 - Bioinformatics. 2008 Feb 15;24(4):586-7
17910062 - Proteins. 2008 Jan 1;70(1):1-18
6667333 - Biopolymers. 1983 Dec;22(12):2577-637
14579323 - Proteins. 2003;53 Suppl 6:340-51
10933507 - Protein Sci. 2000 Jul;9(7):1399-401
17242028 - Bioinformatics. 2007 Mar 1;23(5):527-30
8906967 - Biopolymers. 1996 Mar;38(3):305-20
12824397 - Nucleic Acids Res. 2003 Jul 1;31(13):3698-700
17877795 - BMC Bioinformatics. 2007;8:345
15215456 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W586-9
16204344 - Bioinformatics. 2005 Dec 1;21(23):4248-54
16522791 - Protein Sci. 2006 Apr;15(4):900-13
17894353 - Proteins. 2007;69 Suppl 8:184-93
16187356 - Proteins. 2005;61 Suppl 7:143-51
7482707 - Trends Biochem Sci. 1995 Sep;20(9):374
10493868 - J Mol Biol. 1999 Sep 17;292(2):195-202
16187345 - Proteins. 2005;61 Suppl 7:27-45
18332120 - Mol Cell Biol. 2008 May;28(10):3151-61
17584798 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W369-74
14579325 - Proteins. 2003;53 Suppl 6:369-79
18240571 - Mol Biol (Mosk). 2007 Sep-Oct;41(5):885-99
15072433 - J Comput Aided Mol Des. 2003 Nov;17(11):725-38
10753811 - Curr Opin Struct Biol. 2000 Apr;10(2):139-45
18186482 - Proteins. 2008 Jun;71(4):2076-85
12824330 - Nucleic Acids Res. 2003 Jul 1;31(13):3370-4
12824313 - Nucleic Acids Res. 2003 Jul 1;31(13):3305-7
18204304 - Cell Cycle. 2008 Jan 1;7(1):120-1
16204129 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii72-6
11567156 - Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1428-34
17407166 - Proteins. 2007 Jul 1;68(1):324-36
9571028 - J Mol Biol. 1998 Apr 17;277(5):1141-52
15972285 - Bioinformatics. 2005 Aug 15;21(16):3352-9
17029241 - Proteins. 2006 Dec 1;65(4):867-76
11604541 - Protein Sci. 2001 Nov;10(11):2354-62
15840708 - Bioinformatics. 2005 Jun 15;21(12):2917-20
1538787 - Nature. 1992 Mar 5;356(6364):83-5
17680695 - Proteins. 2007;69 Suppl 8:175-83
9504803 - Electrophoresis. 1997 Dec;18(15):2714-23
9736706 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11158-62
8108378 - Proteins. 1993 Dec;17(4):355-62
12912835 - Bioinformatics. 2003 Aug 12;19(12):1540-8
16187342 - Proteins. 2005;61 Suppl 7:8-18
11524381 - Bioinformatics. 2001 Aug;17(8):750-1
8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
12915722 - Protein Eng. 2003 Jul;16(7):459-62
8950272 - J Mol Biol. 1996 Nov 22;264(1):121-36
W Kabsch (2388_CR34) 1983; 22
GM Vlahovicek (2388_CR59) 2008; 1784
B Wallner (2388_CR28) 2007
JM Bujnicki (2388_CR6) 2001; 17
KH Kaminska (2388_CR58) 2008; 7
M Tress (2388_CR13) 2005; 61
J Pontius (2388_CR18) 1996; 264
D Gilis (2388_CR2) 2004; 21
S Siebert (2388_CR36) 2005; 21
M Tress (2388_CR8) 2005; 61
T Hubbard (2388_CR31) 1993
MJ Sippl (2388_CR17) 1993; 17
EV Koudan (2388_CR61) 2007; 41
DT Jones (2388_CR27) 2005; 61
MF Sanner (2388_CR32) 1996; 38
K Lin (2388_CR21) 2002; 18
PD Taylor (2388_CR37) 2003; 31
2388_CR42
WL DeLano (2388_CR49) 2002
F Melo (2388_CR19) 1998; 277
DT Jones (2388_CR33) 1999; 292
J Lundstrom (2388_CR5) 2001; 10
J Kosinski (2388_CR62) 2007; 68
A Sali (2388_CR15) 1993; 234
J Orlowski (2388_CR63) 2007; 23
CS Pettitt (2388_CR3) 2005; 21
B Wallner (2388_CR11) 2006; 15
A Zemla (2388_CR14) 2003; 31
M Boniecki (2388_CR22) 2003; 17
LN Kinch (2388_CR12) 2003; 53
RA Sayle (2388_CR48) 1995; 20
2388_CR51
A Obarska-Kosinska (2388_CR56) 2008; 376
2388_CR16
JM Sasin (2388_CR47) 2004; 32
A Tramontano (2388_CR7) 2003; 53
J Kosinski (2388_CR9) 2003; 53
NV Buchete (2388_CR24) 2004; 14
IA Cymerman (2388_CR64) 2006; 65
R Luthy (2388_CR4) 1992; 356
M Albrecht (2388_CR35) 2003; 16
B Krishnamoorthy (2388_CR20) 2003; 19
N Guex (2388_CR50) 1997; 18
LJ McGuffin (2388_CR25) 2007; 8
J Kosinski (2388_CR10) 2005; 61
R Schwarzenbacher (2388_CR53) 2004; 60
LJ McGuffin (2388_CR26) 2008; 24
M Roovers (2388_CR55) 2008
D Shortle (2388_CR46) 1998; 95
H Zhou (2388_CR44) 2002; 11
HK Saini (2388_CR39) 2005
MA Kurowski (2388_CR38) 2003; 31
MY Shen (2388_CR43) 2006; 15
KH Kaminska (2388_CR60) 2008; 70
2388_CR29
B Wallner (2388_CR40) 2005; 21
D Cozzetto (2388_CR41) 2007; 69
R Samudrala (2388_CR30) 2000; 9
B Wallner (2388_CR45) 2007; 35
T Lazaridis (2388_CR1) 2000; 10
D Eisenberg (2388_CR23) 1997; 277
DT Jones (2388_CR52) 2001; 57
A Giorgetti (2388_CR54) 2005; 21
J White (2388_CR57) 2008; 28
References_xml – volume: 292
  start-page: 195
  issue: 2
  year: 1999
  ident: 2388_CR33
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3091
  contributor:
    fullname: DT Jones
– volume: 61
  start-page: 8
  issue: Suppl 7
  year: 2005
  ident: 2388_CR13
  publication-title: Proteins
  doi: 10.1002/prot.20717
  contributor:
    fullname: M Tress
– volume: 38
  start-page: 305
  issue: 3
  year: 1996
  ident: 2388_CR32
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
  contributor:
    fullname: MF Sanner
– volume: 69
  start-page: 175
  issue: Suppl 8
  year: 2007
  ident: 2388_CR41
  publication-title: Proteins
  doi: 10.1002/prot.21669
  contributor:
    fullname: D Cozzetto
– volume: 31
  start-page: 3305
  issue: 13
  year: 2003
  ident: 2388_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg557
  contributor:
    fullname: MA Kurowski
– volume: 15
  start-page: 2507
  issue: 11
  year: 2006
  ident: 2388_CR43
  publication-title: Protein Sci
  doi: 10.1110/ps.062416606
  contributor:
    fullname: MY Shen
– volume: 24
  start-page: 586
  issue: 4
  year: 2008
  ident: 2388_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn014
  contributor:
    fullname: LJ McGuffin
– volume: 17
  start-page: 725
  issue: 11
  year: 2003
  ident: 2388_CR22
  publication-title: J Comput Aided Mol Des
  doi: 10.1023/B:JCAM.0000017486.83645.a0
  contributor:
    fullname: M Boniecki
– volume: 61
  start-page: 143
  issue: Suppl 7
  year: 2005
  ident: 2388_CR27
  publication-title: Proteins
  doi: 10.1002/prot.20731
  contributor:
    fullname: DT Jones
– volume: 17
  start-page: 750
  issue: 8
  year: 2001
  ident: 2388_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.8.750
  contributor:
    fullname: JM Bujnicki
– volume: 277
  start-page: 1141
  issue: 5
  year: 1998
  ident: 2388_CR19
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1998.1665
  contributor:
    fullname: F Melo
– volume: 31
  start-page: 3698
  issue: 13
  year: 2003
  ident: 2388_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg554
  contributor:
    fullname: PD Taylor
– volume: 20
  start-page: 374
  issue: 9
  year: 1995
  ident: 2388_CR48
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(00)89080-5
  contributor:
    fullname: RA Sayle
– volume: 14
  start-page: 225
  issue: 2
  year: 2004
  ident: 2388_CR24
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2004.03.002
  contributor:
    fullname: NV Buchete
– volume: 277
  start-page: 396
  year: 1997
  ident: 2388_CR23
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)77022-8
  contributor:
    fullname: D Eisenberg
– volume: 41
  start-page: 885
  issue: 5
  year: 2007
  ident: 2388_CR61
  publication-title: Mol Biol (Mosk)
  doi: 10.1134/S0026893307050147
  contributor:
    fullname: EV Koudan
– volume: 68
  start-page: 324
  issue: 1
  year: 2007
  ident: 2388_CR62
  publication-title: Proteins
  doi: 10.1002/prot.21460
  contributor:
    fullname: J Kosinski
– volume: 21
  start-page: 4248
  issue: 23
  year: 2005
  ident: 2388_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti702
  contributor:
    fullname: B Wallner
– volume: 1784
  start-page: 582
  issue: 4
  year: 2008
  ident: 2388_CR59
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2007.09.009
  contributor:
    fullname: GM Vlahovicek
– volume: 21
  start-page: 725
  issue: 6
  year: 2004
  ident: 2388_CR2
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2004.10506963
  contributor:
    fullname: D Gilis
– volume: 35
  start-page: W369
  issue: Web Server
  year: 2007
  ident: 2388_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm319
  contributor:
    fullname: B Wallner
– volume: 32
  start-page: W586
  issue: Web Server
  year: 2004
  ident: 2388_CR47
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh440
  contributor:
    fullname: JM Sasin
– volume: 356
  start-page: 83
  issue: 6364
  year: 1992
  ident: 2388_CR4
  publication-title: Nature
  doi: 10.1038/356083a0
  contributor:
    fullname: R Luthy
– ident: 2388_CR51
– volume: 9
  start-page: 1399
  issue: 7
  year: 2000
  ident: 2388_CR30
  publication-title: Protein Sci
  doi: 10.1110/ps.9.7.1399
  contributor:
    fullname: R Samudrala
– volume: 21
  start-page: 3509
  issue: 17
  year: 2005
  ident: 2388_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti540
  contributor:
    fullname: CS Pettitt
– volume: 53
  start-page: 340
  issue: Suppl 6
  year: 2003
  ident: 2388_CR12
  publication-title: Proteins
  doi: 10.1002/prot.10555
  contributor:
    fullname: LN Kinch
– volume: 31
  start-page: 3370
  issue: 13
  year: 2003
  ident: 2388_CR14
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg571
  contributor:
    fullname: A Zemla
– volume: 28
  start-page: 3151
  issue: 10
  year: 2008
  ident: 2388_CR57
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01674-07
  contributor:
    fullname: J White
– volume: 11
  start-page: 2714
  issue: 11
  year: 2002
  ident: 2388_CR44
  publication-title: Protein Sci
  doi: 10.1110/ps.0217002
  contributor:
    fullname: H Zhou
– volume: 95
  start-page: 11158
  issue: 19
  year: 1998
  ident: 2388_CR46
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.19.11158
  contributor:
    fullname: D Shortle
– volume: 234
  start-page: 779
  issue: 3
  year: 1993
  ident: 2388_CR15
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1993.1626
  contributor:
    fullname: A Sali
– volume: 61
  start-page: 106
  issue: Suppl 7
  year: 2005
  ident: 2388_CR10
  publication-title: Proteins
  doi: 10.1002/prot.20726
  contributor:
    fullname: J Kosinski
– volume: 53
  start-page: 369
  issue: Suppl 6
  year: 2003
  ident: 2388_CR9
  publication-title: Proteins
  doi: 10.1002/prot.10545
  contributor:
    fullname: J Kosinski
– volume-title: Proteins
  year: 2007
  ident: 2388_CR28
  contributor:
    fullname: B Wallner
– ident: 2388_CR16
– volume-title: The PyMOL Molecular Graphics System
  year: 2002
  ident: 2388_CR49
  contributor:
    fullname: WL DeLano
– volume: 10
  start-page: 139
  issue: 2
  year: 2000
  ident: 2388_CR1
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/S0959-440X(00)00063-4
  contributor:
    fullname: T Lazaridis
– volume: 18
  start-page: 1350
  issue: 10
  year: 2002
  ident: 2388_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.10.1350
  contributor:
    fullname: K Lin
– volume-title: Proteins
  year: 2008
  ident: 2388_CR55
  contributor:
    fullname: M Roovers
– volume: 57
  start-page: 1428
  issue: Pt 10
  year: 2001
  ident: 2388_CR52
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444901013403
  contributor:
    fullname: DT Jones
– volume: 53
  start-page: 352
  issue: Suppl 6
  year: 2003
  ident: 2388_CR7
  publication-title: Proteins
  doi: 10.1002/prot.10543
  contributor:
    fullname: A Tramontano
– volume: 18
  start-page: 2714
  issue: 15
  year: 1997
  ident: 2388_CR50
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
  contributor:
    fullname: N Guex
– volume: 60
  start-page: 1229
  issue: Pt 7
  year: 2004
  ident: 2388_CR53
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444904010145
  contributor:
    fullname: R Schwarzenbacher
– volume: 15
  start-page: 900
  issue: 4
  year: 2006
  ident: 2388_CR11
  publication-title: Protein Sci
  doi: 10.1110/ps.051799606
  contributor:
    fullname: B Wallner
– volume: 19
  start-page: 1540
  issue: 12
  year: 2003
  ident: 2388_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg186
  contributor:
    fullname: B Krishnamoorthy
– volume: 61
  start-page: 27
  issue: Suppl 7
  year: 2005
  ident: 2388_CR8
  publication-title: Proteins
  doi: 10.1002/prot.20720
  contributor:
    fullname: M Tress
– volume: 21
  start-page: ii72
  issue: Suppl 2
  year: 2005
  ident: 2388_CR54
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1112
  contributor:
    fullname: A Giorgetti
– volume: 16
  start-page: 459
  issue: 7
  year: 2003
  ident: 2388_CR35
  publication-title: Protein Eng
  doi: 10.1093/protein/gzg063
  contributor:
    fullname: M Albrecht
– volume: 21
  start-page: 3352
  issue: 16
  year: 2005
  ident: 2388_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti550
  contributor:
    fullname: S Siebert
– volume: 22
  start-page: 2577
  issue: 12
  year: 1983
  ident: 2388_CR34
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
  contributor:
    fullname: W Kabsch
– volume-title: NACCESS
  year: 1993
  ident: 2388_CR31
  contributor:
    fullname: T Hubbard
– volume-title: Bioinformatics
  year: 2005
  ident: 2388_CR39
  contributor:
    fullname: HK Saini
– volume: 17
  start-page: 355
  issue: 4
  year: 1993
  ident: 2388_CR17
  publication-title: Proteins
  doi: 10.1002/prot.340170404
  contributor:
    fullname: MJ Sippl
– volume: 376
  start-page: 438
  issue: 2
  year: 2008
  ident: 2388_CR56
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.11.024
  contributor:
    fullname: A Obarska-Kosinska
– ident: 2388_CR29
– ident: 2388_CR42
– volume: 65
  start-page: 867
  issue: 4
  year: 2006
  ident: 2388_CR64
  publication-title: Proteins
  doi: 10.1002/prot.21156
  contributor:
    fullname: IA Cymerman
– volume: 8
  start-page: 345
  issue: 1
  year: 2007
  ident: 2388_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-345
  contributor:
    fullname: LJ McGuffin
– volume: 7
  start-page: 120
  issue: 1
  year: 2008
  ident: 2388_CR58
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.1.5158
  contributor:
    fullname: KH Kaminska
– volume: 23
  start-page: 527
  issue: 5
  year: 2007
  ident: 2388_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm007
  contributor:
    fullname: J Orlowski
– volume: 70
  start-page: 1
  issue: 1
  year: 2008
  ident: 2388_CR60
  publication-title: Proteins
  doi: 10.1002/prot.21640
  contributor:
    fullname: KH Kaminska
– volume: 264
  start-page: 121
  issue: 1
  year: 1996
  ident: 2388_CR18
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0628
  contributor:
    fullname: J Pontius
– volume: 10
  start-page: 2354
  issue: 11
  year: 2001
  ident: 2388_CR5
  publication-title: Protein Sci
  doi: 10.1110/ps.08501
  contributor:
    fullname: J Lundstrom
SSID ssj0017805
Score 2.392047
Snippet Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on...
BACKGROUNDComputational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models...
BACKGROUND: Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models...
Abstract Background Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 403
SubjectTerms Artificial Intelligence
Computational Biology - methods
Computer programs
Database Management Systems
Meta-Analysis as Topic
Models, Molecular
Multivariate Analysis
Observer Variation
Pattern Recognition, Automated - methods
Protein Conformation
Proteins - chemistry
Quality Control
Regression Analysis
Research Design - statistics & numerical data
Science
Software
SummonAdditionalLinks – databaseName: BiomedCentral
  dbid: RBZ
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB7RIiQu7EtYLYQEHKJmcbzA6ZW2KociaEFCXCxvgUqQh5r3Dv33zCR5j5r2glAuUTKJ4lk838T2Z4DnSnkenFd5sMrlvPQYc4WwufdNiA4Rgmrpn-7-kXz_Re3sEk3Oq4tH8EsltkrsPnMsTJpcY7FTb8BlrBg4OfPh9tf1gAFR8w8LiSbhicXnghf8tbL9R5KQBt7-873zmfSUTp08k4v2rv9DK27AtQlwstnoITfhUuxuwZVxC8rT27BzEBf24OPsw2s2Yz_xPKfftPGEIZhlCA7ZuOrylNk1hSebt2ygdzju2LCRTn8HPu_tfnq7n087K-RONM0ir2IRpat8i_m5raQr8RAKwY1QgVBUcCjnMG1h_ViFRtVCh6putFeulIGH-i5sdvMu3gcma-u9DKUItuS-ispLXaCcE1xLNHgGbxJ1m18ji4YhXuv0DoaYIT0Z0pPRBvWUwcuVcdYPDmWLEudFt8l4yfuHC2gGM4WhUYXi3lfa17LltS2UpiuxpMFX2TibwTMyvSFmjI6m3nyzy743744OzaxURL2PkCeDF5NQO8cP93ZayYAKITKtRPLpyoUMhi2Nxdguzpe9EVoicuIyg3ujQ_1pHiq9buoqA5m4WtKw9E53_H0gBsful_Dng_9S-UO4upoTU-lHsLk4WcbHsNGH5ZMh5H4DxMskQw
  priority: 500
  providerName: BioMedCentral
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxJvwtBASXKzGduIHnBbaqhyKgILEzfIrpRJkUbN76L9nJskuNT1wQblE9iSKZ8aZb_z4TMgLY2KTQjQseRNYwyP0uVp5FmObcgCEYDoc0z081h--mb19pMnZHvWFa8ImeuBJcbumNk2Mwkapu0b62lgsyRyny3QbJmhUq00yNc8fIFP_uK9IcwbV7Uzqw43a3ZYxC8mT_Guj-48iPo00_pd_1heiVbmS8kJoOrhJbsyYki6mttwiV3J_m1ybTpk8v0P2jvLKH31afHxNF_Qn3DMcic1nFPAqBfxHp42V59RvWTrpsqMjg8NpT8ezcoa75OvB_pd3h2w-PIEF1bYrJnKddRCxgxDcCR04XMoAflEmIVBKAeQCRCZIEUVqjVQ2CdnaaALXqUnyHtnpl31-QKiWPkaduEqeN1FkE7WtQS6oxmqwaUXeFCp0vyaiDIfU1WUN9CKHBnBoAGcdGKAirzYK3z44ZiZGXRZ9iwYp3j8WgMO42WHcvxymIs_RnA7JL3pcXXPi18Pg3h9_dgtukF0fUE1FXs5C3RI-PPp5swIoBPmyCslnG7dw0DNxusX3ebkenLIawFGjK3J_cpI_zQOly1aKiujCfYqGlTX96feR-xv-sAgxH_4PTTwi1zerX4R9THZWZ-v8hFwd0vrp2Jt-A3N7H8E
  priority: 102
  providerName: Directory of Open Access Journals
Title MetaMQAP: a meta-server for the quality assessment of protein models
URI https://www.ncbi.nlm.nih.gov/pubmed/18823532
https://search.proquest.com/docview/69715247
http://dx.doi.org/10.1186/1471-2105-9-403
https://pubmed.ncbi.nlm.nih.gov/PMC2573893
https://doaj.org/article/8084cc29c37f43a0898084e1841675ba
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7qQKGX0vSpNnWXUmgviq3XPtqT8yKhuKRJC6WXZV9KDbEULPuQf9_ZlZRa5FYMxkgjI-3MaL7Znf0G4APnJrfa8NgqruM8MehzU6piYwrrNCIEXvo53dNL9u0XPzr2NDlFvxcmFO0bvdivrpf71eJPqK28WZpJXyc2OZ8fopn5ODsZwQixYZ-id0sHnqS_4_BJOJ0k-PaNMa8pYoG5Umibg6AyK0K_ke0t7teDyBQI_O-_prfi1LCGcisonTyBxx2aJLP2rnfhgauewsO2v-TtMziau7Waf5-dfyYzssTfsZ-DdSuCSJUg8iPtlspbou74OUldksDdsKhI6JLTPIefJ8c_Dk_jrm1CrGlRrOPUTR3TqSkx-JYp0wl-KEfkQrn1EMlqlNPMD0OR2oJnVFgcEGG4TpjNbfYCdqq6cq-AsEwZw2xCrUpykzpumJiinKa5YKjNCL4MhlDetBQZ0pNWD8-g_0ivC-l1IYVEXUTwqR_wuwtDTsLpfdEDr5DB_4cD9epKdqYh-ZTnxqTCZKzMMzXlwh9xiV9ZZYVWEbz36pSe9qLydTVXatM08uzyQs4S7nn1Ec9E8LETKmu8caO6bQo4IJ4payD5rjcLiT7pF1pU5epNI6lgCItyFsHL1kj-PV5nexGwgfkMHmx4Bp0gsH53Rv_6v698A4_6YpdU7MHOerVxb2HU2M0Yc4mzr-MwH4HfFwe_x8Gn_gJVICLF
link.rule.ids 108,230,315,729,782,786,866,887,2106,24946,27933,27934,53800,53802,75821,75822
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgSX8qbhVQshwSXdvG3DaelDW9GtCi1Sb5ZfKSt1k2qze-i_Z-wkZaPeqlyieBLFnpnM53j8DcBnxnRmlGahkUyFWazR56JChlrnxipECKx0_3QnZ_Tkgu0fOJqcvN8L45P2tZrtVlfz3Wr21-dWXs_1qM8TG51O99DMXJwdbcBD9Nco6ifp3eKBo-nvWHxiVoxi_P6GOLPJQ46zJV84B2FlmvuKI-ub3K8GsclT-N_9UK9FqmEW5VpYOnx6zw49g60Oh5Jx2_wcHtjqBTxqK1PevIT9qV3K6a_x6TcyJnM8D93fW7sgiHEJYkbSbsa8IfKW2ZPUJfGsD7OK-Po6zSv4c3hwvjcJu4ILoSryfBkmNrJUJbrEsF0mVMV4FAwxT8GMA1dGoZyibvjyxOQsLbjBgeSaqZiazKSvYbOqK7sNhKZSa2riwsg404llmvII5VSRcYp2EMD3wdCL65ZcQzi662ELep5wOhROh4IL1GEAX3tF3d7oZzOsuCv6wyly8Hx_oV5cik4HgkUs0zrhOqVllsqIcXfFxm5NluZKBvDJmYFwhBmVy8i5lKumEUdnv8U4Zo6RH5FQAF86obLGF9ey2-CAA-I4tgaSO705CfRmt0QjK1uvGlFwioAqowG8aY3rf_c6mw2ADsxu0LFhC1qb5wvvrOvtve_cgceT8-mxOD46-fkOnvQpMwl_D5vLxcp-gI3GrD56L_wHSGo1VQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL70d41UJIcEnz9gNOS7erVrDVQkHqzfIrZaVustrsHvrvGTvJslFvoFyieBLFnpnM53j8DULvGdO5UZqFRjIV5okGn4uJDLUujFWAEFjp_umenNOzCzY-djQ521JfPmlfq_lhdbU4rOa_fW7lcqGjPk8smk2PwMxcnI2Wpoz20G3w2TjtJ-rdAoKj6u-YfBJGogS-wSHMboqQw4zJF88BaJkVvurI7kb3q0F88jT-Nz_WO9FqmEm5E5omD_6jUw_R_Q6P4lEr8gjdstVjdKetUHn9BI2ndi2n30ezT3iEF3Aeur-4doUB62LAjrjdlHmN5ZbhE9cl9uwP8wr7OjvNU_Rrcvzz6CTsCi-EihTFOkxtbKlKdQnhu0ypSuAgDLAPYcaBLKNATlE3hEVqCpYRbmAwuWYqoSY32TO0X9WVfYEwzaTW1CTEyCTXqWWa8hjkFMk5BXsI0OfB8ItlS7IhHO31sAU8UDg9CqdHwQXoMUAfe2Vtb_SzGkZuin5xyhw831-oV5ei04NgMcu1TrnOaJlnMmbcXbGJW5ulhZIBeudMQTjijMpl5lzKTdOI0_MfYpQwx8wPiChAHzqhsoYX17Lb6AAD4ri2BpIHvUkJ8Gq3VCMrW28aQTgFYJXTAD1vDexv9zq7DRAdmN6gY8MWsDjPG95Z2Mt_vvMA3Z2NJ-Lb6dnXV-henzmT8tdof73a2DdorzGbt94R_wD9ETfV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaMQAP%3A+a+meta-server+for+the+quality+assessment+of+protein+models&rft.jtitle=BMC+bioinformatics&rft.au=Pawlowski%2C+Marcin&rft.au=Gajda%2C+Michal+J&rft.au=Matlak%2C+Ryszard&rft.au=Bujnicki%2C+Janusz+M&rft.date=2008-09-29&rft.eissn=1471-2105&rft.volume=9&rft.spage=403&rft.epage=403&rft_id=info:doi/10.1186%2F1471-2105-9-403&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon