MetaMQAP: a meta-server for the quality assessment of protein models
Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approxim...
Saved in:
Published in: | BMC bioinformatics Vol. 9; no. 1; p. 403 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central Ltd
29-09-2008
BioMed Central BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors.
The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Angströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89.
Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/ |
---|---|
AbstractList | Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors.
The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Angströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89.
Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/ BACKGROUNDComputational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors.RESULTSThe ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Angströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89.CONCLUSIONFinally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/ Abstract Background Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors. Results The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Ångströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89. Conclusion Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 – methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models. We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/ BACKGROUND: Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors. RESULTS: The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Ångströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89. CONCLUSION: Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 - methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models.We implemented the MetaMQAP as a web server available for free use by all academic users at the URL https://genesilico.pl/toolkit/ |
ArticleNumber | 403 |
Audience | Academic |
Author | Gajda, Michal J Matlak, Ryszard Pawlowski, Marcin Bujnicki, Janusz M |
AuthorAffiliation | 2 Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland 1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland |
AuthorAffiliation_xml | – name: 1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland – name: 2 Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland |
Author_xml | – sequence: 1 givenname: Marcin surname: Pawlowski fullname: Pawlowski, Marcin email: marcinp@genesilico.pl organization: Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland. marcinp@genesilico.pl – sequence: 2 givenname: Michal J surname: Gajda fullname: Gajda, Michal J – sequence: 3 givenname: Ryszard surname: Matlak fullname: Matlak, Ryszard – sequence: 4 givenname: Janusz M surname: Bujnicki fullname: Bujnicki, Janusz M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18823532$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstr3DAQxkVJaR7tubfiU6EHJ3pYltxDYZu-FhL6PgtZGm8UbGsjyaH57yvXS5qFFh00jL758Y1mjtHB6EdA6DnBp4TI-oxUgpSUYF42ZYXZI3R0nzl4EB-i4xivMSZCYv4EHRIpKeOMHqF3l5D05dfVl9eFLoYclxHCLYSi86FIV1DcTLp36a7QMUKMA4yp8F2xDT6BG4vBW-jjU_S4032EZ7v7BP388P7H-afy4vPH9fnqomxrzlNJAYNoqekqWndUtCSfWtaE19Jmb9y2WdeK2RynlktWNzbbbIxsibCVZSdovXCt19dqG9ygw53y2qk_CR82SofkTA9KYlkZQxvDRFcxjWUzZ4DIitSCtzqz3iys7dQOYE1uLOh-D7r_MrortfG3inLBZMMy4O0CaJ3_D2D_xfhBzRNR80RUo_K8MuTlzkXwNxPEpAYXDfS9HsFPUdWNIJxWIgtPF-FG5-7c2PnMNPlYGJzJS9G5nF8RKaQklFa54NVeQdYk-JU2eopRrb9_29eeLVoTfIwBuvsuCFbznv3D94uHv_dXv1ss9hsrcc0J |
CitedBy_id | crossref_primary_10_1038_srep31723 crossref_primary_10_1111_j_1365_2958_2012_08084_x crossref_primary_10_1007_s11105_012_0450_6 crossref_primary_10_1093_nar_gks547 crossref_primary_10_1002_jez_b_22541 crossref_primary_10_1186_1471_2148_11_72 crossref_primary_10_2976_1_3218766 crossref_primary_10_1007_s12010_013_0263_6 crossref_primary_10_1371_journal_pcbi_1001029 crossref_primary_10_1186_1471_2105_13_289 crossref_primary_10_1016_j_csbj_2020_08_013 crossref_primary_10_3389_fnmol_2014_00051 crossref_primary_10_1093_nar_gkab466 crossref_primary_10_1094_MPMI_01_14_0009_R crossref_primary_10_1016_j_bbapap_2011_05_009 crossref_primary_10_1093_nar_gkt408 crossref_primary_10_1016_j_molcel_2009_08_006 crossref_primary_10_1186_1471_2164_11_590 crossref_primary_10_1371_journal_pone_0015782 crossref_primary_10_1016_j_bbapap_2012_05_018 crossref_primary_10_1093_nar_gkp1142 crossref_primary_10_1002_ps_3984 crossref_primary_10_1039_C5RA12869B crossref_primary_10_3390_ijms222111838 crossref_primary_10_1007_s00894_013_2043_1 crossref_primary_10_1093_bioinformatics_btv235 crossref_primary_10_1007_s00253_011_3582_y crossref_primary_10_1155_2014_583606 crossref_primary_10_18632_oncotarget_6435 crossref_primary_10_1016_j_bbrc_2016_02_025 crossref_primary_10_1016_j_biochi_2015_05_018 crossref_primary_10_1007_s11262_012_0729_6 crossref_primary_10_1016_j_ajhg_2017_03_008 crossref_primary_10_1093_bioinformatics_btq581 crossref_primary_10_1021_acs_jctc_8b00690 crossref_primary_10_1111_febs_12553 crossref_primary_10_1186_1471_2105_13_224 crossref_primary_10_1186_s12859_015_0741_7 crossref_primary_10_1371_journal_pone_0019979 crossref_primary_10_1007_s00894_010_0831_4 crossref_primary_10_1248_cpb_c12_00287 crossref_primary_10_1074_jbc_M109_077339 crossref_primary_10_1007_s00894_013_2010_x crossref_primary_10_1107_S0907444913011426 crossref_primary_10_1016_j_csbj_2020_11_007 crossref_primary_10_1007_s10695_012_9661_x crossref_primary_10_1016_j_ejphar_2013_10_055 crossref_primary_10_1016_S2222_1808_12_60094_2 crossref_primary_10_1080_07391102_2016_1229220 crossref_primary_10_1016_j_ijbiomac_2017_06_057 crossref_primary_10_1007_s00894_008_0414_9 crossref_primary_10_1016_j_ymeth_2013_09_014 crossref_primary_10_1093_nar_gkn769 crossref_primary_10_1007_s00436_019_06225_w crossref_primary_10_1042_BJ20110865 crossref_primary_10_1007_s10969_014_9189_7 crossref_primary_10_1016_j_febslet_2015_07_026 crossref_primary_10_1016_j_ijbiomac_2021_08_067 crossref_primary_10_3389_fmicb_2016_00165 crossref_primary_10_1186_s12859_015_0773_z crossref_primary_10_1007_s11033_014_3085_x crossref_primary_10_1016_j_febslet_2009_09_043 crossref_primary_10_1016_j_bbapap_2011_12_009 crossref_primary_10_1016_j_drudis_2008_11_010 crossref_primary_10_1186_1471_2105_13_111 crossref_primary_10_1111_imb_12112 crossref_primary_10_1016_j_bbrc_2011_12_009 crossref_primary_10_1007_s00894_010_0697_5 crossref_primary_10_1021_bi100251u crossref_primary_10_1080_07391102_2013_834849 crossref_primary_10_1371_journal_pone_0103099 crossref_primary_10_1371_journal_pone_0106247 crossref_primary_10_1371_journal_pcbi_1007449 crossref_primary_10_1016_j_compbiolchem_2016_11_003 crossref_primary_10_1093_nar_gks347 crossref_primary_10_1016_j_biochi_2012_10_024 crossref_primary_10_1007_s00894_008_0381_1 crossref_primary_10_1186_1472_6807_8_48 crossref_primary_10_4161_cc_10_20_17857 crossref_primary_10_1093_bioinformatics_btq369 crossref_primary_10_1042_BCJ20180700 crossref_primary_10_1016_j_bbrc_2008_10_064 crossref_primary_10_1371_journal_pone_0049771 crossref_primary_10_1186_s13068_016_0655_2 crossref_primary_10_1093_protein_gzq030 crossref_primary_10_1371_journal_pone_0032138 crossref_primary_10_1142_S0219720015500055 crossref_primary_10_1186_1743_422X_8_318 crossref_primary_10_1111_cbdd_12278 crossref_primary_10_1038_embor_2010_29 crossref_primary_10_1186_1742_4682_9_38 crossref_primary_10_1016_j_bbapap_2016_10_011 crossref_primary_10_1016_j_sbi_2009_03_010 crossref_primary_10_1002_pro_186 crossref_primary_10_1016_j_ijbiomac_2016_12_082 crossref_primary_10_1007_s10969_014_9180_3 crossref_primary_10_1093_nar_gkw1271 crossref_primary_10_1371_journal_pone_0116688 crossref_primary_10_1111_nph_13459 crossref_primary_10_1002_pro_68 crossref_primary_10_1186_1471_2199_10_52 crossref_primary_10_1007_s11105_012_0510_y crossref_primary_10_1002_path_2678 crossref_primary_10_1128_MCB_06623_11 crossref_primary_10_1002_prot_22476 crossref_primary_10_1002_prot_23169 crossref_primary_10_1155_2013_185282 crossref_primary_10_1371_journal_pbio_2005821 crossref_primary_10_1021_acs_jcim_1c01381 crossref_primary_10_1371_journal_pone_0023989 crossref_primary_10_1016_j_heliyon_2023_e17575 crossref_primary_10_1186_s12859_016_1237_9 crossref_primary_10_1142_S0219720009004345 crossref_primary_10_1002_prot_24787 crossref_primary_10_1016_j_fob_2014_05_004 crossref_primary_10_1002_jbmr_2403 crossref_primary_10_4236_wjv_2011_12004 crossref_primary_10_1038_ncomms4004 crossref_primary_10_1104_pp_113_218842 crossref_primary_10_1038_ncomms10433 crossref_primary_10_1002_prot_23180 crossref_primary_10_1093_nar_gks570 crossref_primary_10_1371_journal_pone_0066427 crossref_primary_10_1007_s10535_011_0159_7 crossref_primary_10_1080_07391102_2017_1344141 crossref_primary_10_1016_j_plaphy_2013_08_010 crossref_primary_10_7717_peerj_4846 crossref_primary_10_1371_journal_pone_0054178 crossref_primary_10_1186_1471_2105_13_153 crossref_primary_10_1002_prot_22491 |
Cites_doi | 10.1006/jmbi.1999.3091 10.1002/prot.20717 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y 10.1002/prot.21669 10.1093/nar/gkg557 10.1110/ps.062416606 10.1093/bioinformatics/btn014 10.1023/B:JCAM.0000017486.83645.a0 10.1002/prot.20731 10.1093/bioinformatics/17.8.750 10.1006/jmbi.1998.1665 10.1093/nar/gkg554 10.1016/S0968-0004(00)89080-5 10.1016/j.sbi.2004.03.002 10.1016/S0076-6879(97)77022-8 10.1134/S0026893307050147 10.1002/prot.21460 10.1093/bioinformatics/bti702 10.1016/j.bbapap.2007.09.009 10.1080/07391102.2004.10506963 10.1093/nar/gkm319 10.1093/nar/gkh440 10.1038/356083a0 10.1110/ps.9.7.1399 10.1093/bioinformatics/bti540 10.1002/prot.10555 10.1093/nar/gkg571 10.1128/MCB.01674-07 10.1110/ps.0217002 10.1073/pnas.95.19.11158 10.1006/jmbi.1993.1626 10.1002/prot.20726 10.1002/prot.10545 10.1016/S0959-440X(00)00063-4 10.1093/bioinformatics/18.10.1350 10.1107/S0907444901013403 10.1002/prot.10543 10.1002/elps.1150181505 10.1107/S0907444904010145 10.1110/ps.051799606 10.1093/bioinformatics/btg186 10.1002/prot.20720 10.1093/bioinformatics/bti1112 10.1093/protein/gzg063 10.1093/bioinformatics/bti550 10.1002/bip.360221211 10.1002/prot.340170404 10.1016/j.jmb.2007.11.024 10.1002/prot.21156 10.1186/1471-2105-8-345 10.4161/cc.7.1.5158 10.1093/bioinformatics/btm007 10.1002/prot.21640 10.1006/jmbi.1996.0628 10.1110/ps.08501 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2008 BioMed Central Ltd. Copyright © 2008 Pawlowski et al; licensee BioMed Central Ltd. 2008 Pawlowski et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Copyright © 2008 Pawlowski et al; licensee BioMed Central Ltd. 2008 Pawlowski et al; licensee BioMed Central Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 7X8 5PM DOA |
DOI | 10.1186/1471-2105-9-403 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 403 |
ExternalDocumentID | oai_doaj_org_article_8084cc29c37f43a0898084e1841675ba oai_biomedcentral_com_1471_2105_9_403 A187881224 10_1186_1471_2105_9_403 18823532 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM081680 – fundername: NIGMS NIH HHS grantid: 1R01 GM081680-01 |
GroupedDBID | --- -A0 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C24 C6C CGR CS3 CUY CVF DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB AAYXX CITATION AFGXO AFPKN 7X8 ABVAZ AFNRJ 5PM |
ID | FETCH-LOGICAL-b655t-2e0e7b2cf426f27b1b1b6861568d0015dbb65b7188252d58369d2359c8b17d4d3 |
IEDL.DBID | RPM |
ISSN | 1471-2105 |
IngestDate | Tue Oct 22 15:07:47 EDT 2024 Tue Sep 17 21:13:42 EDT 2024 Wed May 22 07:11:18 EDT 2024 Fri Oct 25 01:17:49 EDT 2024 Wed Nov 13 00:17:01 EST 2024 Thu Aug 01 19:28:53 EDT 2024 Fri Nov 22 00:55:16 EST 2024 Tue Oct 15 23:36:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b655t-2e0e7b2cf426f27b1b1b6861568d0015dbb65b7188252d58369d2359c8b17d4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573893/ |
PMID | 18823532 |
PQID | 69715247 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8084cc29c37f43a0898084e1841675ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_2573893 biomedcentral_primary_oai_biomedcentral_com_1471_2105_9_403 proquest_miscellaneous_69715247 gale_infotracacademiconefile_A187881224 gale_incontextgauss_ISR_A187881224 crossref_primary_10_1186_1471_2105_9_403 pubmed_primary_18823532 |
PublicationCentury | 2000 |
PublicationDate | 2008-09-29 |
PublicationDateYYYYMMDD | 2008-09-29 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-29 day: 29 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2008 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 9379925 - Methods Enzymol. 1997;277:396-404 15106995 - J Biomol Struct Dyn. 2004 Jun;21(6):725-36 18343347 - Biochim Biophys Acta. 2008 Apr;1784(4):582-90 15955780 - Bioinformatics. 2005 Sep 1;21(17):3509-15 16187351 - Proteins. 2005;61 Suppl 7:106-13 15213384 - Acta Crystallogr D Biol Crystallogr. 2004 Jul;60(Pt 7):1229-36 14579324 - Proteins. 2003;53 Suppl 6:352-68 12381853 - Protein Sci. 2002 Nov;11(11):2714-26 18164032 - J Mol Biol. 2008 Feb 15;376(2):438-52 15093838 - Curr Opin Struct Biol. 2004 Apr;14(2):225-32 17075131 - Protein Sci. 2006 Nov;15(11):2507-24 12376379 - Bioinformatics. 2002 Oct;18(10):1350-7 18184684 - Bioinformatics. 2008 Feb 15;24(4):586-7 17910062 - Proteins. 2008 Jan 1;70(1):1-18 6667333 - Biopolymers. 1983 Dec;22(12):2577-637 14579323 - Proteins. 2003;53 Suppl 6:340-51 10933507 - Protein Sci. 2000 Jul;9(7):1399-401 17242028 - Bioinformatics. 2007 Mar 1;23(5):527-30 8906967 - Biopolymers. 1996 Mar;38(3):305-20 12824397 - Nucleic Acids Res. 2003 Jul 1;31(13):3698-700 17877795 - BMC Bioinformatics. 2007;8:345 15215456 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W586-9 16204344 - Bioinformatics. 2005 Dec 1;21(23):4248-54 16522791 - Protein Sci. 2006 Apr;15(4):900-13 17894353 - Proteins. 2007;69 Suppl 8:184-93 16187356 - Proteins. 2005;61 Suppl 7:143-51 7482707 - Trends Biochem Sci. 1995 Sep;20(9):374 10493868 - J Mol Biol. 1999 Sep 17;292(2):195-202 16187345 - Proteins. 2005;61 Suppl 7:27-45 18332120 - Mol Cell Biol. 2008 May;28(10):3151-61 17584798 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W369-74 14579325 - Proteins. 2003;53 Suppl 6:369-79 18240571 - Mol Biol (Mosk). 2007 Sep-Oct;41(5):885-99 15072433 - J Comput Aided Mol Des. 2003 Nov;17(11):725-38 10753811 - Curr Opin Struct Biol. 2000 Apr;10(2):139-45 18186482 - Proteins. 2008 Jun;71(4):2076-85 12824330 - Nucleic Acids Res. 2003 Jul 1;31(13):3370-4 12824313 - Nucleic Acids Res. 2003 Jul 1;31(13):3305-7 18204304 - Cell Cycle. 2008 Jan 1;7(1):120-1 16204129 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii72-6 11567156 - Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1428-34 17407166 - Proteins. 2007 Jul 1;68(1):324-36 9571028 - J Mol Biol. 1998 Apr 17;277(5):1141-52 15972285 - Bioinformatics. 2005 Aug 15;21(16):3352-9 17029241 - Proteins. 2006 Dec 1;65(4):867-76 11604541 - Protein Sci. 2001 Nov;10(11):2354-62 15840708 - Bioinformatics. 2005 Jun 15;21(12):2917-20 1538787 - Nature. 1992 Mar 5;356(6364):83-5 17680695 - Proteins. 2007;69 Suppl 8:175-83 9504803 - Electrophoresis. 1997 Dec;18(15):2714-23 9736706 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11158-62 8108378 - Proteins. 1993 Dec;17(4):355-62 12912835 - Bioinformatics. 2003 Aug 12;19(12):1540-8 16187342 - Proteins. 2005;61 Suppl 7:8-18 11524381 - Bioinformatics. 2001 Aug;17(8):750-1 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 12915722 - Protein Eng. 2003 Jul;16(7):459-62 8950272 - J Mol Biol. 1996 Nov 22;264(1):121-36 W Kabsch (2388_CR34) 1983; 22 GM Vlahovicek (2388_CR59) 2008; 1784 B Wallner (2388_CR28) 2007 JM Bujnicki (2388_CR6) 2001; 17 KH Kaminska (2388_CR58) 2008; 7 M Tress (2388_CR13) 2005; 61 J Pontius (2388_CR18) 1996; 264 D Gilis (2388_CR2) 2004; 21 S Siebert (2388_CR36) 2005; 21 M Tress (2388_CR8) 2005; 61 T Hubbard (2388_CR31) 1993 MJ Sippl (2388_CR17) 1993; 17 EV Koudan (2388_CR61) 2007; 41 DT Jones (2388_CR27) 2005; 61 MF Sanner (2388_CR32) 1996; 38 K Lin (2388_CR21) 2002; 18 PD Taylor (2388_CR37) 2003; 31 2388_CR42 WL DeLano (2388_CR49) 2002 F Melo (2388_CR19) 1998; 277 DT Jones (2388_CR33) 1999; 292 J Lundstrom (2388_CR5) 2001; 10 J Kosinski (2388_CR62) 2007; 68 A Sali (2388_CR15) 1993; 234 J Orlowski (2388_CR63) 2007; 23 CS Pettitt (2388_CR3) 2005; 21 B Wallner (2388_CR11) 2006; 15 A Zemla (2388_CR14) 2003; 31 M Boniecki (2388_CR22) 2003; 17 LN Kinch (2388_CR12) 2003; 53 RA Sayle (2388_CR48) 1995; 20 2388_CR51 A Obarska-Kosinska (2388_CR56) 2008; 376 2388_CR16 JM Sasin (2388_CR47) 2004; 32 A Tramontano (2388_CR7) 2003; 53 J Kosinski (2388_CR9) 2003; 53 NV Buchete (2388_CR24) 2004; 14 IA Cymerman (2388_CR64) 2006; 65 R Luthy (2388_CR4) 1992; 356 M Albrecht (2388_CR35) 2003; 16 B Krishnamoorthy (2388_CR20) 2003; 19 N Guex (2388_CR50) 1997; 18 LJ McGuffin (2388_CR25) 2007; 8 J Kosinski (2388_CR10) 2005; 61 R Schwarzenbacher (2388_CR53) 2004; 60 LJ McGuffin (2388_CR26) 2008; 24 M Roovers (2388_CR55) 2008 D Shortle (2388_CR46) 1998; 95 H Zhou (2388_CR44) 2002; 11 HK Saini (2388_CR39) 2005 MA Kurowski (2388_CR38) 2003; 31 MY Shen (2388_CR43) 2006; 15 KH Kaminska (2388_CR60) 2008; 70 2388_CR29 B Wallner (2388_CR40) 2005; 21 D Cozzetto (2388_CR41) 2007; 69 R Samudrala (2388_CR30) 2000; 9 B Wallner (2388_CR45) 2007; 35 T Lazaridis (2388_CR1) 2000; 10 D Eisenberg (2388_CR23) 1997; 277 DT Jones (2388_CR52) 2001; 57 A Giorgetti (2388_CR54) 2005; 21 J White (2388_CR57) 2008; 28 |
References_xml | – volume: 292 start-page: 195 issue: 2 year: 1999 ident: 2388_CR33 publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3091 contributor: fullname: DT Jones – volume: 61 start-page: 8 issue: Suppl 7 year: 2005 ident: 2388_CR13 publication-title: Proteins doi: 10.1002/prot.20717 contributor: fullname: M Tress – volume: 38 start-page: 305 issue: 3 year: 1996 ident: 2388_CR32 publication-title: Biopolymers doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y contributor: fullname: MF Sanner – volume: 69 start-page: 175 issue: Suppl 8 year: 2007 ident: 2388_CR41 publication-title: Proteins doi: 10.1002/prot.21669 contributor: fullname: D Cozzetto – volume: 31 start-page: 3305 issue: 13 year: 2003 ident: 2388_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg557 contributor: fullname: MA Kurowski – volume: 15 start-page: 2507 issue: 11 year: 2006 ident: 2388_CR43 publication-title: Protein Sci doi: 10.1110/ps.062416606 contributor: fullname: MY Shen – volume: 24 start-page: 586 issue: 4 year: 2008 ident: 2388_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn014 contributor: fullname: LJ McGuffin – volume: 17 start-page: 725 issue: 11 year: 2003 ident: 2388_CR22 publication-title: J Comput Aided Mol Des doi: 10.1023/B:JCAM.0000017486.83645.a0 contributor: fullname: M Boniecki – volume: 61 start-page: 143 issue: Suppl 7 year: 2005 ident: 2388_CR27 publication-title: Proteins doi: 10.1002/prot.20731 contributor: fullname: DT Jones – volume: 17 start-page: 750 issue: 8 year: 2001 ident: 2388_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.8.750 contributor: fullname: JM Bujnicki – volume: 277 start-page: 1141 issue: 5 year: 1998 ident: 2388_CR19 publication-title: J Mol Biol doi: 10.1006/jmbi.1998.1665 contributor: fullname: F Melo – volume: 31 start-page: 3698 issue: 13 year: 2003 ident: 2388_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg554 contributor: fullname: PD Taylor – volume: 20 start-page: 374 issue: 9 year: 1995 ident: 2388_CR48 publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(00)89080-5 contributor: fullname: RA Sayle – volume: 14 start-page: 225 issue: 2 year: 2004 ident: 2388_CR24 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2004.03.002 contributor: fullname: NV Buchete – volume: 277 start-page: 396 year: 1997 ident: 2388_CR23 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)77022-8 contributor: fullname: D Eisenberg – volume: 41 start-page: 885 issue: 5 year: 2007 ident: 2388_CR61 publication-title: Mol Biol (Mosk) doi: 10.1134/S0026893307050147 contributor: fullname: EV Koudan – volume: 68 start-page: 324 issue: 1 year: 2007 ident: 2388_CR62 publication-title: Proteins doi: 10.1002/prot.21460 contributor: fullname: J Kosinski – volume: 21 start-page: 4248 issue: 23 year: 2005 ident: 2388_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti702 contributor: fullname: B Wallner – volume: 1784 start-page: 582 issue: 4 year: 2008 ident: 2388_CR59 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2007.09.009 contributor: fullname: GM Vlahovicek – volume: 21 start-page: 725 issue: 6 year: 2004 ident: 2388_CR2 publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.2004.10506963 contributor: fullname: D Gilis – volume: 35 start-page: W369 issue: Web Server year: 2007 ident: 2388_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm319 contributor: fullname: B Wallner – volume: 32 start-page: W586 issue: Web Server year: 2004 ident: 2388_CR47 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh440 contributor: fullname: JM Sasin – volume: 356 start-page: 83 issue: 6364 year: 1992 ident: 2388_CR4 publication-title: Nature doi: 10.1038/356083a0 contributor: fullname: R Luthy – ident: 2388_CR51 – volume: 9 start-page: 1399 issue: 7 year: 2000 ident: 2388_CR30 publication-title: Protein Sci doi: 10.1110/ps.9.7.1399 contributor: fullname: R Samudrala – volume: 21 start-page: 3509 issue: 17 year: 2005 ident: 2388_CR3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti540 contributor: fullname: CS Pettitt – volume: 53 start-page: 340 issue: Suppl 6 year: 2003 ident: 2388_CR12 publication-title: Proteins doi: 10.1002/prot.10555 contributor: fullname: LN Kinch – volume: 31 start-page: 3370 issue: 13 year: 2003 ident: 2388_CR14 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg571 contributor: fullname: A Zemla – volume: 28 start-page: 3151 issue: 10 year: 2008 ident: 2388_CR57 publication-title: Mol Cell Biol doi: 10.1128/MCB.01674-07 contributor: fullname: J White – volume: 11 start-page: 2714 issue: 11 year: 2002 ident: 2388_CR44 publication-title: Protein Sci doi: 10.1110/ps.0217002 contributor: fullname: H Zhou – volume: 95 start-page: 11158 issue: 19 year: 1998 ident: 2388_CR46 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.19.11158 contributor: fullname: D Shortle – volume: 234 start-page: 779 issue: 3 year: 1993 ident: 2388_CR15 publication-title: J Mol Biol doi: 10.1006/jmbi.1993.1626 contributor: fullname: A Sali – volume: 61 start-page: 106 issue: Suppl 7 year: 2005 ident: 2388_CR10 publication-title: Proteins doi: 10.1002/prot.20726 contributor: fullname: J Kosinski – volume: 53 start-page: 369 issue: Suppl 6 year: 2003 ident: 2388_CR9 publication-title: Proteins doi: 10.1002/prot.10545 contributor: fullname: J Kosinski – volume-title: Proteins year: 2007 ident: 2388_CR28 contributor: fullname: B Wallner – ident: 2388_CR16 – volume-title: The PyMOL Molecular Graphics System year: 2002 ident: 2388_CR49 contributor: fullname: WL DeLano – volume: 10 start-page: 139 issue: 2 year: 2000 ident: 2388_CR1 publication-title: Curr Opin Struct Biol doi: 10.1016/S0959-440X(00)00063-4 contributor: fullname: T Lazaridis – volume: 18 start-page: 1350 issue: 10 year: 2002 ident: 2388_CR21 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.10.1350 contributor: fullname: K Lin – volume-title: Proteins year: 2008 ident: 2388_CR55 contributor: fullname: M Roovers – volume: 57 start-page: 1428 issue: Pt 10 year: 2001 ident: 2388_CR52 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444901013403 contributor: fullname: DT Jones – volume: 53 start-page: 352 issue: Suppl 6 year: 2003 ident: 2388_CR7 publication-title: Proteins doi: 10.1002/prot.10543 contributor: fullname: A Tramontano – volume: 18 start-page: 2714 issue: 15 year: 1997 ident: 2388_CR50 publication-title: Electrophoresis doi: 10.1002/elps.1150181505 contributor: fullname: N Guex – volume: 60 start-page: 1229 issue: Pt 7 year: 2004 ident: 2388_CR53 publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904010145 contributor: fullname: R Schwarzenbacher – volume: 15 start-page: 900 issue: 4 year: 2006 ident: 2388_CR11 publication-title: Protein Sci doi: 10.1110/ps.051799606 contributor: fullname: B Wallner – volume: 19 start-page: 1540 issue: 12 year: 2003 ident: 2388_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg186 contributor: fullname: B Krishnamoorthy – volume: 61 start-page: 27 issue: Suppl 7 year: 2005 ident: 2388_CR8 publication-title: Proteins doi: 10.1002/prot.20720 contributor: fullname: M Tress – volume: 21 start-page: ii72 issue: Suppl 2 year: 2005 ident: 2388_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1112 contributor: fullname: A Giorgetti – volume: 16 start-page: 459 issue: 7 year: 2003 ident: 2388_CR35 publication-title: Protein Eng doi: 10.1093/protein/gzg063 contributor: fullname: M Albrecht – volume: 21 start-page: 3352 issue: 16 year: 2005 ident: 2388_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti550 contributor: fullname: S Siebert – volume: 22 start-page: 2577 issue: 12 year: 1983 ident: 2388_CR34 publication-title: Biopolymers doi: 10.1002/bip.360221211 contributor: fullname: W Kabsch – volume-title: NACCESS year: 1993 ident: 2388_CR31 contributor: fullname: T Hubbard – volume-title: Bioinformatics year: 2005 ident: 2388_CR39 contributor: fullname: HK Saini – volume: 17 start-page: 355 issue: 4 year: 1993 ident: 2388_CR17 publication-title: Proteins doi: 10.1002/prot.340170404 contributor: fullname: MJ Sippl – volume: 376 start-page: 438 issue: 2 year: 2008 ident: 2388_CR56 publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.11.024 contributor: fullname: A Obarska-Kosinska – ident: 2388_CR29 – ident: 2388_CR42 – volume: 65 start-page: 867 issue: 4 year: 2006 ident: 2388_CR64 publication-title: Proteins doi: 10.1002/prot.21156 contributor: fullname: IA Cymerman – volume: 8 start-page: 345 issue: 1 year: 2007 ident: 2388_CR25 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-345 contributor: fullname: LJ McGuffin – volume: 7 start-page: 120 issue: 1 year: 2008 ident: 2388_CR58 publication-title: Cell Cycle doi: 10.4161/cc.7.1.5158 contributor: fullname: KH Kaminska – volume: 23 start-page: 527 issue: 5 year: 2007 ident: 2388_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm007 contributor: fullname: J Orlowski – volume: 70 start-page: 1 issue: 1 year: 2008 ident: 2388_CR60 publication-title: Proteins doi: 10.1002/prot.21640 contributor: fullname: KH Kaminska – volume: 264 start-page: 121 issue: 1 year: 1996 ident: 2388_CR18 publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0628 contributor: fullname: J Pontius – volume: 10 start-page: 2354 issue: 11 year: 2001 ident: 2388_CR5 publication-title: Protein Sci doi: 10.1110/ps.08501 contributor: fullname: J Lundstrom |
SSID | ssj0017805 |
Score | 2.392047 |
Snippet | Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on... BACKGROUNDComputational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models... BACKGROUND: Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models... Abstract Background Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of... |
SourceID | doaj pubmedcentral biomedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 403 |
SubjectTerms | Artificial Intelligence Computational Biology - methods Computer programs Database Management Systems Meta-Analysis as Topic Models, Molecular Multivariate Analysis Observer Variation Pattern Recognition, Automated - methods Protein Conformation Proteins - chemistry Quality Control Regression Analysis Research Design - statistics & numerical data Science Software |
SummonAdditionalLinks | – databaseName: BiomedCentral dbid: RBZ link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB7RIiQu7EtYLYQEHKJmcbzA6ZW2KociaEFCXCxvgUqQh5r3Dv33zCR5j5r2glAuUTKJ4lk838T2Z4DnSnkenFd5sMrlvPQYc4WwufdNiA4Rgmrpn-7-kXz_Re3sEk3Oq4tH8EsltkrsPnMsTJpcY7FTb8BlrBg4OfPh9tf1gAFR8w8LiSbhicXnghf8tbL9R5KQBt7-873zmfSUTp08k4v2rv9DK27AtQlwstnoITfhUuxuwZVxC8rT27BzEBf24OPsw2s2Yz_xPKfftPGEIZhlCA7ZuOrylNk1hSebt2ygdzju2LCRTn8HPu_tfnq7n087K-RONM0ir2IRpat8i_m5raQr8RAKwY1QgVBUcCjnMG1h_ViFRtVCh6putFeulIGH-i5sdvMu3gcma-u9DKUItuS-ispLXaCcE1xLNHgGbxJ1m18ji4YhXuv0DoaYIT0Z0pPRBvWUwcuVcdYPDmWLEudFt8l4yfuHC2gGM4WhUYXi3lfa17LltS2UpiuxpMFX2TibwTMyvSFmjI6m3nyzy743744OzaxURL2PkCeDF5NQO8cP93ZayYAKITKtRPLpyoUMhi2Nxdguzpe9EVoicuIyg3ujQ_1pHiq9buoqA5m4WtKw9E53_H0gBsful_Dng_9S-UO4upoTU-lHsLk4WcbHsNGH5ZMh5H4DxMskQw priority: 500 providerName: BioMedCentral – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxJvwtBASXKzGduIHnBbaqhyKgILEzfIrpRJkUbN76L9nJskuNT1wQblE9iSKZ8aZb_z4TMgLY2KTQjQseRNYwyP0uVp5FmObcgCEYDoc0z081h--mb19pMnZHvWFa8ImeuBJcbumNk2Mwkapu0b62lgsyRyny3QbJmhUq00yNc8fIFP_uK9IcwbV7Uzqw43a3ZYxC8mT_Guj-48iPo00_pd_1heiVbmS8kJoOrhJbsyYki6mttwiV3J_m1ybTpk8v0P2jvLKH31afHxNF_Qn3DMcic1nFPAqBfxHp42V59RvWTrpsqMjg8NpT8ezcoa75OvB_pd3h2w-PIEF1bYrJnKddRCxgxDcCR04XMoAflEmIVBKAeQCRCZIEUVqjVQ2CdnaaALXqUnyHtnpl31-QKiWPkaduEqeN1FkE7WtQS6oxmqwaUXeFCp0vyaiDIfU1WUN9CKHBnBoAGcdGKAirzYK3z44ZiZGXRZ9iwYp3j8WgMO42WHcvxymIs_RnA7JL3pcXXPi18Pg3h9_dgtukF0fUE1FXs5C3RI-PPp5swIoBPmyCslnG7dw0DNxusX3ebkenLIawFGjK3J_cpI_zQOly1aKiujCfYqGlTX96feR-xv-sAgxH_4PTTwi1zerX4R9THZWZ-v8hFwd0vrp2Jt-A3N7H8E priority: 102 providerName: Directory of Open Access Journals |
Title | MetaMQAP: a meta-server for the quality assessment of protein models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18823532 https://search.proquest.com/docview/69715247 http://dx.doi.org/10.1186/1471-2105-9-403 https://pubmed.ncbi.nlm.nih.gov/PMC2573893 https://doaj.org/article/8084cc29c37f43a0898084e1841675ba |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7qQKGX0vSpNnWXUmgviq3XPtqT8yKhuKRJC6WXZV9KDbEULPuQf9_ZlZRa5FYMxkgjI-3MaL7Znf0G4APnJrfa8NgqruM8MehzU6piYwrrNCIEXvo53dNL9u0XPzr2NDlFvxcmFO0bvdivrpf71eJPqK28WZpJXyc2OZ8fopn5ODsZwQixYZ-id0sHnqS_4_BJOJ0k-PaNMa8pYoG5Umibg6AyK0K_ke0t7teDyBQI_O-_prfi1LCGcisonTyBxx2aJLP2rnfhgauewsO2v-TtMziau7Waf5-dfyYzssTfsZ-DdSuCSJUg8iPtlspbou74OUldksDdsKhI6JLTPIefJ8c_Dk_jrm1CrGlRrOPUTR3TqSkx-JYp0wl-KEfkQrn1EMlqlNPMD0OR2oJnVFgcEGG4TpjNbfYCdqq6cq-AsEwZw2xCrUpykzpumJiinKa5YKjNCL4MhlDetBQZ0pNWD8-g_0ivC-l1IYVEXUTwqR_wuwtDTsLpfdEDr5DB_4cD9epKdqYh-ZTnxqTCZKzMMzXlwh9xiV9ZZYVWEbz36pSe9qLydTVXatM08uzyQs4S7nn1Ec9E8LETKmu8caO6bQo4IJ4payD5rjcLiT7pF1pU5epNI6lgCItyFsHL1kj-PV5nexGwgfkMHmx4Bp0gsH53Rv_6v698A4_6YpdU7MHOerVxb2HU2M0Yc4mzr-MwH4HfFwe_x8Gn_gJVICLF |
link.rule.ids | 108,230,315,729,782,786,866,887,2106,24946,27933,27934,53800,53802,75821,75822 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgSX8qbhVQshwSXdvG3DaelDW9GtCi1Sb5ZfKSt1k2qze-i_Z-wkZaPeqlyieBLFnpnM53j8DcBnxnRmlGahkUyFWazR56JChlrnxipECKx0_3QnZ_Tkgu0fOJqcvN8L45P2tZrtVlfz3Wr21-dWXs_1qM8TG51O99DMXJwdbcBD9Nco6ifp3eKBo-nvWHxiVoxi_P6GOLPJQ46zJV84B2FlmvuKI-ub3K8GsclT-N_9UK9FqmEW5VpYOnx6zw49g60Oh5Jx2_wcHtjqBTxqK1PevIT9qV3K6a_x6TcyJnM8D93fW7sgiHEJYkbSbsa8IfKW2ZPUJfGsD7OK-Po6zSv4c3hwvjcJu4ILoSryfBkmNrJUJbrEsF0mVMV4FAwxT8GMA1dGoZyibvjyxOQsLbjBgeSaqZiazKSvYbOqK7sNhKZSa2riwsg404llmvII5VSRcYp2EMD3wdCL65ZcQzi662ELep5wOhROh4IL1GEAX3tF3d7oZzOsuCv6wyly8Hx_oV5cik4HgkUs0zrhOqVllsqIcXfFxm5NluZKBvDJmYFwhBmVy8i5lKumEUdnv8U4Zo6RH5FQAF86obLGF9ey2-CAA-I4tgaSO705CfRmt0QjK1uvGlFwioAqowG8aY3rf_c6mw2ADsxu0LFhC1qb5wvvrOvtve_cgceT8-mxOD46-fkOnvQpMwl_D5vLxcp-gI3GrD56L_wHSGo1VQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL70d41UJIcEnz9gNOS7erVrDVQkHqzfIrZaVustrsHvrvGTvJslFvoFyieBLFnpnM53j8DULvGdO5UZqFRjIV5okGn4uJDLUujFWAEFjp_umenNOzCzY-djQ521JfPmlfq_lhdbU4rOa_fW7lcqGjPk8smk2PwMxcnI2Wpoz20G3w2TjtJ-rdAoKj6u-YfBJGogS-wSHMboqQw4zJF88BaJkVvurI7kb3q0F88jT-Nz_WO9FqmEm5E5omD_6jUw_R_Q6P4lEr8gjdstVjdKetUHn9BI2ndi2n30ezT3iEF3Aeur-4doUB62LAjrjdlHmN5ZbhE9cl9uwP8wr7OjvNU_Rrcvzz6CTsCi-EihTFOkxtbKlKdQnhu0ypSuAgDLAPYcaBLKNATlE3hEVqCpYRbmAwuWYqoSY32TO0X9WVfYEwzaTW1CTEyCTXqWWa8hjkFMk5BXsI0OfB8ItlS7IhHO31sAU8UDg9CqdHwQXoMUAfe2Vtb_SzGkZuin5xyhw831-oV5ei04NgMcu1TrnOaJlnMmbcXbGJW5ulhZIBeudMQTjijMpl5lzKTdOI0_MfYpQwx8wPiChAHzqhsoYX17Lb6AAD4ri2BpIHvUkJ8Gq3VCMrW28aQTgFYJXTAD1vDexv9zq7DRAdmN6gY8MWsDjPG95Z2Mt_vvMA3Z2NJ-Lb6dnXV-henzmT8tdof73a2DdorzGbt94R_wD9ETfV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaMQAP%3A+a+meta-server+for+the+quality+assessment+of+protein+models&rft.jtitle=BMC+bioinformatics&rft.au=Pawlowski%2C+Marcin&rft.au=Gajda%2C+Michal+J&rft.au=Matlak%2C+Ryszard&rft.au=Bujnicki%2C+Janusz+M&rft.date=2008-09-29&rft.eissn=1471-2105&rft.volume=9&rft.spage=403&rft.epage=403&rft_id=info:doi/10.1186%2F1471-2105-9-403&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |