Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroinflammation Vol. 7; no. 1; p. 93
Main Authors: Corona, Angela W, Huang, Yan, O'Connor, Jason C, Dantzer, Robert, Kelley, Keith W, Popovich, Phillip G, Godbout, Jonathan P
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 17-12-2010
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Taken together, these data indicate that a deficiency of CX3CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
AbstractList Background Interactions between fractalkine (CX.sub.3 CL1) and fractalkine receptor (CX.sub.3 CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX.sub.3 CL1 and CX.sub.3 CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX.sub.3 CR1-deficient mice (CX.sub.3 CR1.sup.-/-.sup.). Methods CX.sub.3 CR1.sup.-/- .sup.mice or control heterozygote mice (CX.sub.3 CR1.sup.+/-.sup.) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX.sub.3 CR1.sup.-/- .sup.mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1[beta], indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1[beta] and CD14 was still detected in microglia of CX.sub.3 CR1.sup.-/- .sup.mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX.sub.3 CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX.sub.3 CR1.sup.-/- .sup.mice. This depression-like behavior in CX.sub.3 CR1.sup.-/- .sup.mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX.sub.3 CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
Abstract Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
Abstract Background: Interactions between fractalkine (CX3 CL1) and fractalkine receptor (CX3 CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3 CL1 and CX3 CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3 CR1-deficient mice (CX3 CR1-/- ). Methods: CX3 CR1-/- mice or control heterozygote mice (CX3 CR1+/- ) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results: LPS injection caused a prolonged duration of social withdrawal in CX3 CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3 CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3 CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3 CR1-/- mice. This depression-like behavior in CX3 CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions: Taken together, these data indicate that a deficiency of CX3 CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
Interactions between fractalkine (CX.sub.3 CL1) and fractalkine receptor (CX.sub.3 CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX.sub.3 CL1 and CX.sub.3 CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX.sub.3 CR1-deficient mice (CX.sub.3 CR1.sup.-/-.sup.). CX.sub.3 CR1.sup.-/- .sup.mice or control heterozygote mice (CX.sub.3 CR1.sup.+/-.sup.) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. LPS injection caused a prolonged duration of social withdrawal in CX.sub.3 CR1.sup.-/- .sup.mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1[beta], indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1[beta] and CD14 was still detected in microglia of CX.sub.3 CR1.sup.-/- .sup.mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX.sub.3 CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX.sub.3 CR1.sup.-/- .sup.mice. This depression-like behavior in CX.sub.3 CR1.sup.-/- .sup.mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Taken together, these data indicate that a deficiency of CX.sub.3 CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Taken together, these data indicate that a deficiency of CX3CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
BACKGROUND: Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). METHODS: CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. RESULTS: LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. CONCLUSIONS: Taken together, these data indicate that a deficiency of CX3CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
Audience Academic
Author Huang, Yan
Dantzer, Robert
Godbout, Jonathan P
Corona, Angela W
O'Connor, Jason C
Kelley, Keith W
Popovich, Phillip G
AuthorAffiliation 2 Department of Animal Science, University of Illinois, 1201 W. Gregory Drive, 250B Edward R. Madigan Laboratory, Urbana, IL 61820, USA
6 Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
1 Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
3 Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH 43210, USA
5 Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
4 Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
AuthorAffiliation_xml – name: 3 Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH 43210, USA
– name: 5 Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
– name: 4 Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
– name: 1 Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
– name: 6 Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
– name: 2 Department of Animal Science, University of Illinois, 1201 W. Gregory Drive, 250B Edward R. Madigan Laboratory, Urbana, IL 61820, USA
Author_xml – sequence: 1
  givenname: Angela W
  surname: Corona
  fullname: Corona, Angela W
  email: Angela.Wynne@osumc.edu
  organization: Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave., Columbus, OH 43210, USA. Angela.Wynne@osumc.edu
– sequence: 2
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
– sequence: 3
  givenname: Jason C
  surname: O'Connor
  fullname: O'Connor, Jason C
– sequence: 4
  givenname: Robert
  surname: Dantzer
  fullname: Dantzer, Robert
– sequence: 5
  givenname: Keith W
  surname: Kelley
  fullname: Kelley, Keith W
– sequence: 6
  givenname: Phillip G
  surname: Popovich
  fullname: Popovich, Phillip G
– sequence: 7
  givenname: Jonathan P
  surname: Godbout
  fullname: Godbout, Jonathan P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21167054$$D View this record in MEDLINE/PubMed
BookMark eNp1ktuLEzEUxgdZcS_66qMEfdGHWXObZPKyUIqrCwuCKPgWcjlpU6eTMTNdqH-9qV3LFlfykHC-Lz_O7bw66VMPVfWS4EtCWvGeSE5rihWvZa3Yk-rsEDh58D6tzsdxhTGjjaDPqlNKiJC44WfVcJ2Nm0z3I_aAMjgYppTR2_l3Nv9C3iEPIboIvduiEfoxTvEXjGgdHaApoWkJyMLS3MWUTYfc0vSLIsfebxx4ZLeoi0MaUrcdjStqjh6eV0-D6UZ4cX9fVN-uP3ydf6pvP3-8mc9ua9tQymofDCbCcGCqsVxKwbw0FkhQoWUMhGgaJVXLqQpCCuu4Ey0YIjy1uLFKsovqZs_1yaz0kOPa5K1OJuo_gZQX2uQpug60bANR4EHgILjgTPGgWmtZKT4EHGxhXe1Zw8auwTvop1LvEfRY6eNSL9KdZpi0nIgCmO0BNqb_AI4Vl9Z6Nz29m56WWrHCeH2fRE4_NzBOepU2uS891ApT2nKpeDG92ZsWphQW-5AKzq3j6PSMckEYw5IU1-UjrnI8lNGWBQuxxB_74HIaxwzhkDrBereH_yb76mHHDva_i8d-A8g02oQ
CitedBy_id crossref_primary_10_1016_j_neurobiolaging_2016_12_028
crossref_primary_10_1093_jnen_nly051
crossref_primary_10_11638_jssmn_56_4_155
crossref_primary_10_1155_2013_608654
crossref_primary_10_1111_ejn_16206
crossref_primary_10_3390_jcm8091368
crossref_primary_10_1016_j_bbi_2023_09_009
crossref_primary_10_1016_j_yhbeh_2012_02_010
crossref_primary_10_1016_j_pbb_2013_10_026
crossref_primary_10_1016_j_psyneuen_2012_02_003
crossref_primary_10_1016_j_expneurol_2019_112972
crossref_primary_10_1016_j_nutres_2014_10_001
crossref_primary_10_3390_antiox11020315
crossref_primary_10_1016_j_expneurol_2019_112977
crossref_primary_10_1016_j_biopsych_2013_11_029
crossref_primary_10_1111_j_1365_2990_2012_01306_x
crossref_primary_10_1016_j_psyneuen_2013_10_014
crossref_primary_10_1016_j_yfrne_2019_100771
crossref_primary_10_3390_brainsci12050655
crossref_primary_10_1021_acschemneuro_7b00154
crossref_primary_10_3389_fphar_2019_01687
crossref_primary_10_1016_j_jpsychires_2015_05_007
crossref_primary_10_1186_s13195_015_0117_2
crossref_primary_10_2217_fnl_12_71
crossref_primary_10_1016_j_schres_2015_08_010
crossref_primary_10_1073_pnas_1911816117
crossref_primary_10_1186_1742_2094_10_51
crossref_primary_10_1093_cercor_bhs151
crossref_primary_10_3389_fncel_2015_00521
crossref_primary_10_1111_acer_12288
crossref_primary_10_1016_j_bbi_2013_10_009
crossref_primary_10_3389_fimmu_2021_676255
crossref_primary_10_1016_j_exger_2017_11_002
crossref_primary_10_3389_fphar_2022_991243
crossref_primary_10_1016_j_pharmthera_2014_10_002
crossref_primary_10_1038_npp_2011_205
crossref_primary_10_1016_j_bbih_2024_100778
crossref_primary_10_3389_fnsyn_2017_00011
crossref_primary_10_1089_neu_2014_3514
crossref_primary_10_1016_j_neuropharm_2014_10_028
crossref_primary_10_1515_afpuc_2016_0009
crossref_primary_10_1016_j_bbi_2021_01_033
crossref_primary_10_1016_j_bbi_2012_08_008
crossref_primary_10_1016_j_biopsych_2013_10_014
crossref_primary_10_1161_STROKEAHA_112_657411
crossref_primary_10_1155_2020_3497920
crossref_primary_10_3389_fncel_2018_00255
crossref_primary_10_3109_09273948_2015_1071405
crossref_primary_10_1016_j_tins_2013_10_003
crossref_primary_10_1523_JNEUROSCI_1089_23_2023
crossref_primary_10_1016_j_bbagen_2016_07_002
crossref_primary_10_1016_j_redox_2019_101118
crossref_primary_10_1155_2023_4637073
crossref_primary_10_3390_ijms22115903
crossref_primary_10_1016_j_jneuroim_2017_08_006
crossref_primary_10_1007_s11481_011_9313_4
crossref_primary_10_1016_j_jneuroim_2016_04_006
crossref_primary_10_1007_s00702_012_0819_6
crossref_primary_10_1038_npp_2016_123
crossref_primary_10_3389_fncel_2015_00468
crossref_primary_10_1016_j_imlet_2021_08_003
crossref_primary_10_1016_j_expneurol_2014_01_013
crossref_primary_10_1016_j_neulet_2020_135516
crossref_primary_10_1002_glia_23918
crossref_primary_10_1186_s12916_024_03323_0
crossref_primary_10_1152_ajplung_00023_2023
crossref_primary_10_1016_j_neubiorev_2014_02_001
crossref_primary_10_1016_j_bbi_2015_11_008
crossref_primary_10_1016_j_bbi_2023_11_025
crossref_primary_10_4236_wjns_2018_81006
crossref_primary_10_1186_s12868_022_00746_4
crossref_primary_10_1172_JCI88647
crossref_primary_10_1016_j_bbr_2017_07_023
crossref_primary_10_3390_nu13020339
crossref_primary_10_1007_s00213_021_05780_4
crossref_primary_10_1002_glia_23192
crossref_primary_10_1007_s13311_020_00981_9
crossref_primary_10_1016_j_bbih_2023_100707
crossref_primary_10_1523_JNEUROSCI_3688_11_2011
crossref_primary_10_1016_j_neuroscience_2015_01_001
crossref_primary_10_3389_fphar_2020_00394
crossref_primary_10_1016_j_bbi_2020_11_010
crossref_primary_10_1016_j_biopsych_2020_11_007
crossref_primary_10_1016_j_bbi_2018_07_012
crossref_primary_10_1002_glia_24436
crossref_primary_10_1186_s12974_018_1310_6
crossref_primary_10_3389_fncel_2022_1015556
crossref_primary_10_1016_j_bbi_2020_05_041
crossref_primary_10_3390_cells9071676
crossref_primary_10_1155_2016_7258201
crossref_primary_10_1002_glia_22372
crossref_primary_10_1038_s41598_022_16944_3
crossref_primary_10_1016_j_tins_2019_02_005
crossref_primary_10_3389_fphar_2017_00779
crossref_primary_10_1016_j_neuroscience_2015_03_007
crossref_primary_10_3389_fncel_2018_00323
crossref_primary_10_1016_j_bbi_2016_11_023
crossref_primary_10_1186_s12974_015_0416_3
crossref_primary_10_3389_fphar_2020_01012
crossref_primary_10_1002_glia_22647
crossref_primary_10_1371_journal_pone_0177940
crossref_primary_10_1016_j_bbi_2011_10_011
crossref_primary_10_1016_j_bbi_2017_07_008
crossref_primary_10_1152_japplphysiol_00311_2023
crossref_primary_10_1038_s41598_018_20643_3
crossref_primary_10_1016_j_yhbeh_2015_05_018
crossref_primary_10_3390_jpm11100963
crossref_primary_10_1016_j_euroneuro_2013_03_008
crossref_primary_10_2174_1570159X17666191113101629
crossref_primary_10_1371_journal_pone_0150858
crossref_primary_10_1007_s11427_020_1815_6
crossref_primary_10_3389_fpsyt_2021_633664
crossref_primary_10_1016_j_canlet_2022_215648
crossref_primary_10_1186_s12974_022_02381_6
crossref_primary_10_1002_ajmg_b_32839
crossref_primary_10_1002_glia_22998
crossref_primary_10_1155_2014_932757
crossref_primary_10_1099_vir_0_041046_0
crossref_primary_10_1152_physrev_00024_2014
crossref_primary_10_1002_glia_22350
crossref_primary_10_1002_glia_22474
crossref_primary_10_1016_j_brainresbull_2018_11_017
crossref_primary_10_1007_s40141_015_0091_4
crossref_primary_10_1111_head_13214
crossref_primary_10_1186_s12974_015_0454_x
crossref_primary_10_3389_fnins_2018_00547
crossref_primary_10_14814_phy2_13812
crossref_primary_10_1007_s12640_015_9557_5
crossref_primary_10_1016_j_bbi_2015_06_022
crossref_primary_10_1016_j_bbi_2017_09_013
crossref_primary_10_3389_fendo_2014_00074
crossref_primary_10_1186_s13024_022_00535_x
crossref_primary_10_1016_j_semcdb_2019_02_005
crossref_primary_10_1016_j_pnpbp_2018_05_018
crossref_primary_10_1016_j_neurobiolaging_2013_06_007
crossref_primary_10_3390_ijms20092283
ContentType Journal Article
Copyright COPYRIGHT 2010 BioMed Central Ltd.
2010 Corona et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Corona et al.; licensee BioMed Central Ltd. 2010 Corona et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Corona et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Corona et al.; licensee BioMed Central Ltd. 2010 Corona et al.; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7T5
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
5PM
DOA
DOI 10.1186/1742-2094-7-93
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Neurosciences Abstracts
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
Immunology Abstracts
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1742-2094
EndPage 93
ExternalDocumentID oai_doaj_org_article_78f19ede60f6464394f98bb3defff0fb
oai_biomedcentral_com_1742_2094_7_93
2503892941
A246133071
10_1186_1742_2094_7_93
21167054
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01-AG-033028
– fundername: NIMH NIH HHS
  grantid: R01 MH 079829
– fundername: NIA NIH HHS
  grantid: R01 AG 029573
– fundername: NIA NIH HHS
  grantid: R01 AG029573
GroupedDBID ---
-A0
0R~
29L
2VQ
2WC
3V.
4.4
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBD
EBLON
EBS
ECM
EIF
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
7T5
7TK
7XB
8FK
AZQEC
DWQXO
H94
K9.
PQEST
PQUKI
PRINS
ABVAZ
AFGXO
AFNRJ
5PM
ID FETCH-LOGICAL-b5223-dfa016a4e395b47763d7abe1f9f833e66559798429f676bc4c68ea16d2b05b973
IEDL.DBID RPM
ISSN 1742-2094
IngestDate Tue Oct 22 15:08:38 EDT 2024
Tue Sep 17 21:09:35 EDT 2024
Wed May 22 07:17:26 EDT 2024
Thu Oct 10 15:22:45 EDT 2024
Tue Nov 19 21:16:41 EST 2024
Tue Nov 12 23:32:15 EST 2024
Thu Sep 12 19:41:30 EDT 2024
Sat Sep 28 07:55:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b5223-dfa016a4e395b47763d7abe1f9f833e66559798429f676bc4c68ea16d2b05b973
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018416/
PMID 21167054
PQID 902284794
PQPubID 55345
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_78f19ede60f6464394f98bb3defff0fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3018416
biomedcentral_primary_oai_biomedcentral_com_1742_2094_7_93
proquest_journals_902284794
gale_infotracmisc_A246133071
gale_infotracacademiconefile_A246133071
crossref_primary_10_1186_1742_2094_7_93
pubmed_primary_21167054
PublicationCentury 2000
PublicationDate 2010-12-17
PublicationDateYYYYMMDD 2010-12-17
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-17
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of neuroinflammation
PublicationTitleAlternate J Neuroinflammation
PublicationYear 2010
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 19393692 - J Neurosci Methods. 2009 Jun 30;181(1):36-44
12082564 - Mol Psychiatry. 2002;7(5):468-73
19150053 - Biol Psychiatry. 2009 May 1;65(9):732-41
12815711 - J Neurosci Res. 2003 Jul 1;73(1):81-8
16316783 - Trends Immunol. 2006 Jan;27(1):24-31
11063977 - Biol Psychiatry. 2000 Oct 15;48(8):813-29
10652441 - Glia. 2000 Feb 15;29(4):305-15
15919760 - FASEB J. 2005 Aug;19(10):1329-31
11282163 - J Neuroimmunol. 2001 Apr 2;115(1-2):135-43
18073775 - Nat Rev Neurosci. 2008 Jan;9(1):46-56
18805643 - Psychoneuroendocrinology. 2008 Nov;33(10):1369-77
15390107 - Glia. 2005 Jan 1;49(1):15-23
15831717 - Science. 2005 May 27;308(5726):1314-8
10442171 - Adv Exp Med Biol. 1999;461:117-27
9292049 - Ann N Y Acad Sci. 1997 Aug 14;823:234-46
12059974 - Eur J Neurosci. 2002 May;15(10):1663-8
16732273 - Nat Neurosci. 2006 Jul;9(7):917-24
9826729 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14500-5
11994753 - Nat Rev Neurosci. 2002 Mar;3(3):216-27
15995970 - J Infect Dis. 2005 Aug 1;192(3):537-44
12379904 - Glia. 2002 Nov;40(2):164-74
10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14
19152833 - Brain Behav Immun. 2009 Mar;23(3):396-401
20570721 - Brain Behav Immun. 2010 Oct;24(7):1190-201
16675847 - FASEB J. 2006 May;20(7):896-905
17629627 - Neuroscience. 2007 Aug 10;148(1):188-97
17951027 - Brain Behav Immun. 2008 Mar;22(3):301-11
16843000 - Neurobiol Dis. 2006 Sep;23(3):587-94
18575457 - J Cereb Blood Flow Metab. 2008 Oct;28(10):1707-21
20153418 - Brain Behav Immun. 2010 Oct;24(7):1058-68
15694227 - Prog Neuropsychopharmacol Biol Psychiatry. 2005 Feb;29(2):201-17
11960641 - J Neuroimmunol. 2002 Apr;125(1-2):59-65
10415068 - J Immunol. 1999 Aug 1;163(3):1628-35
12402501 - Nat Rev Drug Discov. 2002 Aug;1(8):609-20
19918244 - Mol Psychiatry. 2010 Apr;15(4):393-403
16730336 - Biol Psychiatry. 2006 Oct 15;60(8):812-8
12850572 - Brain Res. 2003 Jul 25;979(1-2):65-70
11870871 - Glia. 2002 Mar 15;37(4):314-27
17457312 - Mol Psychiatry. 2007 Nov;12(11):988-1000
19234218 - J Immunol. 2009 Mar 1;182(5):3202-12
11170719 - Exp Neurol. 2001 Mar;168(1):32-46
20018408 - Neurobiol Aging. 2011 Nov;32(11):2030-44
21665818 - Integr Comp Biol. 2009 Sep;49(3):254-66
18584961 - Neurosci Lett. 2008 Aug 15;441(1):29-34
19339614 - J Neurosci. 2009 Apr 1;29(13):4200-9
18704495 - Brain Struct Funct. 2008 Sep;213(1-2):93-118
12401474 - Brain Behav Immun. 2002 Oct;16(5):596-601
18195714 - Mol Psychiatry. 2009 May;14(5):511-22
17700577 - Mol Psychiatry. 2008 Jul;13(7):717-28
18075491 - Neuropsychopharmacology. 2008 Sep;33(10):2341-51
9177350 - Nature. 1997 Jun 5;387(6633):611-7
17029965 - Neurobiol Dis. 2007 Jan;25(1):80-91
18814846 - Brain Behav Immun. 2009 Mar;23(3):309-17
15890404 - Neurosci Biobehav Rev. 2005;29(4-5):571-625
15895084 - Nat Neurosci. 2005 Jun;8(6):752-8
9650583 - FEBS Lett. 1998 Jun 12;429(2):167-72
18477398 - J Neuroinflammation. 2008;5:15
18347198 - Blood. 2008 Jul 15;112(2):256-63
17482371 - Psychoneuroendocrinology. 2007 Jun;32(5):516-31
19627440 - J Neurochem. 2009 Sep;110(5):1547-56
1839150 - Eur J Pharmacol. 1991 Dec 17;209(3):281-3
16053521 - J Neuroinflammation. 2005 Jul 29;2:17
References_xml
SSID ssj0032562
Score 2.418447
Snippet Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that...
Background Interactions between fractalkine (CX.sub.3 CL1) and fractalkine receptor (CX.sub.3 CR1) regulate microglial activation in the CNS. Recent findings...
Interactions between fractalkine (CX.sub.3 CL1) and fractalkine receptor (CX.sub.3 CR1) regulate microglial activation in the CNS. Recent findings indicate...
Abstract Background: Interactions between fractalkine (CX3 CL1) and fractalkine receptor (CX3 CR1) regulate microglial activation in the CNS. Recent findings...
BACKGROUND: Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate...
Abstract Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 93
SubjectTerms Animals
Behavior, Animal - drug effects
Brain
Chemokine CX3CL1 - immunology
Colleges & universities
CX3C Chemokine Receptor 1
Depression - immunology
Humans
Immunity, Innate - immunology
Interleukin-1beta - genetics
Interleukin-1beta - metabolism
Laboratory animals
Lipopolysaccharides
Lipopolysaccharides - immunology
Lipopolysaccharides - pharmacology
Medical research
Mice
Mice, Inbred C57BL
Mice, Knockout
Microglia - cytology
Microglia - drug effects
Microglia - immunology
Microglia - physiology
Motor Activity - drug effects
Neurosciences
Oxygenases - genetics
Oxygenases - metabolism
Physiological aspects
Receptors, Chemokine - deficiency
Receptors, Chemokine - genetics
Receptors, Chemokine - immunology
Rodents
Social Behavior
Social research
Statistical analysis
Tryptophan
Tryptophan - metabolism
SummonAdditionalLinks – databaseName: BiomedCentral
  dbid: RBZ
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZokRAXKO_QFvmARDmsiB9rr7m1aSMucCggVVwsP0VElEZsemh_fWd2N6VuOCBxTOxN1p7XNxrPZ0LeYrEnANCoTOSuko6DSSnPqqR54i4YVofu6oSv-stZc3yCNDkHf6_gs0Z9AMjMQZZGVroyYovch4RBYpp1evRj7XMFBG7etz72cwd6xs3n7_S1z4tw1LH2b_rmW8GpPDh5KxJNH__7GnbIowFt0sNePZ6Qe2nxlDz4PNTTn5HlFJuk3PwXfKLg-9ISUnB6MDkTk1P2nsaE_BLYnElbPOi-ml2lluIF9nR1TgE60j9d_rRvIW4pJPmgLpH6SzqfLfEOhsvWBezumsX0nHyfnnybfKqGOxgqD8hMVDE7AIVOJmFqLzV4o6idTyyb3AiRlMKMxDQQ1bLSygcZVJMcU5H7ce2NFi_I9uJ8kV4RWmcDuZaqg9BJsojkVVkEbOEGTJQMG5GPhWjssufbsMiAXY6AMVrcU4t7arU1YkTereV481yX3zRqY-YRirn49e4LEJgdzNXqJjOTYlLjrCSCNplN472Afc95nD38HSqJRS8AbxTc0MwAK0U-LXuINH0C_Cesaq-YCdYbiuHdtZrZwXu01iApEVL_j8jLXuFu3pZj3Qxg9ojoQhWL5ZQji9nPjjYcXDnWmF__zzbvkod8OM_D9B7ZXv2-SPtkq40XbzqDvAZwMy9b
  priority: 500
  providerName: BioMedCentral
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbgCkSDeLPcgVwgAUV0azuxY7pjuRUNFDyk6yw_xiJitbcie8Xy65lJsstZV9BQJs5rMm-N5xvGXlGxJ2KgUdkkfVV7iSqlg6jASJA-WtHEYXTCV_P5ov1wTjA5h1FftCdshAcef9ypabOwkEDPs67JfdbZtiGoBDnneQ6D9Z2bfTI12mCFjlyOrZAS5cDWE1yjaPXp4VxlKio3F33uq8I9DSj-N231NWdVbqS85pmW99m9KaTkZyMpD9gtWD9kdz5NRfNHbLOkTii_-olHHA0cbDDP5m8WF2rxRbzlSGI3KPiO97Sbfdv9hp7TlHq-veQYH_K_rfx87BPuOWbyKBOJhx1fdRsatLDrfaQWri7BY_Z9ef5t8bGaBi1UAcMvVaXsMfLzNSjbhNqgyUnGBxDZ5lYp0JrSDtui68ra6BDrqFvwQicZ5k2wRj1hR-vLNTxjvMkWEyrdRGWgFokQqrKK1KeNgQ9YMWPviv_tNiOohiOY63IFNc4Rsxwxyxln1Yy93jPncN-QxLT6xpXviXfF04cTKFpuEi33L9HC1xHnHak6flH0U8cCUkqgWe6MsPgUGkmk6qS4ElU0FsvHe9lxk4nonSXkIcL3n7GnoxQdvlZScQxj6RkzhXwV5JQr6-7HgA2O9poKyc__B_3H7K6cNu8Ic8KOtr-u4AW73aerl4O2_QGDaS4N
  priority: 102
  providerName: Directory of Open Access Journals
Title Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide
URI https://www.ncbi.nlm.nih.gov/pubmed/21167054
https://www.proquest.com/docview/902284794
http://dx.doi.org/10.1186/1742-2094-7-93
https://pubmed.ncbi.nlm.nih.gov/PMC3018416
https://doaj.org/article/78f19ede60f6464394f98bb3defff0fb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfoDogL4puyUfmABByy1nFix9y2sgqEhtAAaeJixV8jokujpTuMv5738jFmduNSqXXS2nlfv1e_9zMhr3CzxwLQSJRLyyQrUzApYVjiZerT0iqW2-7ohK_y82nx_ghpcvKxF6Yr2rem2q_X5_t19bOrrWzO7XysE5t_OV6CUuJu2XxCJoANxxS9d78cYng6sDOyQswBcaegCipLZKJ4x_3LhFzk_3a4r6PA1PH33_bSN8JUXEJ5IyatHpD7A5ikB_2kH5I7vn5E7h4P2-WPSbPCHqhy_QveUXBtvoEMm75ZnvLlCXtLnUf6COy9pC3WsW-r376leD493W4oIEP6t4mf9h3CLYUcHrTBUXNF11WDRyxctaXF5q3K-Sfk--ro2_JDMhyxkBgAXjxxoQTMV2aeq9xkEpyNk6XxLKhQcO6FwIRDFRC0gpDC2MyKwpdMuNQscqMkf0p26k3tnxOaBwWplMgtlz5jDrmpArfYoQ2Qxys2Je-i562bnk5DI8F1PAK2plFuGuWmpVZ8Sl6Pwrm-r0tfCnHrykOUXfTt3QebizM9KJGWRWDKOy8WQWSIybKgCmM4PPcQFsHAz6HkNRo5zMiWQ68CrBTpsvQBsvBxcI-wqr3oSjBOGw3vjrqjB-fQaoWcQ8jsPyXPei26nu2onFMiI_2KlhOPgJF0rOCDUbz47zt3yb10qNVhco_sbC8u_Usyad3lDHKNj59m3f8V8Hpy-GPW2dwfU7AuJA
link.rule.ids 108,230,315,729,782,786,866,887,2107,24947,27934,27935,53802,53804,75823,75824
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokYAL78LSAj4gAYd04zixY25l6aqIboWgSL1ZtmNDxDYbNdtD-fXM5FEaeutx18lunPnmJc98Q8gbPOxxEGhEqkhMlJoEVEpYFnmZ-MQ4xTLXjk74Lo9O8k_7SJOTDb0wbdG-s-VutTzdrcpfbW1lfeqmQ53Y9OtiBqDE07LpBrkN-honQ5LeGWAOXjzp-RlZLqYQcycABpVGMlK8Zf9lQsbZ_z3uy5Frahn8r9vpK45qXER5xSvNH9xwPw_J_T4MpXvd8iNyy1ePyZ1Ff9D-hNRz7J4yy9_wiYJR9DXk5vTd7ITPvrH3tPBIPIFdm7TBCvh1-cc3FCfb0_WKQkxJ_7X_0663uKGQ_QOOCmov6LKscTjDRWMctn2VhX9Kfsz3j2cHUT-cIbIQsvGoCAaiRZN6rjKbSjBThTTWs6BCzrkXAlMVlYO7C0IK61Incm-YKBIbZ1ZJvkU2q1XlnxOaBQVJmMgclz5lBbJaBe6wtxuCJa_YhHwYyUnXHRGHRmrs8QpoqUZ5a5S3llrxCXk7CPXyvjbxycW1Kz-izEe_3n6xOvupe3FpmQemfOFFHESK0VwaVG4th_ceQhws_B0iRqN5gCdypu9ygJ0i0ZbeQ_4-DoYVdrUzuhLU2o2WtwfM6d6sNFohWxHOBJiQZx36Lp92APWEyBEuR9sZrwAcWz7xHn4vbnzna3L34HhxqA8_H33ZJveSvuKHyR2yuT479y_JRlOcv2q19C8A80Co
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokSou5Q1LC_iABBzSxHFix9zKtisQtKp4SL1Z8QuibrNRsz2UX89Mkl0aeoPjxk42znwznpFnviHkFR72WHA0IuXSMsrKFFRKGBZ5mfq0tIrltmud8FUenxYHh0iTs2711SXtW1Pt1fPzvbr62eVWNuc2XuWJxSdHUwAlnpbFjQvxBrkNOptkq0C9N8IcdvJ04GhkhYjB704BECqLZKR4xwDMhEzyv-vc56PtqWPxv2mrr21W40TKazvT7O5_rOke2R7cUbrfT7lPbvn6Adk6Gg7cH5JmhlVU5fwMflEwjr6BGJ2-mZ7y6Rf2ljqPBBRYvUlbzIRfVr98S7HDPV0uKPiW9A8NAO1rjFta1Q7w5Ki5ovOqwSYNV21psfyrcv4R-T47_Db9EA1NGiIDrhuPXCjBaywzz1VuMgnmysnSeBZUKDj3QmDIogrY9oKQwtjMisKXTLjUJLlRkj8mm_Wi9k8JzYOCYEzklkufMYfsVoFbrPEGp8krNiHvRrLSTU_IoZEiezwC2qpR5hplrqVWfEJerwS7vq8LgApxY-Z7lPvo6d2FxcUPPYhMyyIw5Z0XSRAZenVZUIUxHL57CEkw8HeIGo1mAt7IlkO1A6wUCbf0PvL4cTCwsKrd0UxQbzsa3lnhTg_mpdUKWYuwN8CEPOkRuH7bFbAnRI6wOVrOeAQg2fGKDxB89s93viRbJwcz_fnj8acdcicdEn-Y3CWby4tL_5xstO7yRaeovwH9uEMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractalkine+receptor+%28CX3+CR1%29+deficiency+sensitizes+mice+to+the+behavioral+changes+induced+by+lipopolysaccharide&rft.jtitle=Journal+of+neuroinflammation&rft.au=Corona%2C+Angela+W&rft.au=Huang%2C+Yan&rft.au=O%27Connor%2C+Jason+C&rft.au=Dantzer%2C+Robert&rft.date=2010-12-17&rft.pub=BioMed+Central&rft.eissn=1742-2094&rft.volume=7&rft.spage=93&rft_id=info:doi/10.1186%2F1742-2094-7-93&rft.externalDocID=2503892941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2094&client=summon