Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems
To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed wit...
Saved in:
Published in: | Weed science Vol. 53; no. 3; pp. 382 - 392 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cambridge, UK
Cambridge University Press
01-05-2005
Weed Science Society of America |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn–soybean–triticale + alfalfa–alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m−2) was added to 7- by 7-m areas within replicate plots of each crop phase–rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m−2). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. Nomenclature: Velvetleaf, Abutilon theophrasti Medicus ABUTH; alfalfa, Medicago sativa L.; corn, Zea mays L.; soybean, Glycine max (L.) Merr.; triticale, Triticosecale spp. |
---|---|
AbstractList | To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn-soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn-soybean-triticale + alfalfa-alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m⁻²) was added to 7- by 7-m areas within replicate plots of each crop phase-rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m⁻²). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn-soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn-soybean-triticale + alfalfa-alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m(-2)) was added to 7- by 7-m areas within replicate plots of each crop phase-rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m(-2)). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be greater than or equal to 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn–soybean–triticale + alfalfa–alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m−2) was added to 7- by 7-m areas within replicate plots of each crop phase–rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m−2). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn–soybean–triticale + alfalfa–alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m−2) was added to 7- by 7-m areas within replicate plots of each crop phase–rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m−2). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. Nomenclature: Velvetleaf, Abutilon theophrasti Medicus ABUTH; alfalfa, Medicago sativa L.; corn, Zea mays L.; soybean, Glycine max (L.) Merr.; triticale, Triticosecale spp. |
Author | Liebman, Matt Westerman, Paula R. Heggenstaller, Andrew H. Hartzler, Robert G. Dixon, Philip M. Menalled, Fabián D. |
Author_xml | – sequence: 1 givenname: Paula R. surname: Westerman fullname: Westerman, Paula R. email: prwester@iastate.edu organization: Corresponding author. Department of Agronomy, 2501 Agronomy Hall, Iowa State University, Ames, IA 50011-1010 – sequence: 2 givenname: Matt surname: Liebman fullname: Liebman, Matt organization: Department of Agronomy, 3405 Agronomy Hall, Iowa State University, Ames, IA 50011-1010 – sequence: 3 givenname: Fabián D. surname: Menalled fullname: Menalled, Fabián D. organization: Department of Land Resources and Environmental Sciences, 719 Leon Johnson Hall, Montana State University, Bozeman, MT 59717-3120 – sequence: 4 givenname: Andrew H. surname: Heggenstaller fullname: Heggenstaller, Andrew H. organization: Department of Agronomy, 3403 Agronomy Hall, Iowa State University, Ames, IA 50011-1010 – sequence: 5 givenname: Robert G. surname: Hartzler fullname: Hartzler, Robert G. organization: Department of Agronomy, 2104 Agronomy Hall, Iowa State University, Ames, IA 50011-1010 – sequence: 6 givenname: Philip M. surname: Dixon fullname: Dixon, Philip M. organization: Department of Statistics, 125 Snedecor Hall, Iowa State University, Ames, IA 50011-1210 |
BookMark | eNp9kU1r3DAQhkVJoZukl54L1TENVTuSpbV9CktomkCg0G2ao5DtUVaLbRlJm-J7f3gVHHoqOQ3M-8zXO8fkaPQjEvKOw2e-5vLL_ZaBZLyAH6_IiisFTJSqPiIrAFkwXkr1hhzHuAfga8HrFfmzCUgHM860dyn1SHdmGDBEitZim9wjXtBf2D9i1oylZ5vmkFzvR5p26KddMDG5j3Ty06E3yeV8N49mcG2kLjO_PaNm7Kj1h8BmNIG2wU80-LTAcY4Jh3hKXlvTR3z7HE_I3dXXn5fX7Pb7t5vLzS1riqpMrMECFZQS2rqwvOVWgGrWvIIW2gqN4KbmpRCVVXWlalEWXdUpW2VNYKtMXZyQ86Vv3iLGgFZPwQ0mzJqDfvJP3281SP3kX4bfL_A-Jh_-kRJkmc3L8odFtsZr8xBc1HdbAbmUA6i1rDLx6XmaGZrgugfU--zDmC_8_7yzBW-cz099abW_GQaU4w |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_147695 crossref_primary_10_1017_S0007485307005512 crossref_primary_10_3390_agronomy9070369 crossref_primary_10_1016_j_eja_2009_03_008 crossref_primary_10_1111_j_1365_3180_2008_00684_x crossref_primary_10_1016_j_biocontrol_2013_12_004 crossref_primary_10_1111_j_1365_2664_2006_01198_x crossref_primary_10_1016_j_fcr_2010_11_020 crossref_primary_10_1111_gcbb_12799 crossref_primary_10_1614_WS_D_13_00065_1 crossref_primary_10_1007_s13593_020_00620_9 crossref_primary_10_1111_j_1365_3180_2006_00494_x crossref_primary_10_2134_agronj2007_0222 crossref_primary_10_1007_s10980_020_01157_8 crossref_primary_10_1111_j_1445_6664_2012_00445_x crossref_primary_10_1155_2012_846546 crossref_primary_10_1890_11_1079_1 crossref_primary_10_1093_jpe_rtt011 crossref_primary_10_1016_j_agee_2008_07_002 crossref_primary_10_1016_j_agee_2010_03_009 crossref_primary_10_1614_WS_D_16_00084_1 crossref_primary_10_1111_j_1365_2664_2007_01335_x crossref_primary_10_1111_wre_12497 crossref_primary_10_1007_s13593_011_0011_7 crossref_primary_10_1016_j_njas_2013_08_001 crossref_primary_10_1111_wbm_12238 crossref_primary_10_6090_jarq_48_63 crossref_primary_10_1016_j_biocontrol_2008_12_003 crossref_primary_10_1614_WS_08_148_1 crossref_primary_10_2134_agronj2017_11_0662 crossref_primary_10_2134_agronj2018_02_0109 crossref_primary_10_2903_j_efsa_2012_2753 crossref_primary_10_1038_s41598_020_76305_w crossref_primary_10_1111_wre_12508 crossref_primary_10_1016_j_agee_2008_09_009 crossref_primary_10_17221_159_2021_PPS crossref_primary_10_1590_s0100_83582020380100075 crossref_primary_10_1614_IPSM_D_10_00061_1 crossref_primary_10_1111_j_1365_3180_2010_00798_x crossref_primary_10_1080_10440046_2012_672380 crossref_primary_10_3390_su8121297 crossref_primary_10_1080_21683565_2021_2019167 crossref_primary_10_1111_j_1365_2311_2008_01026_x crossref_primary_10_1111_wbm_12186 crossref_primary_10_1614_WT_D_12_00109_1 crossref_primary_10_1614_WS_D_14_00067_1 crossref_primary_10_1007_s13165_012_0022_y crossref_primary_10_1017_wsc_2017_14 crossref_primary_10_3389_fsufs_2023_1126151 crossref_primary_10_1111_wre_12234 crossref_primary_10_1051_agro_2009043 crossref_primary_10_1016_j_eja_2013_01_007 crossref_primary_10_3389_fagro_2021_708851 crossref_primary_10_1002_ece3_7898 crossref_primary_10_1007_s11355_014_0254_y crossref_primary_10_1017_S1742170507001937 crossref_primary_10_1111_wre_12470 crossref_primary_10_17109_AZH_65_Suppl_57_2019 crossref_primary_10_1016_j_fcr_2015_07_012 crossref_primary_10_1016_j_tpb_2012_03_008 crossref_primary_10_1016_j_jclepro_2022_135437 crossref_primary_10_2903_j_efsa_2011_2480 crossref_primary_10_1016_j_biocontrol_2014_11_007 crossref_primary_10_1051_agro_2010020 crossref_primary_10_1017_wsc_2020_29 crossref_primary_10_1111_j_1365_2664_2009_01614_x crossref_primary_10_1016_j_agee_2017_02_014 crossref_primary_10_3389_fagro_2022_848548 crossref_primary_10_1016_j_cropro_2021_105860 crossref_primary_10_1111_ibi_12703 crossref_primary_10_1614_WS_D_16_00052_1 crossref_primary_10_1111_j_1365_3180_2008_00663_x crossref_primary_10_1016_j_cropro_2024_106714 crossref_primary_10_3719_weed_61_26 crossref_primary_10_1111_j_1365_2664_2011_01991_x crossref_primary_10_2903_j_efsa_2011_2428 crossref_primary_10_1007_s13593_018_0525_3 crossref_primary_10_3719_weed_58_14 crossref_primary_10_1080_07388551_2016_1180588 crossref_primary_10_1111_j_1365_3180_2009_00715_x crossref_primary_10_12952_journal_elementa_000041 crossref_primary_10_3389_fagro_2022_832471 crossref_primary_10_1614_WT_D_09_00034_1 crossref_primary_10_3719_weed_55_158 crossref_primary_10_1614_WS_D_10_00115_1 crossref_primary_10_1614_WS_D_13_00037_1 crossref_primary_10_1111_wbm_12035 crossref_primary_10_3719_weed_56_191 crossref_primary_10_3719_weed_64_85 crossref_primary_10_1111_aab_12102 crossref_primary_10_1017_S1742170512000300 crossref_primary_10_3719_weed_55_16 crossref_primary_10_1016_j_eja_2023_126953 crossref_primary_10_1614_WS_D_13_00090_1 crossref_primary_10_3390_agronomy10020262 crossref_primary_10_1111_wre_12304 crossref_primary_10_1371_journal_pone_0010831 crossref_primary_10_14411_eje_2014_086 crossref_primary_10_3390_agriculture11050461 crossref_primary_10_1017_S1742170514000167 crossref_primary_10_5402_2012_461245 crossref_primary_10_3719_weed_56_182 crossref_primary_10_1016_j_baae_2013_02_002 crossref_primary_10_3719_weed_57_61 crossref_primary_10_3389_fagro_2022_811359 crossref_primary_10_1098_rstb_2007_2180 crossref_primary_10_1614_WS_06_162_1 crossref_primary_10_1016_j_biocontrol_2009_07_016 crossref_primary_10_3719_weed_55_8 crossref_primary_10_2134_agronj2016_09_0536 crossref_primary_10_3719_weed_55_1 crossref_primary_10_3390_agronomy12112666 crossref_primary_10_1007_s10980_013_9848_2 crossref_primary_10_1016_j_agee_2010_12_002 crossref_primary_10_1186_s12898_014_0033_5 crossref_primary_10_1016_j_agee_2017_07_025 crossref_primary_10_1016_j_eja_2015_12_016 crossref_primary_10_1111_wbm_12018 crossref_primary_10_3390_agronomy11030565 crossref_primary_10_1111_wbm_12091 crossref_primary_10_1111_1365_2664_13389 crossref_primary_10_3390_agronomy10070958 |
Cites_doi | 10.1890/1051-0761(2002)012[1125:WPACRE]2.0.CO;2 10.1614/P2002-133A 10.2307/1941791 10.1046/j.1365-2664.2003.00850.x 10.1016/S0304-3800(96)00078-6 10.2307/2960501 10.1046/j.1365-3180.1997.d01-21.x 10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2 10.1111/j.1469-8137.1987.tb00871.x 10.2307/1937455 10.1614/P2002-133C 10.2307/2261271 10.1093/jee/18.2.265a 10.1890/02-5385 10.2307/1941792 10.7202/706097ar 10.1111/j.1365-3180.1990.tb01688.x 10.1300/J144v02n01_03 10.2307/2445585 10.1071/EA9930167 10.1111/j.1365-3180.1972.tb01226.x |
ContentType | Journal Article |
Copyright | Weed Science Society of America Copyright © Weed Science Society of America Copyright 2005 The Weed Science Society of America |
Copyright_xml | – notice: Weed Science Society of America – notice: Copyright © Weed Science Society of America – notice: Copyright 2005 The Weed Science Society of America |
DBID | FBQ AAYXX CITATION |
DOI | 10.1614/WS-04-130R |
DatabaseName | AGRIS CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Westerman et al.: Context-Dependent Weed Thresholds |
EISSN | 1550-2759 |
EndPage | 392 |
ExternalDocumentID | 10_1614_WS_04_130R 4047016 US201301005648 |
GeographicLocations | Iowa |
GeographicLocations_xml | – name: Iowa |
GroupedDBID | 02 08R 09C 09E 0R 123 29R 2AX 2~F 3V. 7X2 8FE 8FH 8G5 AAAZR AABWE AACFU AAEED AAGFV AAHKG AAKTX AAPSS AAUKB AAXTN ABBHK ABBJB ABBZL ABKMT ABPLY ABQTM ABROB ABTLG ABUWG ABZCX ACCHT ACGFS ACPRK ACQFJ ACQPF ACUIJ ACUYZ ACWGA ACYZP ADBBV ADGEJ ADHSS ADKIL ADOCW ADOVH ADOVT ADOYD ADULT ADZLD AEBAK AEBPU AEDJY AEEJZ AENCP AENEX AEPYG AESBF AEUPB AEYYC AFAZZ AFFIJ AFKQG AFKRA AFLVW AFNWH AFRAH AFRIC AGABE AGJUD AGOOT AHQXX AICQM AIGNW AIHIV AIOIP AIRJO AJCYY AJPFC AKPMI AKZCZ ALMA_UNASSIGNED_HOLDINGS ANHSF AQJOH AS ATCPS ATUCA AUXHV AYIQA AZQEC BBLKV BBNVY BCGOX BENPR BESQT BHPHI BJBOZ BLZWO BMAJL BPHCQ CAG CBGCD CBIIA CCUQV CFAFE CFBFF CGQII CJCSC COF CS3 CWIXF DATOO DC7 DFEDG DOHLZ DOOOF DU5 DWIUU DWQXO EF EGQIC EQZMY GNUQQ GTFYD GUQSH H13 HCIFZ HGD HTVGU HZ IH6 IL9 IOEEP IOO IS6 JAAYA JBMMH JBS JENOY JH JHFFW JHPGK JKQEH JLS JLXEF JPM JQKCU JSODD JST KAFGG KCGVB KFECR KM LHUNA LK8 M0K M2O M7P MV1 NEJ NIKVX NVHAQ NZEOI O9- OVD P2P PADUT PQ0 PQEST PQQKQ PQUKI PRINS PROAC Q5J RBO RCA ROL S6U SA0 SAAAG SJN T9M TEORI TN5 UT1 WFFJZ WH7 Y3D Y6R ZDLDU ZJOSE ZMEZD ZYDXJ -JH 0R~ AASVR ABMYL ABXAU ABXSQ ADACV ADDNB ADVJH AGUYK AHRGI AQVQM ARZZG AS~ CCPQU CCQAD CHEAL EBS HZ~ LW7 XOL ~02 ~EF ~KM FBQ AAHBH AAYXX ABVZP AEHGV CITATION CTKSN IPSME |
ID | FETCH-LOGICAL-b387t-be3e50740c93f1c1f205b6180c0c8ea21a917228f59859273d8d5f8c8e2ec5a93 |
IEDL.DBID | JLS |
ISSN | 0043-1745 |
IngestDate | Thu Sep 26 16:15:59 EDT 2024 Fri Feb 02 07:02:17 EST 2024 Wed Dec 27 19:06:52 EST 2023 Wed Mar 13 06:05:40 EDT 2024 Thu Aug 18 13:23:56 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | triticale, Triticosecale spp Velvetleaf, Abutilon theophrasti Medicus ABUTH alfalfa, Medicago sativa L soybean, Glycine max (L.) Merr corn, Zea mays L Crop rotation matrix population models weed population dynamics seed predation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b387t-be3e50740c93f1c1f205b6180c0c8ea21a917228f59859273d8d5f8c8e2ec5a93 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1614_WS_04_130R jstor_primary_4047016 fao_agris_US201301005648 cambridge_journals_10_1614_WS_04_130R bioone_primary_10_1614_WS_04_130R |
PublicationCentury | 2000 |
PublicationDate | 2005-05-01 |
PublicationDateYYYYMMDD | 2005-05-01 |
PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK |
PublicationTitle | Weed science |
PublicationTitleAlternate | Weed sci |
PublicationYear | 2005 |
Publisher | Cambridge University Press Weed Science Society of America |
Publisher_xml | – name: Cambridge University Press – name: Weed Science Society of America |
References | i0043-1745-53-3-382-Bauer1 i0043-1745-53-3-382-Cromar1 i0043-1745-53-3-382-Norris1 i0043-1745-53-3-382-Caswell2 i0043-1745-53-3-382-Buhler1 i0043-1745-53-3-382-Buhler2 i0043-1745-53-3-382-Lueschen1 i0043-1745-53-3-382-Lindquist1 i0043-1745-53-3-382-Mertens1 i0043-1745-53-3-382-Cousens1 i0043-1745-53-3-382-Bussan1 i0043-1745-53-3-382-Cousens3 i0043-1745-53-3-382-Harrison1 i0043-1745-53-3-382-Dowling1 i0043-1745-53-3-382-Hartzler1 i0043-1745-53-3-382-GonzalezAndular1 i0043-1745-53-3-382-Mohler3 i0043-1745-53-3-382-Vavrek1 i0043-1745-53-3-382-Wiles1 i0043-1745-53-3-382-Davis3 i0043-1745-53-3-382-Hulme1 i0043-1745-53-3-382-Kremer1 i0043-1745-53-3-382-ODonovan1 i0043-1745-53-3-382-Mester1 i0043-1745-53-3-382-Zanin1 i0043-1745-53-3-382-Davis2 i0043-1745-53-3-382-Mohler1 i0043-1745-53-3-382-Abbott1 i0043-1745-53-3-382-Davis1 i0043-1745-53-3-382-Burnside1 i0043-1745-53-3-382-Roberts1 i0043-1745-53-3-382-Brust1 i0043-1745-53-3-382-Kegode1 i0043-1745-53-3-382-Westerman1 i0043-1745-53-3-382-Jordan1 i0043-1745-53-3-382-Thompson1 i0043-1745-53-3-382-Benvenuti1 |
References_xml | – ident: i0043-1745-53-3-382-Mertens1 doi: 10.1890/1051-0761(2002)012[1125:WPACRE]2.0.CO;2 – ident: i0043-1745-53-3-382-Davis3 doi: 10.1614/P2002-133A – ident: i0043-1745-53-3-382-Kremer1 doi: 10.2307/1941791 – ident: i0043-1745-53-3-382-Westerman1 doi: 10.1046/j.1365-2664.2003.00850.x – ident: i0043-1745-53-3-382-Hartzler1 – ident: i0043-1745-53-3-382-Burnside1 – ident: i0043-1745-53-3-382-GonzalezAndular1 doi: 10.1016/S0304-3800(96)00078-6 – ident: i0043-1745-53-3-382-Harrison1 – ident: i0043-1745-53-3-382-Vavrek1 doi: 10.2307/2960501 – ident: i0043-1745-53-3-382-Wiles1 – ident: i0043-1745-53-3-382-Cousens1 – ident: i0043-1745-53-3-382-Mohler3 doi: 10.1046/j.1365-3180.1997.d01-21.x – ident: i0043-1745-53-3-382-Buhler1 – ident: i0043-1745-53-3-382-Benvenuti1 doi: 10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2 – ident: i0043-1745-53-3-382-Zanin1 – ident: i0043-1745-53-3-382-Thompson1 doi: 10.1111/j.1469-8137.1987.tb00871.x – ident: i0043-1745-53-3-382-Caswell2 doi: 10.2307/1937455 – ident: i0043-1745-53-3-382-Cromar1 – ident: i0043-1745-53-3-382-Davis1 doi: 10.1614/P2002-133C – ident: i0043-1745-53-3-382-Lindquist1 – ident: i0043-1745-53-3-382-Kegode1 – ident: i0043-1745-53-3-382-Hulme1 doi: 10.2307/2261271 – ident: i0043-1745-53-3-382-Abbott1 doi: 10.1093/jee/18.2.265a – ident: i0043-1745-53-3-382-Davis2 doi: 10.1890/02-5385 – ident: i0043-1745-53-3-382-Mohler1 doi: 10.2307/1941792 – ident: i0043-1745-53-3-382-Bussan1 – ident: i0043-1745-53-3-382-ODonovan1 doi: 10.7202/706097ar – ident: i0043-1745-53-3-382-Cousens3 doi: 10.1111/j.1365-3180.1990.tb01688.x – ident: i0043-1745-53-3-382-Brust1 – ident: i0043-1745-53-3-382-Bauer1 – ident: i0043-1745-53-3-382-Norris1 doi: 10.1300/J144v02n01_03 – ident: i0043-1745-53-3-382-Lueschen1 – ident: i0043-1745-53-3-382-Mester1 – ident: i0043-1745-53-3-382-Jordan1 doi: 10.2307/2445585 – ident: i0043-1745-53-3-382-Buhler2 – ident: i0043-1745-53-3-382-Dowling1 doi: 10.1071/EA9930167 – ident: i0043-1745-53-3-382-Roberts1 doi: 10.1111/j.1365-3180.1972.tb01226.x |
SSID | ssj0016219 |
Score | 2.1981192 |
Snippet | To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment... |
SourceID | crossref jstor fao cambridge bioone |
SourceType | Aggregation Database Publisher |
StartPage | 382 |
SubjectTerms | Abutilon theophrasti Alfalfa Corn crop production Crop rotation crop-weed competition cultural control equations Glycine max Herbicides mathematical models matrix population models Medicago sativa plant density population dynamics Rotation Seed predation Seeds Soybeans SYMPOSIUM Tillage triticale Triticosecale weed control weed population dynamics Weeds Zea mays |
Title | Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems |
URI | http://www.bioone.org/doi/abs/10.1614/WS-04-130R https://www.cambridge.org/core/product/identifier/S0043174500023092/type/journal_article https://www.jstor.org/stable/4047016 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB41nMoBaAGx0K6mAiQ4WMTOyz5VK2DFoUVol-cpsr0OWmmVoF0et5744R0n2VWRStVrnERWvozns2fmG4C92JDTNE4xobRisRaS6cxxlmpNDlBZy4WvHT4bZue38uTUy-TszWthfFplnRdYR_GJIJmJO4rDOCNqEkAgQ9mk7S0iBangah5FJnadtBKk5HWObob-2J8W6QG5FzOuqtL9qaDwxhMFha7epiTWDqa_-n9TW4OVlkBir0H8E3xw5WdY7t1PWxENtw6vvanDn2Tl-GPsJYqxPZ7GRqqY1rfveO0mz47GdIEHPd_yalKV6KsaCVxNZn-IF4vWXnjStK2f4bjEy5eKoS5H2KeZsDsyFDyeVg84qJqgPrYa6Btw1T-9PD5jbbcFZiKZPTLjIkfkMA6tigpueSHCxKRchja00mnBNe3shJBFomSiiPWM5CgpJI0JZxOtok1YKukTbwGmhic6M8QcIh1nJvNGnqXcRlEUSmuSDnxr4MgfGkmN3G9FCLL8ZpiHsQ-xDTqwv0Aqb-1q9tf7duco_vNtWwRwrgmMWX41FD5ey70Maiw7sFGjuni6hXT7nes78LGWb62THr_A0uP0yX2FYDZ66kIgfvW7df1Mt_5LfwMvpd0k |
link.rule.ids | 315,782,786,808,814,27935,27936,58037,58040,58055,58270,58273,58288 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7R8QB7YPwYWtmAQwwJHqzFTpzYT1O1rSqim1DbMXiKbNeZKlXJ1G7wD-wP3zlJKyYB4jWOIyufz_fZd_4OYD-x5DSt10xoo1lihGIm85ylxpAD1M5xEe4OD8bZ2Xd1fBJkcvZXd2FCWmWdF1hH8Ykg2bk_SKIkI2rSgYdS0aRrEvfWsYJUcL2KIxO_lq0IKfmdg4txOPinZXpEDsbOqqr0v2so3PNFncJU95MSaxfT3_q_wT2FJy2FxF6D-TN44MvnsNm7XLQyGv4F3PYWHk_JznE4CyLF2B5QYyNWTCvcIX7z85-e2kyBH3uh6NW8KjHcayR4DRn-J_y6Lu6Fx03h-iXOSpz8qhiacop9Ggn7QaaCR4vqCkdVE9bHVgV9G877J5OjAWvrLTAbq-yaWR97oodJ5HRccMcLEUmbchW5yClvBDe0txNCFVIrqYn3TNVUForahHfS6PglbJT0i3cAU8ulySxxh9gkmc2CmWcpd3EcR8pZ2YV3DRz5VSOqkYfNCEGWX4zzKAlBtlEXPqyRylvLWv7xvfcrFP_5tR0CODcExjI_H4sQseVBCDVRXdiuUV33biF99Zfnb-HRYHI6zIefz77swuNazLVOgdyDjevFjX8NneX05k09S-8AgDLeWg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6xRUJwKI8W7fIcBEjlYG3svOwTWnUbFVGqarcPeopsx0ErrZLVbltunPjhjJPsikqAuMZJZOXLeMb-Zr4BeBcZcprGKSaUVizSQjKdOs4SrckBKmu58LXDh9P0-KscH3iZnL11LYxPq2zyAhsWnwIkM3fDRVEOoyBKKTzpwV1P9PjkLfEj2_AFieBqzSVTjB13QqTke4YXU3_4T0v1hJyMmdV15X7XUbjlj3qlrm8nJjZuJnv4_xN8BNtdKImjFvvHcMdVT-DB6Nuyk9NwO_BztHT4hewdj2ZerBi7g2psRYtppfuI525-42hMl7g38s2v5nWFvr6RYNa0AHzAk02TLxy3DexXOKvw9HvNUFcFZjQTdkkmg_vLeoGTuqX3sVND34Wz7OB0_5B1fReYCWV6xYwLHYWJUWBVWHLLSxHEJuEysIGVTguuaY8nhCxjJWNF8U8hi7iUNCacjbUKn8JWRZ-5D5gYHuvUUAwR6ig1qTf3NOE2DMNAWhMP4E0LSb5oxTVyvykh2PKLaR5EnmybDOD9Bq28s7DVH-97u0byn2_rE8i5JjBW-dlUeOaWe0HUSA5gt0F283QH6bO_XH8N907GWX706fjzc7jfaLo2mZAvYOtqee1eQm9VXL9qftRfKQjhAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+many+little+hammers+effective%3F+Velvetleaf+%28Abutilon+theophrasti%29+population+dynamics+in+two-+and+four-year+crop+rotation+systems&rft.jtitle=Weed+science&rft.au=Westerman%2C+Paula+R.&rft.au=Liebman%2C+Matt&rft.au=Menalled%2C+Fabi%C3%A1n+D.&rft.au=Heggenstaller%2C+Andrew+H.&rft.date=2005-05-01&rft.pub=Cambridge+University+Press&rft.issn=0043-1745&rft.eissn=1550-2759&rft.volume=53&rft.issue=3&rft.spage=382&rft.epage=392&rft_id=info:doi/10.1614%2FWS-04-130R&rft.externalDocID=10_1614_WS_04_130R |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1745&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1745&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1745&client=summon |