Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems

To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed wit...

Full description

Saved in:
Bibliographic Details
Published in:Weed science Vol. 53; no. 3; pp. 382 - 392
Main Authors: Westerman, Paula R., Liebman, Matt, Menalled, Fabián D., Heggenstaller, Andrew H., Hartzler, Robert G., Dixon, Philip M.
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01-05-2005
Weed Science Society of America
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn–soybean–triticale + alfalfa–alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m−2) was added to 7- by 7-m areas within replicate plots of each crop phase–rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m−2). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. Nomenclature: Velvetleaf, Abutilon theophrasti Medicus ABUTH; alfalfa, Medicago sativa L.; corn, Zea mays L.; soybean, Glycine max (L.) Merr.; triticale, Triticosecale spp.
AbstractList To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn-soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn-soybean-triticale + alfalfa-alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m⁻²) was added to 7- by 7-m areas within replicate plots of each crop phase-rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m⁻²). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides.
To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn-soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn-soybean-triticale + alfalfa-alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m(-2)) was added to 7- by 7-m areas within replicate plots of each crop phase-rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m(-2)). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be greater than or equal to 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides.
To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn–soybean–triticale + alfalfa–alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m−2) was added to 7- by 7-m areas within replicate plots of each crop phase–rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m−2). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides.
To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn–soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn–soybean–triticale + alfalfa–alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m−2) was added to 7- by 7-m areas within replicate plots of each crop phase–rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m−2). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. Nomenclature: Velvetleaf, Abutilon theophrasti Medicus ABUTH; alfalfa, Medicago sativa L.; corn, Zea mays L.; soybean, Glycine max (L.) Merr.; triticale, Triticosecale spp.
Author Liebman, Matt
Westerman, Paula R.
Heggenstaller, Andrew H.
Hartzler, Robert G.
Dixon, Philip M.
Menalled, Fabián D.
Author_xml – sequence: 1
  givenname: Paula R.
  surname: Westerman
  fullname: Westerman, Paula R.
  email: prwester@iastate.edu
  organization: Corresponding author. Department of Agronomy, 2501 Agronomy Hall, Iowa State University, Ames, IA 50011-1010
– sequence: 2
  givenname: Matt
  surname: Liebman
  fullname: Liebman, Matt
  organization: Department of Agronomy, 3405 Agronomy Hall, Iowa State University, Ames, IA 50011-1010
– sequence: 3
  givenname: Fabián D.
  surname: Menalled
  fullname: Menalled, Fabián D.
  organization: Department of Land Resources and Environmental Sciences, 719 Leon Johnson Hall, Montana State University, Bozeman, MT 59717-3120
– sequence: 4
  givenname: Andrew H.
  surname: Heggenstaller
  fullname: Heggenstaller, Andrew H.
  organization: Department of Agronomy, 3403 Agronomy Hall, Iowa State University, Ames, IA 50011-1010
– sequence: 5
  givenname: Robert G.
  surname: Hartzler
  fullname: Hartzler, Robert G.
  organization: Department of Agronomy, 2104 Agronomy Hall, Iowa State University, Ames, IA 50011-1010
– sequence: 6
  givenname: Philip M.
  surname: Dixon
  fullname: Dixon, Philip M.
  organization: Department of Statistics, 125 Snedecor Hall, Iowa State University, Ames, IA 50011-1210
BookMark eNp9kU1r3DAQhkVJoZukl54L1TENVTuSpbV9CktomkCg0G2ao5DtUVaLbRlJm-J7f3gVHHoqOQ3M-8zXO8fkaPQjEvKOw2e-5vLL_ZaBZLyAH6_IiisFTJSqPiIrAFkwXkr1hhzHuAfga8HrFfmzCUgHM860dyn1SHdmGDBEitZim9wjXtBf2D9i1oylZ5vmkFzvR5p26KddMDG5j3Ty06E3yeV8N49mcG2kLjO_PaNm7Kj1h8BmNIG2wU80-LTAcY4Jh3hKXlvTR3z7HE_I3dXXn5fX7Pb7t5vLzS1riqpMrMECFZQS2rqwvOVWgGrWvIIW2gqN4KbmpRCVVXWlalEWXdUpW2VNYKtMXZyQ86Vv3iLGgFZPwQ0mzJqDfvJP3281SP3kX4bfL_A-Jh_-kRJkmc3L8odFtsZr8xBc1HdbAbmUA6i1rDLx6XmaGZrgugfU--zDmC_8_7yzBW-cz099abW_GQaU4w
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_147695
crossref_primary_10_1017_S0007485307005512
crossref_primary_10_3390_agronomy9070369
crossref_primary_10_1016_j_eja_2009_03_008
crossref_primary_10_1111_j_1365_3180_2008_00684_x
crossref_primary_10_1016_j_biocontrol_2013_12_004
crossref_primary_10_1111_j_1365_2664_2006_01198_x
crossref_primary_10_1016_j_fcr_2010_11_020
crossref_primary_10_1111_gcbb_12799
crossref_primary_10_1614_WS_D_13_00065_1
crossref_primary_10_1007_s13593_020_00620_9
crossref_primary_10_1111_j_1365_3180_2006_00494_x
crossref_primary_10_2134_agronj2007_0222
crossref_primary_10_1007_s10980_020_01157_8
crossref_primary_10_1111_j_1445_6664_2012_00445_x
crossref_primary_10_1155_2012_846546
crossref_primary_10_1890_11_1079_1
crossref_primary_10_1093_jpe_rtt011
crossref_primary_10_1016_j_agee_2008_07_002
crossref_primary_10_1016_j_agee_2010_03_009
crossref_primary_10_1614_WS_D_16_00084_1
crossref_primary_10_1111_j_1365_2664_2007_01335_x
crossref_primary_10_1111_wre_12497
crossref_primary_10_1007_s13593_011_0011_7
crossref_primary_10_1016_j_njas_2013_08_001
crossref_primary_10_1111_wbm_12238
crossref_primary_10_6090_jarq_48_63
crossref_primary_10_1016_j_biocontrol_2008_12_003
crossref_primary_10_1614_WS_08_148_1
crossref_primary_10_2134_agronj2017_11_0662
crossref_primary_10_2134_agronj2018_02_0109
crossref_primary_10_2903_j_efsa_2012_2753
crossref_primary_10_1038_s41598_020_76305_w
crossref_primary_10_1111_wre_12508
crossref_primary_10_1016_j_agee_2008_09_009
crossref_primary_10_17221_159_2021_PPS
crossref_primary_10_1590_s0100_83582020380100075
crossref_primary_10_1614_IPSM_D_10_00061_1
crossref_primary_10_1111_j_1365_3180_2010_00798_x
crossref_primary_10_1080_10440046_2012_672380
crossref_primary_10_3390_su8121297
crossref_primary_10_1080_21683565_2021_2019167
crossref_primary_10_1111_j_1365_2311_2008_01026_x
crossref_primary_10_1111_wbm_12186
crossref_primary_10_1614_WT_D_12_00109_1
crossref_primary_10_1614_WS_D_14_00067_1
crossref_primary_10_1007_s13165_012_0022_y
crossref_primary_10_1017_wsc_2017_14
crossref_primary_10_3389_fsufs_2023_1126151
crossref_primary_10_1111_wre_12234
crossref_primary_10_1051_agro_2009043
crossref_primary_10_1016_j_eja_2013_01_007
crossref_primary_10_3389_fagro_2021_708851
crossref_primary_10_1002_ece3_7898
crossref_primary_10_1007_s11355_014_0254_y
crossref_primary_10_1017_S1742170507001937
crossref_primary_10_1111_wre_12470
crossref_primary_10_17109_AZH_65_Suppl_57_2019
crossref_primary_10_1016_j_fcr_2015_07_012
crossref_primary_10_1016_j_tpb_2012_03_008
crossref_primary_10_1016_j_jclepro_2022_135437
crossref_primary_10_2903_j_efsa_2011_2480
crossref_primary_10_1016_j_biocontrol_2014_11_007
crossref_primary_10_1051_agro_2010020
crossref_primary_10_1017_wsc_2020_29
crossref_primary_10_1111_j_1365_2664_2009_01614_x
crossref_primary_10_1016_j_agee_2017_02_014
crossref_primary_10_3389_fagro_2022_848548
crossref_primary_10_1016_j_cropro_2021_105860
crossref_primary_10_1111_ibi_12703
crossref_primary_10_1614_WS_D_16_00052_1
crossref_primary_10_1111_j_1365_3180_2008_00663_x
crossref_primary_10_1016_j_cropro_2024_106714
crossref_primary_10_3719_weed_61_26
crossref_primary_10_1111_j_1365_2664_2011_01991_x
crossref_primary_10_2903_j_efsa_2011_2428
crossref_primary_10_1007_s13593_018_0525_3
crossref_primary_10_3719_weed_58_14
crossref_primary_10_1080_07388551_2016_1180588
crossref_primary_10_1111_j_1365_3180_2009_00715_x
crossref_primary_10_12952_journal_elementa_000041
crossref_primary_10_3389_fagro_2022_832471
crossref_primary_10_1614_WT_D_09_00034_1
crossref_primary_10_3719_weed_55_158
crossref_primary_10_1614_WS_D_10_00115_1
crossref_primary_10_1614_WS_D_13_00037_1
crossref_primary_10_1111_wbm_12035
crossref_primary_10_3719_weed_56_191
crossref_primary_10_3719_weed_64_85
crossref_primary_10_1111_aab_12102
crossref_primary_10_1017_S1742170512000300
crossref_primary_10_3719_weed_55_16
crossref_primary_10_1016_j_eja_2023_126953
crossref_primary_10_1614_WS_D_13_00090_1
crossref_primary_10_3390_agronomy10020262
crossref_primary_10_1111_wre_12304
crossref_primary_10_1371_journal_pone_0010831
crossref_primary_10_14411_eje_2014_086
crossref_primary_10_3390_agriculture11050461
crossref_primary_10_1017_S1742170514000167
crossref_primary_10_5402_2012_461245
crossref_primary_10_3719_weed_56_182
crossref_primary_10_1016_j_baae_2013_02_002
crossref_primary_10_3719_weed_57_61
crossref_primary_10_3389_fagro_2022_811359
crossref_primary_10_1098_rstb_2007_2180
crossref_primary_10_1614_WS_06_162_1
crossref_primary_10_1016_j_biocontrol_2009_07_016
crossref_primary_10_3719_weed_55_8
crossref_primary_10_2134_agronj2016_09_0536
crossref_primary_10_3719_weed_55_1
crossref_primary_10_3390_agronomy12112666
crossref_primary_10_1007_s10980_013_9848_2
crossref_primary_10_1016_j_agee_2010_12_002
crossref_primary_10_1186_s12898_014_0033_5
crossref_primary_10_1016_j_agee_2017_07_025
crossref_primary_10_1016_j_eja_2015_12_016
crossref_primary_10_1111_wbm_12018
crossref_primary_10_3390_agronomy11030565
crossref_primary_10_1111_wbm_12091
crossref_primary_10_1111_1365_2664_13389
crossref_primary_10_3390_agronomy10070958
Cites_doi 10.1890/1051-0761(2002)012[1125:WPACRE]2.0.CO;2
10.1614/P2002-133A
10.2307/1941791
10.1046/j.1365-2664.2003.00850.x
10.1016/S0304-3800(96)00078-6
10.2307/2960501
10.1046/j.1365-3180.1997.d01-21.x
10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2
10.1111/j.1469-8137.1987.tb00871.x
10.2307/1937455
10.1614/P2002-133C
10.2307/2261271
10.1093/jee/18.2.265a
10.1890/02-5385
10.2307/1941792
10.7202/706097ar
10.1111/j.1365-3180.1990.tb01688.x
10.1300/J144v02n01_03
10.2307/2445585
10.1071/EA9930167
10.1111/j.1365-3180.1972.tb01226.x
ContentType Journal Article
Copyright Weed Science Society of America
Copyright © Weed Science Society of America
Copyright 2005 The Weed Science Society of America
Copyright_xml – notice: Weed Science Society of America
– notice: Copyright © Weed Science Society of America
– notice: Copyright 2005 The Weed Science Society of America
DBID FBQ
AAYXX
CITATION
DOI 10.1614/WS-04-130R
DatabaseName AGRIS
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Westerman et al.: Context-Dependent Weed Thresholds
EISSN 1550-2759
EndPage 392
ExternalDocumentID 10_1614_WS_04_130R
4047016
US201301005648
GeographicLocations Iowa
GeographicLocations_xml – name: Iowa
GroupedDBID 02
08R
09C
09E
0R
123
29R
2AX
2~F
3V.
7X2
8FE
8FH
8G5
AAAZR
AABWE
AACFU
AAEED
AAGFV
AAHKG
AAKTX
AAPSS
AAUKB
AAXTN
ABBHK
ABBJB
ABBZL
ABKMT
ABPLY
ABQTM
ABROB
ABTLG
ABUWG
ABZCX
ACCHT
ACGFS
ACPRK
ACQFJ
ACQPF
ACUIJ
ACUYZ
ACWGA
ACYZP
ADBBV
ADGEJ
ADHSS
ADKIL
ADOCW
ADOVH
ADOVT
ADOYD
ADULT
ADZLD
AEBAK
AEBPU
AEDJY
AEEJZ
AENCP
AENEX
AEPYG
AESBF
AEUPB
AEYYC
AFAZZ
AFFIJ
AFKQG
AFKRA
AFLVW
AFNWH
AFRAH
AFRIC
AGABE
AGJUD
AGOOT
AHQXX
AICQM
AIGNW
AIHIV
AIOIP
AIRJO
AJCYY
AJPFC
AKPMI
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ANHSF
AQJOH
AS
ATCPS
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BBNVY
BCGOX
BENPR
BESQT
BHPHI
BJBOZ
BLZWO
BMAJL
BPHCQ
CAG
CBGCD
CBIIA
CCUQV
CFAFE
CFBFF
CGQII
CJCSC
COF
CS3
CWIXF
DATOO
DC7
DFEDG
DOHLZ
DOOOF
DU5
DWIUU
DWQXO
EF
EGQIC
EQZMY
GNUQQ
GTFYD
GUQSH
H13
HCIFZ
HGD
HTVGU
HZ
IH6
IL9
IOEEP
IOO
IS6
JAAYA
JBMMH
JBS
JENOY
JH
JHFFW
JHPGK
JKQEH
JLS
JLXEF
JPM
JQKCU
JSODD
JST
KAFGG
KCGVB
KFECR
KM
LHUNA
LK8
M0K
M2O
M7P
MV1
NEJ
NIKVX
NVHAQ
NZEOI
O9-
OVD
P2P
PADUT
PQ0
PQEST
PQQKQ
PQUKI
PRINS
PROAC
Q5J
RBO
RCA
ROL
S6U
SA0
SAAAG
SJN
T9M
TEORI
TN5
UT1
WFFJZ
WH7
Y3D
Y6R
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
-JH
0R~
AASVR
ABMYL
ABXAU
ABXSQ
ADACV
ADDNB
ADVJH
AGUYK
AHRGI
AQVQM
ARZZG
AS~
CCPQU
CCQAD
CHEAL
EBS
HZ~
LW7
XOL
~02
~EF
~KM
FBQ
AAHBH
AAYXX
ABVZP
AEHGV
CITATION
CTKSN
IPSME
ID FETCH-LOGICAL-b387t-be3e50740c93f1c1f205b6180c0c8ea21a917228f59859273d8d5f8c8e2ec5a93
IEDL.DBID JLS
ISSN 0043-1745
IngestDate Thu Sep 26 16:15:59 EDT 2024
Fri Feb 02 07:02:17 EST 2024
Wed Dec 27 19:06:52 EST 2023
Wed Mar 13 06:05:40 EDT 2024
Thu Aug 18 13:23:56 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords triticale, Triticosecale spp
Velvetleaf, Abutilon theophrasti Medicus ABUTH
alfalfa, Medicago sativa L
soybean, Glycine max (L.) Merr
corn, Zea mays L
Crop rotation
matrix population models
weed population dynamics
seed predation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b387t-be3e50740c93f1c1f205b6180c0c8ea21a917228f59859273d8d5f8c8e2ec5a93
PageCount 11
ParticipantIDs crossref_primary_10_1614_WS_04_130R
jstor_primary_4047016
fao_agris_US201301005648
cambridge_journals_10_1614_WS_04_130R
bioone_primary_10_1614_WS_04_130R
PublicationCentury 2000
PublicationDate 2005-05-01
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Weed science
PublicationTitleAlternate Weed sci
PublicationYear 2005
Publisher Cambridge University Press
Weed Science Society of America
Publisher_xml – name: Cambridge University Press
– name: Weed Science Society of America
References i0043-1745-53-3-382-Bauer1
i0043-1745-53-3-382-Cromar1
i0043-1745-53-3-382-Norris1
i0043-1745-53-3-382-Caswell2
i0043-1745-53-3-382-Buhler1
i0043-1745-53-3-382-Buhler2
i0043-1745-53-3-382-Lueschen1
i0043-1745-53-3-382-Lindquist1
i0043-1745-53-3-382-Mertens1
i0043-1745-53-3-382-Cousens1
i0043-1745-53-3-382-Bussan1
i0043-1745-53-3-382-Cousens3
i0043-1745-53-3-382-Harrison1
i0043-1745-53-3-382-Dowling1
i0043-1745-53-3-382-Hartzler1
i0043-1745-53-3-382-GonzalezAndular1
i0043-1745-53-3-382-Mohler3
i0043-1745-53-3-382-Vavrek1
i0043-1745-53-3-382-Wiles1
i0043-1745-53-3-382-Davis3
i0043-1745-53-3-382-Hulme1
i0043-1745-53-3-382-Kremer1
i0043-1745-53-3-382-ODonovan1
i0043-1745-53-3-382-Mester1
i0043-1745-53-3-382-Zanin1
i0043-1745-53-3-382-Davis2
i0043-1745-53-3-382-Mohler1
i0043-1745-53-3-382-Abbott1
i0043-1745-53-3-382-Davis1
i0043-1745-53-3-382-Burnside1
i0043-1745-53-3-382-Roberts1
i0043-1745-53-3-382-Brust1
i0043-1745-53-3-382-Kegode1
i0043-1745-53-3-382-Westerman1
i0043-1745-53-3-382-Jordan1
i0043-1745-53-3-382-Thompson1
i0043-1745-53-3-382-Benvenuti1
References_xml – ident: i0043-1745-53-3-382-Mertens1
  doi: 10.1890/1051-0761(2002)012[1125:WPACRE]2.0.CO;2
– ident: i0043-1745-53-3-382-Davis3
  doi: 10.1614/P2002-133A
– ident: i0043-1745-53-3-382-Kremer1
  doi: 10.2307/1941791
– ident: i0043-1745-53-3-382-Westerman1
  doi: 10.1046/j.1365-2664.2003.00850.x
– ident: i0043-1745-53-3-382-Hartzler1
– ident: i0043-1745-53-3-382-Burnside1
– ident: i0043-1745-53-3-382-GonzalezAndular1
  doi: 10.1016/S0304-3800(96)00078-6
– ident: i0043-1745-53-3-382-Harrison1
– ident: i0043-1745-53-3-382-Vavrek1
  doi: 10.2307/2960501
– ident: i0043-1745-53-3-382-Wiles1
– ident: i0043-1745-53-3-382-Cousens1
– ident: i0043-1745-53-3-382-Mohler3
  doi: 10.1046/j.1365-3180.1997.d01-21.x
– ident: i0043-1745-53-3-382-Buhler1
– ident: i0043-1745-53-3-382-Benvenuti1
  doi: 10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2
– ident: i0043-1745-53-3-382-Zanin1
– ident: i0043-1745-53-3-382-Thompson1
  doi: 10.1111/j.1469-8137.1987.tb00871.x
– ident: i0043-1745-53-3-382-Caswell2
  doi: 10.2307/1937455
– ident: i0043-1745-53-3-382-Cromar1
– ident: i0043-1745-53-3-382-Davis1
  doi: 10.1614/P2002-133C
– ident: i0043-1745-53-3-382-Lindquist1
– ident: i0043-1745-53-3-382-Kegode1
– ident: i0043-1745-53-3-382-Hulme1
  doi: 10.2307/2261271
– ident: i0043-1745-53-3-382-Abbott1
  doi: 10.1093/jee/18.2.265a
– ident: i0043-1745-53-3-382-Davis2
  doi: 10.1890/02-5385
– ident: i0043-1745-53-3-382-Mohler1
  doi: 10.2307/1941792
– ident: i0043-1745-53-3-382-Bussan1
– ident: i0043-1745-53-3-382-ODonovan1
  doi: 10.7202/706097ar
– ident: i0043-1745-53-3-382-Cousens3
  doi: 10.1111/j.1365-3180.1990.tb01688.x
– ident: i0043-1745-53-3-382-Brust1
– ident: i0043-1745-53-3-382-Bauer1
– ident: i0043-1745-53-3-382-Norris1
  doi: 10.1300/J144v02n01_03
– ident: i0043-1745-53-3-382-Lueschen1
– ident: i0043-1745-53-3-382-Mester1
– ident: i0043-1745-53-3-382-Jordan1
  doi: 10.2307/2445585
– ident: i0043-1745-53-3-382-Buhler2
– ident: i0043-1745-53-3-382-Dowling1
  doi: 10.1071/EA9930167
– ident: i0043-1745-53-3-382-Roberts1
  doi: 10.1111/j.1365-3180.1972.tb01226.x
SSID ssj0016219
Score 2.1981192
Snippet To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment...
SourceID crossref
jstor
fao
cambridge
bioone
SourceType Aggregation Database
Publisher
StartPage 382
SubjectTerms Abutilon theophrasti
Alfalfa
Corn
crop production
Crop rotation
crop-weed competition
cultural control
equations
Glycine max
Herbicides
mathematical models
matrix population models
Medicago sativa
plant density
population dynamics
Rotation
Seed predation
Seeds
Soybeans
SYMPOSIUM
Tillage
triticale
Triticosecale
weed control
weed population dynamics
Weeds
Zea mays
Title Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems
URI http://www.bioone.org/doi/abs/10.1614/WS-04-130R
https://www.cambridge.org/core/product/identifier/S0043174500023092/type/journal_article
https://www.jstor.org/stable/4047016
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB41nMoBaAGx0K6mAiQ4WMTOyz5VK2DFoUVol-cpsr0OWmmVoF0et5744R0n2VWRStVrnERWvozns2fmG4C92JDTNE4xobRisRaS6cxxlmpNDlBZy4WvHT4bZue38uTUy-TszWthfFplnRdYR_GJIJmJO4rDOCNqEkAgQ9mk7S0iBangah5FJnadtBKk5HWObob-2J8W6QG5FzOuqtL9qaDwxhMFha7epiTWDqa_-n9TW4OVlkBir0H8E3xw5WdY7t1PWxENtw6vvanDn2Tl-GPsJYqxPZ7GRqqY1rfveO0mz47GdIEHPd_yalKV6KsaCVxNZn-IF4vWXnjStK2f4bjEy5eKoS5H2KeZsDsyFDyeVg84qJqgPrYa6Btw1T-9PD5jbbcFZiKZPTLjIkfkMA6tigpueSHCxKRchja00mnBNe3shJBFomSiiPWM5CgpJI0JZxOtok1YKukTbwGmhic6M8QcIh1nJvNGnqXcRlEUSmuSDnxr4MgfGkmN3G9FCLL8ZpiHsQ-xDTqwv0Aqb-1q9tf7duco_vNtWwRwrgmMWX41FD5ey70Maiw7sFGjuni6hXT7nes78LGWb62THr_A0uP0yX2FYDZ66kIgfvW7df1Mt_5LfwMvpd0k
link.rule.ids 315,782,786,808,814,27935,27936,58037,58040,58055,58270,58273,58288
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7R8QB7YPwYWtmAQwwJHqzFTpzYT1O1rSqim1DbMXiKbNeZKlXJ1G7wD-wP3zlJKyYB4jWOIyufz_fZd_4OYD-x5DSt10xoo1lihGIm85ylxpAD1M5xEe4OD8bZ2Xd1fBJkcvZXd2FCWmWdF1hH8Ykg2bk_SKIkI2rSgYdS0aRrEvfWsYJUcL2KIxO_lq0IKfmdg4txOPinZXpEDsbOqqr0v2so3PNFncJU95MSaxfT3_q_wT2FJy2FxF6D-TN44MvnsNm7XLQyGv4F3PYWHk_JznE4CyLF2B5QYyNWTCvcIX7z85-e2kyBH3uh6NW8KjHcayR4DRn-J_y6Lu6Fx03h-iXOSpz8qhiacop9Ggn7QaaCR4vqCkdVE9bHVgV9G877J5OjAWvrLTAbq-yaWR97oodJ5HRccMcLEUmbchW5yClvBDe0txNCFVIrqYn3TNVUForahHfS6PglbJT0i3cAU8ulySxxh9gkmc2CmWcpd3EcR8pZ2YV3DRz5VSOqkYfNCEGWX4zzKAlBtlEXPqyRylvLWv7xvfcrFP_5tR0CODcExjI_H4sQseVBCDVRXdiuUV33biF99Zfnb-HRYHI6zIefz77swuNazLVOgdyDjevFjX8NneX05k09S-8AgDLeWg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6xRUJwKI8W7fIcBEjlYG3svOwTWnUbFVGqarcPeopsx0ErrZLVbltunPjhjJPsikqAuMZJZOXLeMb-Zr4BeBcZcprGKSaUVizSQjKdOs4SrckBKmu58LXDh9P0-KscH3iZnL11LYxPq2zyAhsWnwIkM3fDRVEOoyBKKTzpwV1P9PjkLfEj2_AFieBqzSVTjB13QqTke4YXU3_4T0v1hJyMmdV15X7XUbjlj3qlrm8nJjZuJnv4_xN8BNtdKImjFvvHcMdVT-DB6Nuyk9NwO_BztHT4hewdj2ZerBi7g2psRYtppfuI525-42hMl7g38s2v5nWFvr6RYNa0AHzAk02TLxy3DexXOKvw9HvNUFcFZjQTdkkmg_vLeoGTuqX3sVND34Wz7OB0_5B1fReYCWV6xYwLHYWJUWBVWHLLSxHEJuEysIGVTguuaY8nhCxjJWNF8U8hi7iUNCacjbUKn8JWRZ-5D5gYHuvUUAwR6ig1qTf3NOE2DMNAWhMP4E0LSb5oxTVyvykh2PKLaR5EnmybDOD9Bq28s7DVH-97u0byn2_rE8i5JjBW-dlUeOaWe0HUSA5gt0F283QH6bO_XH8N907GWX706fjzc7jfaLo2mZAvYOtqee1eQm9VXL9qftRfKQjhAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+many+little+hammers+effective%3F+Velvetleaf+%28Abutilon+theophrasti%29+population+dynamics+in+two-+and+four-year+crop+rotation+systems&rft.jtitle=Weed+science&rft.au=Westerman%2C+Paula+R.&rft.au=Liebman%2C+Matt&rft.au=Menalled%2C+Fabi%C3%A1n+D.&rft.au=Heggenstaller%2C+Andrew+H.&rft.date=2005-05-01&rft.pub=Cambridge+University+Press&rft.issn=0043-1745&rft.eissn=1550-2759&rft.volume=53&rft.issue=3&rft.spage=382&rft.epage=392&rft_id=info:doi/10.1614%2FWS-04-130R&rft.externalDocID=10_1614_WS_04_130R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1745&client=summon